
MEC-E8001 Finite Element Analysis, week 5/2019

1. The spring force of non-linear spring depends on the dimensionless dis-
placement a /u L< according to 2 3(a a a /3)F k< , ∗ . Determine the
dimensionless displacement a /u L<  if force / 4F k< .

Answer a 0.370u
L

< ≡

2. Determine the displacement at node 2 of the elastic
bar shown by the large deformation theory. Take in-
to account only the transverse displacement 2Yu
( 2 0Xu < ). When 0F < , the cross-sectional area
and length of the bar are A  and L , respectively.
Constitutive equation of the material is xx xxS CE< ,
in which C is constant. Use two elements with linear
shape functions.

Answer
3

1/3
2 ( )Y

FLu
AC

< ,

3. Consider the bar shown loaded by a point force. Determine the equilibrium
equations in terms of the dimensionless displacement components

1 2a /Xu L<  and 2 2a /Yu L<  according to the large displacement bar theo-
ry. Assume that displacement component 0w < and use linear approxima-
tion to the non-zero components u  and v . Without loading, the area of
cross-section and the length of bar are A↓  and L↓ , respectively.  Constitutive
equation of the material is xx xxS CE< , in which C is constant.

Answer 2 2
1 1 1 2

1 1(1 a )(a a a ) 0
2 2

F
A C

∗ ∗ ∗ , <
↓

 and 2 2
2 1 1 2a (2a a a ) 0∗ ∗ <

4. Determine the equilibrium equation of the elastic bar of
the figure with the large deformation theory. The active
degree of freedom is 2Xu  and the cross-sectional area
and length of the bar are A  and L  without the point
force F acting  on  node  2.  Constitutive  equation  of  the
material is xx xxS CE< , in which C is constant. Use two
elements with linear shape functions.

Answer 2 1a(1 2a ) 0
4

F
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∗ , < where 2a Xu
L
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5. Consider the structure shown loaded by its own weight. Determine the
equations giving the displacement 2Xu  of the free end according to
large displacement bar theory. Without gravity, cross-sectional area,
length, and density of the bar are A , L , and θ , respectively. Consti-
tutive equation of the material is xx xxS CE< , in which C is constant.
Use a linear approximation.

Answer 2 2 2(1 ) (2 ) 0X X Xu u u g
L L L C

Lθ
∗ ∗ ∗ <

6. Derive the equilibrium equation of the elastic truss shown with
the large deformation theory. The cross-sectional areas and
length of the bars are A  and L  when 0F < . Constitutive equa-
tion of the material is xx xxS CE< , in which C is constant. As-
sume a planar problem of two elements.

Answer 21 1 1[2( ) 3 2] 0
2

Y Y Yu u uCA F
L L L

, ∗ ∗ <

7. A thin triangular slab (assume plane stress conditions)
loaded by a horizontal force is allowed to move horizon-
tally at node 1 and nodes 2 and 3 are fixed. Derive the
equilibrium equation for the structure according to the
large displacement theory. Material parameters C , µ  and
thickness t  at the initial geometry of the slab are con-
stants.

Answer 2
1 1a( 1 a)( 1 a) 0
2 21

tLC F
µ

, ∗ , ∗ , <
,

 where 1a Xu
L

<

8.  A structure, consisting of a thin slab under the plane stress
conditions and a bar, is loaded by a horizontal force F act-
ing on node 1. Material properties are C and ν, thickness of
the slab is t, and the cross-sectional area of the bar A at the
initial unloaded geometry. Determine the equilibrium equa-
tion giving as its solution the displacement component 1Xu
of node 1 according to the large displacement theory.

Answer 2
2

1a(a 1 ) ( 1 a)a( a a) 0
4 21
L tC CA Fµ

µ
∗ , ∗ , ∗ , ∗ ∗ <

,
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9.   A long wall having triangular cross-section, and made of homo-
geneous, isotropic, linearly elastic material, is subjected to its
own weight. Determine the equilibrium equation giving as its so-
lution displacement components 3Yu  according to the large dis-
placement theory. Nodes 1 and 2 are fixed. Use a three-node el-
ement and assume plane stress conditions and symmetry

3 0Xu < . Material properties C , µ  and the density θ of the ini-
tial geometry are constants.

Answer 21 1(1 a)a(1 a) (1 ) 0
2 3

L g
E
θµ∗ ∗ ∗ , <  where 3a Yu

L
< .

