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Agenda

@ Proving NP-completeness

@ Roadmap

@ Compendium of fundamental problems
3-SAT

0/1 Integer Programming

Maximum Independent Set
k-colouring and Chromatic Number
Maximum Clique

Minimum Vertex Cover

Minimum Dominating Set
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@ Other NP-complete problems
@ Decision versus search
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NP-Complete Problems

@ Last lecture:
» We established that CNF-SAT is NP-complete

@ This lecture:

» Start proving that other natural problems are NP-complete
» Build a tree of reductions step-by-step, starting from CNF-SAT
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NP-Completeness via Reductions

Definition

Let L;,L, C {0,1}* be languages. A polynomial-time reduction from
L to L, is a polynomial-time computable function

R: {0,1}* — {0,1}* such that for every x € {0,1}*

xeLyifandonlyif R(x) € L,.

If there is a polynomial-time reduction from L; to L,, we write L; <, L,.
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NP-Completeness via Reductions

Theorem

LetLy,L, € {0,1}* be languages. If L; is NP-hard and L <, L,, then
L, is NP-hard.

@ General template for proving NP-completeness:
Let L, be our problem of interest

Prove that L, is in NP

Pick a known NP-complete problem L;

Construct a polynomial-time reduction from L; to L,

vV vy VvVvyy
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NP-Completeness via Reductions

@ Building a reduction:
» Step 1: Define the transformation R from instances of L; to
instances of L,
» Step 2: Prove the correctness of the reduction:
e Let u be a certificate for x € L;. Show that we can use u to build a
certificate for R(x), showing that R(x) € L;.
o Let u be a certificate for R(x) € L,. Show that we can use u to build
a certificate for x, showing that x € L.
» Step 3: Prove that the reduction can be computed in polynomial
time (usually easy)
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NP-Completeness via Reductions

@ How to select the starting problem L for reduction?
» Ideally, pick something as close as possible to L,
» Useful to know many NP-complete problems (or find a list)!

@ Common strategies
» Restriction: Show that L, contains a known NP-complete problem
as a special case
» Local transformation: Locally modify the instance structure to get
from L; to L,
» Gadget design and composition: Build more complicated
‘gadgets’ to encode L; into L, instances
e Constraint satisfaction problems: In many NP-complete problems
one is given a finite set of variables and constraints between them,
and the question is whether all the constraints can be satisfied
simultaneously. (Consider e.g. SAT, COL.)
e In such cases it is often helpful to first think how to map variables in
L to variables in L, (representation change), and then how to build
gadgets in L, to enforce the constraints similarly as in L.
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NP-Complete Problems

@ We will next consider some prototypical NP-complete
problems

» Among Karp’s 21 NP-complete problems
» Richard Karp: Reducibility Among Combinatorial Problems, 1972

@ Thousands of more NP-complete problems known

> See e.g. Michael R. Garey and David S. Johnson: Computers and
Intractability: A Guide to the Theory of NP-Completeness, 1979
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CNF-SAT and k-SAT

Definition (CNF-SAT)
@ Instance: A CNF formula @.
@ Question: Is @ satisfiable?

Definition (k-SAT)
@ Instance: A CNF formula ¢ such that clause in ¢ has at most &
literals.

@ Question: Is @ satisfiable?

@ 2-SAT instance: (x; Vx2) A (x2 V —x3) A (x3 V —xp)
@ 3-SAT instance: (x1 V xo \/X3) A (xz V —x3 \/X4)
@ 4-SAT instance: (x1 Vi VxzV —|X4) VAN (Xz V —x3 \/X4)
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3-SAT: NP-hardness

Theorem
3-SAT is NP-hard. J

@ Proof: by reduction from CNF-SAT:
» Replace each clause with more than than three literals with
equivalent set of three-literal clauses
» Foreachclause C =/ V¢,V ---V ¢ in CNF-SAT instance ¢, add
k—1 new variables yy,...,yk—1
> Replace C with CNF

(VYD) A (= VLV Y) A A (=1 V)
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3-SAT: NP-hardness

@ Proof: correctness of the reduction:

» Denote by R(¢) the 3-CNF obtained from a CNF ¢ by above
construction

» If ¢ has a satisfying assignment, then R(¢) has a satisfying
assignment

» If R(®) has a satisfying assignment, then ¢ has a satisfying
assignment

» R(®) can be constructed in polynomial time (in |L®_|)
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k-SAT: NP-hardness

Theorem
k-SAT is NP-hard for any k > 3.

