Emergent User Interfaces CS-E4200

Introduction to Multimodal Interaction 2

Movement / Gestures / Embodied interaction

Gestural interaction

Minority Report 2002

Gesture

- Kinaesthetics is bi-directional
- Can exploit our ability to use and memorise patterns and fine motor control to control things
- Use the body as an input device
 - E.g. Skinput
- Can detect and sense via different sensors
 - Accelerometer
 - Camera Tracking
 - Physical devices

What is a Gesture?

Motion with meaningful content

- simple gestures in WIMP interface
 - point & click = selection
 - click-drag-release = move an object / select a range

Gestures on Touchpad

Figure 1. Typical gestures of gestural enabled interfaces with multi-touch capability.

More options...

Outcome	Gesture
selection	one finger tap
	one finger drag
pan/move	one finger drag
camera	two finger drag
	five finger drag
move objects	one finger drag
	vertical hand position drag
	rearrange objects
throw/catch	one finger flick
objects	
rotate camera	one finger drag
	two finger rotational drag
	three finger drag
	multiple finger rotational
	drag
	one finger hold, one drag
	flat hand position rotates

• variable, not standardized

tilt camera	two finger hold, one drag
rotate objects	one finger hold, one drags
	around
zoom	two finger drag
	apart/together
resize objects	multiple finger drag
	apart/together
resize by	two finger hold, one drag
powers of ten	
toggle mode	one finger tap
show menu	one finger hold
or details	horizontal hand
	tilted horizontal hand
define region	four finger touch
	two "L" shaped hands

Ingram, A., Wang, X., & Ribarsky, W. (2012, May). Towards the establishment of a framework for intuitive multi-touch interaction design. In Proceedings of the International Working Conference on Advanced Visual Interfaces (pp. 66-73). ACM.

Multitouch in large scale

https://www.multitaction.com/product/mt-showcase/

Gestures in 3D

- No physical reference surface
 - → less accurate positioning
 - → hand fatigue, "gorilla arms"
- More degrees of freedom
 - 3D movement
 - not only finger tips hand orientation and shape
 - more than hands and fingers arms / legs / body

Body Language

Corneanu, Ciprian, et al. "Survey on Emotional Body Gesture Recognition." IEEE Transactions on Affective Computing (2018).

Motion Tracking

- Physical
 - mouse (2D), joined arms, PHANTOM
- Sensors
 - vibration/touch
 - accelerometer
 - biosensors: EMG
- Camera
 - with/without markers on body
 - conventional videocam (RGB)
 - depth camera (RGBD)

Tracking Technologies

Active

- Mechanical, Magnetic, Ultrasonic
- GPS, Wifi, cell location

- Inertial sensors (compass, accelerometer, gyro)
- Computer Vision
 - Marker based, Natural feature tracking
- Hybrid Tracking
 - Combined sensors (eg Vision + Inertial)

Mechanical Tracker

• Idea: mechanical arms with joint sensors

Microscribe

Sutherland (1968)

- ++: high accuracy, haptic feedback
- ——: cumbersome, expensive

Magnetic Tracker

• Idea: measure difference between a magnetic transmitter and a receiver

Polhemus Fastrack

Flock of Birds (Ascension)

- ++: 6DOF, robust
- --: wired, sensible to metal, noisy, expensive
- --: error increases with distance

Inertial Tracker

 Idea: measuring linear and angular orientation rates (accelerometer/gyroscope)

IS300 (Intersense)

Wii Remote

- ++: no transmitter, cheap, small, high frequency, wireless
- --: drift, hysteris, only 3DOF

Accelerometer

- Mass attached to a spring
- Calibrated to IG in a vertical dimension at rest
 - 3 aligned on cardinal axes provides orientation
- Applying force increases reading
 - Until maximum force reached
- Can record and process force over time

Gravity (g)

Gyroscope

- When you spin a wheel it continues to spin on the same axis and resists movement to turn.
- Take 3 and you can determine orientation in space.
- Supports orientation around gravity
- Some issues
 - Requires ramp up time
 - Quality and Drift
 - No global frame of reference
- With an accelerometer often called inertial tracking

Angular Rate Sensor, "gyro"

Called "gyroscope" but works differently:

rather than indicating direction, indicates
 the rate of change of angle

- Implemented with MEMS technology
 - measures the Coriolis acceleration of a vibrating mass

Optical Tracker

- Idea: Image Processing and Computer Vision
- Specialized

ART

- Infrared, Retro-Reflective, Stereoscopic

Hi-Ball

Monocular Based Vision Tracking

Camera Tracking

Orientation Scaling

Image Processing

Basics of Camera Tracking

- Markers can be of different types, often anything but must be unique
 - Fiducials, Fingers, Colours, Faces
- Markers must be known to the the computer beforehand
- The camera must also be calibrated to the environment
- All tracking is affected by image processing limitations
 - Light & Contrast, Orientation