10.  Node 4 of a thin rectangular slab, loaded by force F, is
allowed to move horizontally and nodes 1, 2, and 3 are
fixed. Assume plane stress conditions, and derive the
equilibrium equation of the structure according to the
large deformation theory. Use just one bilinear ele-
ment. Material parameters C  and 0µ < . Thickness of
the slab at the initial geometry is  t.

Answer 2 31 5 14a a a 0
2 8 45

F
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∗ ∗ , <  where 4a Xu
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The spring force of non-linear spring depends on the dimensionless dis-
placement a /u L< according to 2 3(a a a /3)F k< , ∗ . Determine the dimen-
sionless displacement a /u L<  if force / 4F k< .

Solution
As the equilibrium equation is non-linear, finding the displacement as function of the force by hand
calculations is difficult (but possible for a third order polynomial). Mathematica gives three mathe-
matically correct solution

of which the real valued is obviously the physically correct one. A simple graphical method for
finding one solution to

2 31(a) (a a a )
3

R F k< , , ∗

in a given range min maxa [a ,a ]⊆  uses an iterative refinement of the range so that the sign change of
(a)R  is bracketed inside a smaller and smaller range.
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Determine  the  displacement  at  node  2  of  the  elastic  bar
shown by the large deformation theory. Take into account
only the transverse displacement 2Yu  ( 2 0Xu < ). When

0F < , the cross-sectional area and length of the bar are A
and L , respectively. Constitutive equation of the material
is xx xxS CE< , in which C is constant. Use two elements
with linear shape functions.

Solution
Virtual work density of the non-linear bar model

int 2 2 21 1 1( ) [ ( ) ( ) ( ) ]
2 2 2

d u du d u dv d v dw d w du du dv dww CA
dx dx dx dx dx dx dx dx dx dx dx
χ χ χ χχ ς↓ < , ∗ ∗ ∗ ↓ ∗ ∗ ∗

is  based  on  the  Green-Lagrange  strain  definition  which  is  physically  correct  also  when  rota-
tions/displacements are large. The expression depends on all displacement components, material
property is denoted by C (constitutive equation xx xxS CE< ), and the superscript in the cross-
sectional area A↓  (and in other quantities) refers to the initial geometry (strain and stress vanishes).
Otherwise, equilibrium equations follow in the same manner as in the linear case.

For element 1, the non-zero displacement components is 2 2y Yu u< . As the initial length of the el-
ement h L↓ < , linear approximations to the displacement components

0u w< <  and 2Y
xv u
L

< ⇑ 0du dw
dx dx

< <  and 2Yudv
dx L

< .

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

int 22 2 2( )
2

Y Y Yu u uCAw
L L L

χ
χ ς↓ < , ⇑ 1 32

2 ( )
2

Y
Y

uCAW u
L

χ χ< , .

For element 2, the non-zero displacement component 2 2y Yu u< . As the initial length of the ele-
ment h L↓ < , linear approximations to the displacement components

0u w< <   and 2(1 ) Y
xv u
L

< , ⇑ 0du dw
dx dx

< <  and 2Yudv
dx L

< , .

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplifies to

int 22 2 2( )
2

Y Y Yu u uCAw
L L L

χ
χ ς↓ < , ⇑ 2 32

2 ( )
2

Y
Y

uCAW u
L

χ χ< , .

Virtual work expression of the point force is

3
2YW F uχ χ< , .
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Virtual work expression of the structure is obtained as the sum of the element contributions

3 32 2
2[ ( ) ( ) ]

2 2
Y Y

Y
u uCA CAW u F

L L
χ χ< , ∗ ∗ .

Principle of virtual work and the fundamental lemma of variation calculus imply that

32( ) 0Yu F
L CA

∗ < ⇑
3

1/3
2 ( )Y

FLu
CA

< , . 



Consider the bar shown loaded by a point force. Determine the equilibrium
equations in terms of the dimensionless displacement components

1 2a /Xu L<  and 2 2a /Yu L<  according to the large displacement bar theory.
Assume that displacement component 0w < and use linear approximation to
the non-zero components u  and v . Without loading, the area of cross-section
and the length of bar are A↓  and L↓ , respectively.  Constitutive equation of the
material is xx xxS CE< , in which C is constant.