@ Proof: 3-SAT is a special case of k-SAT
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0/1 Integer Programming

0/1 Integer Programming
@ Instance: A set of integral inequalities over variables xi,...,x;:

A xi +Ax0+ -+ A, > C
Ap1x1 +Ax0+ -+ Ay > Co
Am,lxl +Am,2x2 + - TLAm,nxn >

@ Question: Is there an assignment of values 0 and 1 to variables
X1...,X, so that all inequalities are satisfied?

X1 +2x3 —X4 > 3
3x —X3 > 2

X1 Ax 4x3 +xs > 3

X1 —2x —x3 —2x4 —x5 > =2
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0/1 Integer Programming: NP-hardness

Theorem
0/1 Integer Programming is NP-hard. J

@ Proof: by reduction from 3-SAT:

> Let ¢ be a 3-CNF formula with m clauses
» Construct a system of inequalities R(¢®) over the ‘same’ variables
» For each clause C = ¢ VV £, V {3, add an inequality

+n+n>1,

where i = Xj if é,- = Xj, and Zi = (1 —)Cj) if ﬂj = ;
Transform inequalities to normal form

v
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0/1 Integer Programming: NP-hardness

@ Proof: correctness of the reduction:
» If ¢ has a satisfying assignment, then the inequalities in R(¢) are
satisfied by the ‘same’ assignment
» If all inequalities in R(¢) can be satisfied, then the ‘same’
assignment satisfies @
» R() can be constructed in polynomial time (in |L®])
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Maximum Independent Set

Maximum Independent Set (Max|S)
@ Instance: Graph G = (V,E), an integer k > 1.

@ Question: Is there a set of vertices I such that |I| > k and for all
u,v € I, we have that {u,v} ¢ E?
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Maximum Independent Set: NP-hardness

Theorem
Maximum Independent Set is NP-hard. J

@ Proof: by reduction from 3-SAT:

> Let ¢ be a 3-CNF formula with m clauses

» For each clause C, there are 7 satisfying partial assignments to
variables in C

» Construct a graph R(¢) by adding a clique on 7 vertices for each
clause C

> |dentify each of the 7 vertices with satisfying partial assignments
to variables in C

» Add edges between inconsistent partial assignments

» Setk=m

School of Science Department of Computer Sci
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Maximum Independent Set: NP-hardness

@ Proof: correctness of the reduction:
» If ¢ has a satisfying assignment z, then R(¢) has an independent
set of size k=m
e From each clique, pick the vertex representing the partial
assignment consistent with z
e 7 satisfying — can pick a vertex from each clique
» If R(¢) has an independent set I of size k = m, then ¢ has a
satisfying assignment
e Partial assignments corresponding to I are consistent with each
other

» R(@) can be constructed in polynomial time (in |L®])
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3-Colouring

3-Colouring (3-COL)
@ Instance: Graph G = (V,E).

@ Question: Is there a function ¢: V — {1,2,3} such that
c(u) # c(v) for all {u,v} € E?
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3-Colouring: NP-hardness

Theorem
3-Colouring is NP-hard. J

@ Proof: by reduction from 3-SAT:
> Let ¢ be a 3-CNF formula with » variables and m clauses
» Construct a graph R() that is 3-colourable if and only if @ if
satisfiable
» We need to build some gadgets for this
» We will go over the ideas of the gadget constructions first, and
then put everything together in the end

Aalto University CS-E4530 Computation: al Complexity Theory / Lecture 7
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3-Colouring: NP-hardness

@ The Palette:

A 3-colouring will use three colours
Assign one colour to stand for frue
Assign one colour to stand for false
Third colour does not have a semantic meaning (blank)

v

v VvYyy

@ Use a triangle to assign the semantics to colours

T F

e
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3-Colouring: NP-hardness

@ Representing ‘variables’:
» Vertex connected to the blank vertex on the palette will get colour
‘true’ or ‘false’
» Used to represent ‘variables’ that are true/false
» Variable and its negation can be represented by two connected

vertices

Aalto University CS-E4530 Computational Complexity Theory / Lecture 7
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3-Colouring: NP-hardness

@ OR gadget for two variables:
» Let v and u be two ‘variables’ connected to blank
» The following construction forces at least one of u and v to get the
colour true

School of Science Department of Computer Science
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3-Colouring: NP-hardness

@ OR gadget for three variables:
» OR-gadgets can be composed to get bigger ORs
» Gadget 3-colourable if and only if at least one of the variable
vertices has colour ‘true’

School of Science Department of Computer Science
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3-Colouring: NP-hardness

@ Reduction from 3-CNF ¢ to a graph R(¢):
» R(¢) has one palette
» For each variable x;, add two connected variable vertices
corresponding to x; and —x;
» For each clause /| V ¢, V /3, add an OR gadget connecting
vertices corresponding to £, ¢, and /3

School of Science Department of Computer Science
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3-Colouring: NP-hardness

e ¢ satisfiable implies R(¢) 3-colourable
» Colour palette arbitrarily
» Colour variables according to a satisfying assignment z
» z satisfying implies at least one variable in each or gadget is
coloured with ‘true’, so OR gadgets can also be coloured

@ R(¢) 3-colourable implies ¢ satisfiable
> Assign values to variable x; depending on which variable vertex in
R(¢) is coloured ‘true’
» OR gadgets three-coloured implies at least one literal in each
clause is true

School of Science Department of Computer Science
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3-Colouring: NP-hardness

@ Reduction gives instances of polynomial size

» 3 vertices for the palette
» 2n vertices for the variables
» 6m vertices for the OR gadgets

@ Clearly computable in polynomial time
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k-Colouring

k-Colouring (k-COL)
@ Instance: Graph G = (V,E).

@ Question: Is there a function c: V — {1,2,...,k} such that
c(u) # c(v) for all {u,v} € E?
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k-Colouring: NP-hardness

Theorem

k-Colouring is NP-hard for any k > 4.

@ Proof: Lecture 4
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Chromatic Number

Chromatic Number
@ Instance: Graph G = (V,E), an integer k > 1.

@ Question: Is there a function ¢: V — {1,2,...,k} such that
c(u) # c(v) for all {u,v} € E?

Theorem
Chromatic Number is NP-hard.

@ Proof: contains 3-Colouring as a special case
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Maximum Clique

Maximum Clique (CLIQUE)
@ Instance: Graph G = (V,E), an integer k > 1.

@ Question: Is there a set of vertices C such that |C| > k and for
allu,v € C, we have that {u,v} € E?
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Maximum Clique: NP-hardness

Theorem
Maximum Clique is NP-hard. J

@ Proof: by reduction from Maximum Independent Set

@ Set U C Vis anindependent set in G = (V,E)if and only if U is
a clique in the complement graph G
» Complement graph: G has vertex set V, edge set

E={{uyv}CV:{uv}¢E}
» Reduction: R(G,k) = (G, k)
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Minimum Vertex Cover

Minimum Vertex Cover (MinVC)
@ Instance: Graph G = (V,E), an integer k > 1.

@ Question: Is there a set of vertices C such that |C| < k and for
all {u,v} € E, either v € C or u € C (or both)?
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Minimum Vertex Cover: NP-hardness

Theorem
Minimum Vertex Cover is NP-hard. J

@ Proof: by reduction from Maximum Independent Set

@ Set U C Vis an independent set if and only if V\ U is a vertex
cover

» Reduction: R(G,k) = (G,n—k)
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Minimum Dominating Set

Minimum Dominating Set (MinDS)
@ Instance: Graph G = (V,E), an integer k > 1.