Outside-In vs. Inside-Out Tracking

Bare Hands

- Using computer vision to track bare hand input
- Creates compelling sense of Presence, natural interaction
- Challenges need to be solved
 - Not having sense of touch
 - Line of sight required to sensor
 - Fatigue from holding hands in front of sensor

Leap Motion

- IR based sensor for hand tracking (\$50 USD)
 - HMD + Leap Motion = Hand input in VR
- Technology
 - 3 IR LEDS and 2 wide angle cameras
 - The LEDS generate patternless IR light
 - IR reflections picked up by cameras
 - Software performs hand tracking
- Performance
 - 1m range, 0.7 mm accuracy, 200Hz

https://www.leapmotion.com/

Example: Leap Motion

https://www.youtube.com/watch?v=QD4qQBL0X80

Full Body Tracking

Adding full-body input into VR

- Creates illusion of self-embodiment
- Significantly enhances sense of Presence

Technologies

- Motion capture suit, camera based systems
- Can track large number of significant feature points

Camera Based Motion Capture

- Use multiple cameras
- Reflective markers on body
- Eg Optitrack (www.optitrack.com)
 - 120 360 fps, < 10ms latency, < 1mm accuracy</p>

Optitrack Demo

https://www.youtube.com/watch?v=tBAvjU0Scul

Wearable Motion Capture: PrioVR

- Wearable motion capture system
 - 8 17 inertial sensors + wireless data transmission
 - 30 40m range, 7.5 ms latency, 0.09° precision
 - Supports full range of motion, no occlusion
- www.priovr.com

PrioVR Demo

https://www.youtube.com/watch?v=q72iErtvhNc

Markerless body tracking

- Using "deep learning" (convolutional neural networks)
- Multiple skeletons tracked from single video feed

- VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera (SIGGRAPH 2017) https://www.youtube.com/watch?v=W1ZNFfftx2E
- Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields (CVPR 2017) https://www.youtube.com/watch?v=pW6nZXeWIGM

Tracking with Depth Camera

Depth information helps to interpret images:

- separate foreground from background
- recognize body features

Kinect with OpenNI software

https://www.youtube.com/watch?v=FmXbS5DkSsw

Gestural Interaction APPLICATIONS

Brewster, Stephen, et al. "The gaime project: Gestural and auditory interactions for mobile environments." British computer Society (2009).

GAIME

- Compared Fitt's Law performance on Seated, Standing, Resting & Walking
- No significant difference other than Walking
- Accuracy was good for larger target and small separation ~90%
- But slower and less accurate for Walking
- Participants also not confident in their performance

Shoogle

 Cellphone users can shake their phone to feel and hear how full their battery or message inbox is - as if it were a liquid fuel tank.

Body Spaces

- Menus can be confusing
- Why not use body location to access functionality?
- Detect movements to body locations via a sensor (accelerometer) pack

Virtual Pockets

Drawing tools in an egocentric "tool jacket"

Figure 5: The locations and contents of the pockets.

Ilmonen & Reunanen (2005)

Sixth Sense

http://www.pranavmistry.com/projects/sixthsense/
https://www.youtube.com/watch?v=ZfV4R4x2SK0

OmniTouch

- Depth Sensing and Projectors allow any surface to be a touchsurface
- Ultimately support ubiquitous interaction

Figure 2. Our prototype shoulder-worn OmniTouch System.

Images: Chris Harrison, Hrvoje Benko, and Andrew D. Wilson. 2011. OmniTouch: wearable multitouch interaction everywhere. In Proceedings of the 24th annual ACM symposium on User interface software and technology (UIST '11). ACM, New York, NY, USA, 441-450.

Figure 10. We created a simple phone keypad application; in this sequence, time progresses left to right.

Art and Entertainment

 Virtual Dancer, 2006, a university course project. YouTube video available at http://youtu.be/gDfd1c4E6v8

 Drawing in the air, reserach project, 2005 http://www.tml.tkk.fi/Research/HELMA/

Limitations of Sensors and Tradeoffs

- In general sensors are defined by a set of criteria
- Its important to understand the limitations of sensors
 - Error
 - Drift
 - Update Rate
 - Lag/Latency
 - Sample Rate
 - Failure Conditions
 - Ground Truth (particularly with AR)

Design Guidelines

DESIGN

Beyond touch: designing effective gestural interactions

10 min read

https://www.invisionapp.com/inside-design/effective-gestural-interaction-design/