Solution
Virtual work density of internal forces is

int 2 2 21 1 1( ) [ ( ) ( ) ( ) ]
2 2 2

d u du d u dv d v dw d w du du dv dww CA
dx dx dx dx dx dx dx dx dx dx dx
χ χ χ χχ ς↓ < , ∗ ∗ ∗ ↓ ∗ ∗ ∗ .

Assuming a linear approximation to displacement components with 2 2x Xu u<  and 2 2y Yu u<

2X
xu u
L

<
↓

, 2Y
xv u
L

<
↓

, and 0w < ⇑ 2Xudu
dx L

<
↓

, 2Yudv
dx L

<
↓

, and 0dw
dx

< .

Virtual work expression is obtained as integral of the density over the domain occupied by the body
(notice that the virtual work density is constant when the approximations are substituted there):

1 2 22 2 2 2 2 2 2 21 1( ) [ ( ) ( ) ]
2 2

X X X Y Y X X Yu u u u u u u uW L CA
L L L L L L L L

χ χ χχ < , ∗ ∗ ↓ ↓ ∗ ∗
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

,

2
2XW F uχ χ< .

Virtual work expression of the structure is 1 2W W Wχ χ χ< ∗ . In terms of dimensionless displace-
ments 1 2a /Xu L< ↓  and 2 2a /Yu L< ↓  (introduced just to simplify the expressions)

2 2
1 1 1 2 2 1 1 2 1

1 1( a a a a a ) (a a a ) a
2 2

W L CA FLχ χ χ χ χ< , ∗ ∗ ↓ ↓ ∗ ∗ ∗ ↓ ∨

2 2T 1 1 1 2
1

2 22
2 1 1 2

1 1(1 a )(a a a )a 2 2
a 1 1a (a a a )

2 2

F
CAW CA

χ
χ

χ

 ∗ ∗ ∗ ,    ↓< , ↓   
   ∗ ∗

  

.

 principle of virtual work and the fundamental lemma of variation calculus imply that

2 2
1 1 1 2

1 1(1 a )(a a a ) 0
2 2

F
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∗ ∗ ∗ , <
↓

   and 2 2
2 1 1 2

1 1a (a a a ) 0
2 2

∗ ∗ < . 

In this case, the solution can be deduced without numerical calculations: the latter equation implies
that 2a 0<  as  the  other  option 2 2

1 1 2a a / 2 a / 2 0∗ ∗ <  would mean an inconsistency with the first
equation. Knowing this (the real valued solution)
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Derive the equilibrium equation of the elastic bar of the fig-
ure with the large deformation theory. The non-zero dis-
placement component is 2Xu  and  the  cross-sectional  area
and length of the bar are A  and L , when the point force F
acting on node 2 is zero. Constitutive equation of the materi-
al is S CE< , in which C is constant. Use two elements with
linear shape functions.

Solution
Virtual work density of the non-linear bar model

int 2 2 21 1 1( ) [ ( ) ( ) ( ) ]
2 2 2

d u du d u dv d v dw d w du du dv dww CA
dx dx dx dx dx dx dx dx dx dx dx
χ χ χ χχ ς↓ < , ∗ ∗ ∗ ↓ ∗ ∗ ∗

is based on the Green-Lagrange strain definition which works also when rotations/displacements are
large. The expression depends on all displacement components, material property is denoted by C
(constitutive equation xx xxS CE< ), and the superscript in the cross-sectional area A↓  (and in other
quantities) refers to the initial geometry (strain and stress vanishes). Otherwise, equilibrium equa-
tions follow in the same manner as in the linear case.

For element 1, 2 2x Xu u< . As the initial length of the element / 2h L↓ < , linear approximations to
the displacement components

0v w< <  and 22 X
xu u
L

< ⇑ 22 Xudu
dx L

< .

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

int 2 2 2 212 (1 2 ) 2 (1 2 )
2

X X X Xu u u uw CA
L L L L

χ
χ ς↓ < , ∗ ∗ ⇑

1 2 2 2
2(1 2 )2 (1 )X X X

X
u u uW u CA

L L L
χ χ< , ∗ ∗ .

For element 2, 2 2x Xu u< . As the initial length of the element / 2h L↓ < , linear approximations to
the displacement components

0v w< <  and 2(1 2 ) X
xu u
L

< , ⇑ 22 Xudu
dx L

< , .