@ Question: Is there a set of vertices D such that |D| < k and for all
v €V, either v € D or at least one of the neighbours of v is in D?
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Minimum Dominating Set: NP-hardness

Theorem
Minimum Dominating Set is NP-hard. J

@ Proof: by reduction from Minimum Vertex Cover:
» Let G = (V,E) be the minimum vertex cover instance graph
» Construct a new graph G’ by adding a new vertex v, for each
edge {u,v} €E
» Add edges {u,v.} and {v,v.}
» R(G,k) = (G k)

Aalto University CS-E4530 Computational Complexity Theory / Lecture 7
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Minimum Dominating Set: NP-hardness

@ Proof: correctness of the reduction:
» If G has a vertex cover of size k, then G’ has a dominating set of

size k
» If G’ has a dominating set of size k, then G has a vertex cover of

size k
e We may assume that vertices v, are not used in the dominating set

» G’ can be constructed in polynomial time (in |LG|)
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Hamiltonian Path Problems

Directed Hamiltonian Path
@ Instance: A directed graph G = (V,E), vertices s,t € V.

@ Question: Does there exist a path from s to ¢ that visits each
vertex exactly once?

@ NP-hardness: reduction from 3-SAT (complicated)

Undirected Hamiltonian Path
@ Instance: An undirected graph G = (V,E), vertices s,t € V.

@ Question: Does there exist a path from s to ¢ that visits each
vertex exactly once?

@ NP-hardness: reduction from Directed Hamiltonian Path
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Hamiltonian Cycle Problems

Hamiltonian Cycle
@ Instance: An undirected/directed graph G = (V,E).
@ Question: Is there a cycle that visits each vertex exactly once?

@ NP-hardness: reduction from Hamiltonian Path

Travelling Salesman Problem
@ Instance: An undirected/directed graph G = (V, E) with edge
weights, integer W.
@ Question: Is there a cycle that visits vertices exactly once with
weight at most W?

@ NP-hardness: contains Hamiltonian Cycle as a special case
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Set Cover

Set Cover
@ Instance: A finite set U, a family § = {S$1,52,...,S} of subsets
of U, an integer k.

@ Question: Is there a subfamily 7" C § such that 7" contains at
most k sets from §, and any element u € U is contained in at
leastone set T € 77

@ NP-hardness: reduction from Vertex Cover
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Exact Cover

Exact Cover
@ Instance: A finite set U, a family § = {S$1,S2,...,S} of subsets
of U, an integer k.
@ Question: Is there a subfamily 7" C S such that ‘7" contains at
most k sets from §, and any element u € U is contained in
exactly oneset T € T?

@ NP-hardness: reduction from 3-SAT/3-Colouring
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Subset Sum

Subset sum
@ Instance: A list of integers a;,ay,...,a, and an integer T.

@ Question: Is there a subset of the input list that sums up to T?

@ NP-hardness: reduction from 3-SAT (slightly technical)

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 7
43/7?



Decision versus Search

@ We’ve defined P and NP in terms of decision problems

» In practice, we usually want to find a solution, not just know if it
exists

@ Each NP problem has a natural search version:
» On input x, produce a certificate for x € L or decide that one does
not exist
» E.g. output a satisfying assignment, 3-colouring or an independent
set of size k
» Defined in terms of some fixed verifier
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Decision versus Search

Theorem

Suppose P = NP. Then for every language L € NP and a verifier M for
L, there is a polynomial-time Turing machine M’ that computes a
functionf: {0,1}* — {0,1}* such that M(x,f(x)) =1 forallx € L.

@ Proof: suffices to prove the claim for CNF-SAT by Cook—Levin
theorem
» Try fixing x; = 1 and x; = 0, use decision algorithm to see if the
formula remains satisfiable
> Pick the alternative that retains satisfiability, repeat for
X2,X3,...,Xpn
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Lecture 7:

Summary

e Existence of natural NP-complete problems

>

vV vy v vV VY Y

CNF-SAT, 3-SAT and Integer Programming
Chromatic Number and 3-Colouring

Maximum Independent Set and Maximum Clique
Minimum Vertex Cover

Minimum Dominating Set

Hamiltonian Paths/Cycles and TSP

Set Cover and Subset Sum
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