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

int 2 2 2 22( )(1 2 )2 ( )(1 )X X X Xu u u uw CA
L L L L

χ
χ ς↓ < , , , , , ⇑
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2 2 2 2
2(1 2 )2 (1 )X X X

X
u u uW u CA

L L L
χ χ< , , , .

Virtual work expression of the force is

3
2XW F uχ χ< .

Virtual work expression of the structure is obtained as sum over the element contributions

2 2 2 2 2 2
2[(1 2 )2 (1 ) (1 2 )2 (1 ) ]X X X X X X

X
u u u u u uW u CA CA F

L L L L L L
χ χ< , ∗ ∗ ∗ , , , .

Principle of virtual work and the fundamental lemma of variation calculus imply that

2 2 2 2 2[(1 2 )(1 ) (1 2 )(1 )] 0
2

X X X X Xu u u u u F
L L L L L CA

∗ ∗ ∗ , , , < ⇑

2a(1 2a ) 0
4

F
CA

∗ , < in which 2a Xu
L

< . 



Consider  the  structure  shown  loaded  by  its  own  weight.  Determine  the
equations giving the displacement 2Xu  of the free end according to large
displacement bar theory. Without gravity, cross-sectional area, length, and
density of the bar are A , L , and θ , respectively. Constitutive equation of
the material is xx xxS CE< ,  in  which C is  constant.  Use  a  linear  approxi-
mation.

Solution
As 0v w< < , virtual work densities of internal and external distributed forces of the non-linear bar
model simplify to

int 21( ) [ ( ) ]
2

d u du d u du duw CA
dx dx dx dx dx
χ χχ ς↓ < , ∗ ↓ ∗    and extw u gAχ χ θς↓ < ,

the negative sign of the external part takes into account the direction of gravity with respect to the x-
axis. The non-zero displacement component of the structure is the vertical displacement of node 2
i.e. 2 2x Xu u< . Linear approximation (two-node element) is

2X
xu u
L

< ⇑ 2Xudu
dx L

< .

When the approximation is substituted there, virtual work densities simplify to

2 2 2 2int ( (1 ) ( (2 ))
2

)X X X Xu u u u
L

CAw
L L L

χχ ς↓ < , ∗∗    and x
2

e t
X

x uw gA
L

χ χ θς↓ < , .

Virtual work expression is integral of the virtual work density over the domain occupied by the el-
ement at the initial geometry:

2 2int int
0

2
2(1 ) ( (2

2
) )X X X

X
L u u uu

L L L
CAW w dxχ χ χς↓< < ∗∗,〉 ,

ext ext
20

1
2

L
XW w dx gL Auχ χ χ θς↓< < ,〉 .

Principle of virtual work with int extW W Wχ χ χ< ∗  and the fundamental lemma of variation calcu-
lus imply that

2 2 2 1(1 ) ( (2 0
2 2

) )X X Xu u u L
L L

gA
L

CA θ∗ ∗ ∗ < ⇑ a a a(1 ) (2 ) 0g
C

Lθ
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L
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Derive the equilibrium equation of the elastic truss shown with the
large deformation theory. The cross-sectional areas and length of
the bars are A  and L  when 0F < . Constitutive equation of the
material is xx xxS CE< , in which C is  constant.  Assume a  planar
problem of two elements.

Solution
As 0w <  and cross-sectional area of the initial geometry is A , virtual work density of internal
forces of the large displacement bar model simplifies to

int 2 21 1( ) [ ( ) ( ) ]
2 2

d u du d u dv d v du du dvw CA
dx dx dx dx dx dx dx dx
χ χ χχ ς↓ < , ∗ ∗ ↓ ∗ ∗ .

In element 1, linear approximations to the displacement components expressed in terms of 1Yu  are

0u <  and 1Y
xv u
L

< ⇑ 0du
dx

<   and 1Yudv
dx L

< .

When the approximation is substituted there, virtual work density of internal forces and the virtual
work expression take the forms

int 21 1 11) ( )
2

Y Y Yu u uw CA
L L L

χ
χ ς↓ < , ,

1 int 31
10

1 ( )
2

L Y
Y

uW w dx u CA
L

χ χ χς↓< < ,〉 .

In element 2, linear approximations to the displacement components expressed in terms of 1Yu  are

1Y
xu u
L

< ,   and 0v < ⇑ 1Yudu
dx L

< ,  and 0dv
dx

< .

When the approximation is substituted there, virtual work density of internal forces and thereby the
virtual work expression take the forms

int 1 1 1 11( )(1 ) ( )(1 )
2

Y Y Y Yu u u uw CA
L L L L

χ
χ ς↓ < , , , ,

2 int 1 1 1
10

1(1 ) ( )(1 )
2

L Y Y Y
Y

u u uW w dx u CA
L L L

χ χ χς↓< < , , ,〉 .

Element 3 contribution (point force)

3
1YW F uχ χ< , .

Virtual work expression of the structure is sum over the element contributions. In the standard form
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21 1 1 1 1
1

1 1[ ( ) (1 ) ( )(1 ) ]
2 2

Y Y Y Y Y
Y

u u u u uW u CA CA F
L L L L L

χ χ< , ∗ , , ∗ .

Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equation

21 1 1[2( ) 3 2] 0
2

Y Y Yu u uCA F
L L L

, ∗ ∗ < . 



A thin triangular slab (assume plane stress conditions) loaded
by a horizontal force is allowed to move horizontally at node 1
and nodes 2 and 3 are fixed. Derive the equilibrium equation
for the structure according to the large displacement theory.
Material parameters C , µ  and thickness t  at the initial geome-
try of the slab are constants.

Solution
Virtual work density of internal force, when modified for large displacement analysis with the same
constitutive equation as in the linear case of plane stress, is given by

T

int
2

1 0
1 0

1 0 0 (1 ) / 22 2

xx xx

yy yy

xy xy

E E
tCw E E

E E

χ µ
χ χ µ

µ µχ
ς↓

           < ,     ,    ,       

,

2 2

2 2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

2

xx

yy

xy

u u v
x x xE
v u vE
y y y

E u v u u v v
y x x y x y

 ∝ ∝ ∝
∗ ∗ 

∝ ∝ ∝   
   ∝ ∝ ∝  < ∗ ∗   

∝ ∝ ∝   
     ∝ ∝ ∝ ∝ ∝ ∝

∗ ∗ ∗ 
∝ ∝ ∝ ∝ ∝ ∝ 

.

Let us start with the approximations and the corresponding components of the Green-Lagrange
strain. Linear shape functions can be deduced from the figure. Only the shape function

1 (1 / )N x L< ,  of node 1 is needed.  Displacement components 0v w< <  and

1(1 ) X
xu u
L

< , ⇑ 1Xuu
x L

∝
< ,

∝
, 0u

y
∝

<
∝

, 0yy xyE E< <   and 21 11 ( )
2

X X
xx

u uE
L L

< , ∗ , .

When the strain component expression are substituted there, virtual work density simplifies to

int 1 1 1 1
2 2

1( 1 ) ( 1 )
21 1

X X X X
xx xx

tC u u tC u uw E E
L L L L

χχ χ
µ µ

ς↓ < , < , , ∗ , ∗
, ,

.

Integration over the (initial) domain gives the virtual work expression. As the integrand is constant

2
1 1 1 1 1

2
1( 1 ) ( 1 )

2 21
X X X Xu u u uL tCW

L L L L
χ

χ
µ

< , , ∗ , ∗
,

Virtual work expression of the point force follows from the definition of work

2 1
1

X
X

uW u F LF
L

χ
χ χ< < .

Virtual work expression of the structure is obtained as sum over the element contributions.  In terms
of the dimensionless displacement 1a /Xu L<

2

2
1a( 1 a) a( 1 a) a

2 21
L tCW LFχ χ χ

µ
< , , ∗ , ∗ ∗

,
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A structure, consisting of a thin slab under the plane stress con-
ditions and a bar, is loaded by a horizontal force F acting  on
node 1. Material properties are C and ν, thickness of the slab is
t, and the cross-sectional area of the bar A at the initial unload-
ed geometry. Determine the equilibrium equation giving as its
solution the displacement component 1Xu  of node 1 according
to the large displacement theory.

Solution
Virtual work densities of the thin slab and bar models, when modified for large displacement analy-
sis with the same constitutive equation as in the linear case, are given by

T

int
2

1 0
1 0

1 0 0 (1 ) / 22 2

xx xx

yy yy

xy xy

E E
tCw E E

E E

χ µ
χ χ µ

µ µχ
ς↓

           < ,     ,    ,       

,

2 2

2 2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

2

xx
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xy

u u v
x x xE
v u vE
y y y

E u v u u v v
y x x y x y

 ∝ ∝ ∝
∗ ∗ 

∝ ∝ ∝   
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     ∝ ∝ ∝ ∝ ∝ ∝

∗ ∗ ∗ 
∝ ∝ ∝ ∝ ∝ ∝ 

,

int
xx xxw E CA Eχ χς↓ < , ↓ , 2 2 21 1 1( ) ( ) ( )

2 2 2xx
du du dv dwE
dx dx dx dx

< ∗ ∗ ∗  .

Element contributions need to be derived from approximations and virtual work densities. Approx-
imations to the displacement components depend only on the shape function associated with node 1
as the other nodes are fixed (displacement vanishes).

Let us start with the thin slab element. In terms of the displacement component 1Xu

1X
yu u
L

<   and 0v < ⇑ 0u
x

∝
<

∝
, 1Xuu

y L
∝

<
∝

, and 0v v
x y

∝ ∝
< <

∝ ∝
,

giving

0
1 a a
2

22
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yy

xy

E
E

E
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  where 1a Xu
L

<   and 1a Xu
L

χ
χ < .

Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)

T

int 2
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0 1 0 0
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.

Virtual work expression is the integral of density over the domain occupied by the element (note
that the virtual work density is constant in this case). Therefore
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,
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The linear approximations to the displacement of the bar element are 0w v< <  and
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< , ⇑ 1 aXudu
dx L

< , < , ,  and 2 21 11 1( ) a a
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X X
xx

u uE
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For the bar element, virtual work density of the internal forces and thereby the virtual work expres-
sion (density is constant) simplifies to

2 1a( 1 a) a( a a)
2

W LCAχ χ< , , ∗ , ∗ .

Virtual work expression of the point force follows e.g. directly from the definition (force multiplied
by the virtual displacement in its direction)

3
1 aXW u F LFχ χ χ< , < , .

Virtual work expression of a structure is the sum of element contributions

2
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2
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.

Principle of virtual work and the fundamental lemma of variation calculus give
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A long wall having triangular cross-section, and made of homogeneous,
isotropic, linearly elastic material, is subjected to its own weight. Deter-
mine the equilibrium equation giving as its solution displacement com-
ponents 3Yu  according to the large displacement theory. Nodes 1 and 2
are fixed. Use a three-node element and assume plane stress conditions
and symmetry 3 0Xu < . Material properties C , µ  and the density θ of
the initial geometry are constants.

Solution
According to the large displacement theory, virtual work densities of the thin slab model under
plane strain conditions are
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in which xg  and yg  are the components of acceleration by gravity and θ↓  the density at the initial
geometry.  Above,  constitutive  equation  is  assumed  to  be  of  the  same  form  as  that  for  the  linear
theory with possibly different elasticity parameters C  and µ .

Shape function 3 /N y L<  of node 3 can be deduced from the figure. Linear approximations to the
displacement components and their derivatives are
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When the approximation is substituted there, the non-zero Green-Lagrange strain component and its
variation take the forms
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Virtual work densities simplify to
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Integration over the domain occupied by the body at the initial geometry gives the virtual work ex-
pressions
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Virtual work expression in the sum of the internal and external parts. Written in the standard form

2 3
3 3 3 3

2
1[(1 ) (1 ) ]

2 2 61
Y Y Y Yu u u uL tE L t gW
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,
.

Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equations
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Node 4 of a thin rectangular slab, loaded by force F, is al-
lowed to move horizontally and nodes 1, 2, and 3 are fixed.
Assume plane stress conditions, and derive the equilibrium
equation of the structure according to the large deformation
theory. Use just one bilinear element. Material parameters
C  and 0µ < . Thickness of the slab at the initial geometry
is  t.

Solution
According to the large displacement theory, virtual work density of the thin slab model (plane stress
condition) is
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Only the displacement of node 4 in the X , direction matters. Shape function 2
4 /N xy L<  gives
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When the approximations are substituted there, the Green-Lagrange strain components and their
variations simplify to
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Virtual work density of the internal forces according to the large displacement theory simplify to
(with the Poisson’s ratio 0µ < )
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The four terms of the virtual work density
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Virtual work expressions are obtained by integrating the densities over the domain occupied by the
element
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Virtual work expression of the point force
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Virtual  work  expression  is  the  sum  of  the  terms.  In  terms  of  the  dimensionless  displacement
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Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equation
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