
CS-E4530 Computational Complexity Theory

Lecture 7: NP-Complete Problems

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

2/??

Agenda

Proving NP-completeness

Roadmap
Compendium of fundamental problems

I 3-SAT
I 0/1 Integer Programming
I Maximum Independent Set
I k-colouring and Chromatic Number
I Maximum Clique
I Minimum Vertex Cover
I Minimum Dominating Set

Other NP-complete problems

Decision versus search

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

3/??

NP-Complete Problems

Last lecture:
I We established that CNF-SAT is NP-complete

This lecture:
I Start proving that other natural problems are NP-complete
I Build a tree of reductions step-by-step, starting from CNF-SAT

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

4/??

NP-Completeness via Reductions

Definition
Let L1,L2 ⊆ {0,1}∗ be languages. A polynomial-time reduction from
L1 to L2 is a polynomial-time computable function
R : {0,1}∗→{0,1}∗ such that for every x ∈ {0,1}∗

x ∈ L1 if and only if R(x) ∈ L2 .

If there is a polynomial-time reduction from L1 to L2, we write L1 ≤p L2.

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

5/??

NP-Completeness via Reductions

Theorem
Let L1,L2 ∈ {0,1}∗ be languages. If L1 is NP-hard and L1 ≤p L2, then
L2 is NP-hard.

General template for proving NP-completeness:
I Let L2 be our problem of interest
I Prove that L2 is in NP
I Pick a known NP-complete problem L1
I Construct a polynomial-time reduction from L1 to L2

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

6/??

NP-Completeness via Reductions

Building a reduction:
I Step 1: Define the transformation R from instances of L1 to

instances of L2
I Step 2: Prove the correctness of the reduction:

• Let u be a certificate for x ∈ L1. Show that we can use u to build a
certificate for R(x), showing that R(x) ∈ L2.

• Let u be a certificate for R(x) ∈ L2. Show that we can use u to build
a certificate for x, showing that x ∈ L1.

I Step 3: Prove that the reduction can be computed in polynomial
time (usually easy)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

7/??

NP-Completeness via Reductions
How to select the starting problem L1 for reduction?

I Ideally, pick something as close as possible to L2
I Useful to know many NP-complete problems (or find a list)!

Common strategies
I Restriction: Show that L2 contains a known NP-complete problem

as a special case
I Local transformation: Locally modify the instance structure to get

from L1 to L2
I Gadget design and composition: Build more complicated

‘gadgets’ to encode L1 into L2 instances
• Constraint satisfaction problems: In many NP-complete problems

one is given a finite set of variables and constraints between them,
and the question is whether all the constraints can be satisfied
simultaneously. (Consider e.g. SAT, COL.)

• In such cases it is often helpful to first think how to map variables in
L1 to variables in L2 (representation change), and then how to build
gadgets in L2 to enforce the constraints similarly as in L1.

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

8/??

NP-Complete Problems

We will next consider some prototypical NP-complete
problems

I Among Karp’s 21 NP-complete problems
I Richard Karp: Reducibility Among Combinatorial Problems, 1972

Thousands of more NP-complete problems known
I See e.g. Michael R. Garey and David S. Johnson: Computers and

Intractability: A Guide to the Theory of NP-Completeness, 1979

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

9/??

Roadmap

CNF-SAT

3-SAT

any NP
problem

0/1 Integer
Programming

MaxIS 3-COL

Chromatic
NumberCLIQUE MinVC

MinDOM

Directed
HAMPATH

Undirected
HAMPATH

HAMCYCLE TSP

k-SAT

k-COL

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

10/??

CNF-SAT and k-SAT

Definition (CNF-SAT)
Instance: A CNF formula ϕ.

Question: Is ϕ satisfiable?

Definition (k-SAT)
Instance: A CNF formula ϕ such that clause in ϕ has at most k
literals.

Question: Is ϕ satisfiable?

2-SAT instance: (x1∨ x2)∧ (x2∨¬x3)∧ (x3∨¬x1)

3-SAT instance: (x1∨ x2∨ x3)∧ (x2∨¬x3∨ x4)

4-SAT instance: (x1∨ x2∨ x3∨¬x4)∧ (x2∨¬x3∨ x4)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

11/??

3-SAT: NP-hardness

Theorem
3-SAT is NP-hard.

Proof: by reduction from CNF-SAT:
I Replace each clause with more than than three literals with

equivalent set of three-literal clauses
I For each clause C = `1∨ `2∨·· ·∨ `k in CNF-SAT instance ϕ, add

k−1 new variables y1, . . . ,yk−1
I Replace C with CNF

(`1∨ y1)∧ (¬y1∨ `2∨ y2)∧·· ·∧ (¬yk−1∨ `k)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

12/??

3-SAT: NP-hardness

Proof: correctness of the reduction:
I Denote by R(ϕ) the 3-CNF obtained from a CNF ϕ by above

construction
I If ϕ has a satisfying assignment, then R(ϕ) has a satisfying

assignment
I If R(ϕ) has a satisfying assignment, then ϕ has a satisfying

assignment
I R(ϕ) can be constructed in polynomial time (in |xϕy|)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

13/??

k-SAT: NP-hardness

Theorem
k-SAT is NP-hard for any k ≥ 3.

Proof: 3-SAT is a special case of k-SAT

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

14/??

0/1 Integer Programming
0/1 Integer Programming

Instance: A set of integral inequalities over variables x1, . . . ,xn:

A1,1x1 +A1,2x2 + · · ·+A1,nxn ≥ C1

A2,1x1 +A2,2x2 + · · ·+A2,nxn ≥ C2

. . .

Am,1x1 +Am,2x2 + · · ·+Am,nxn ≥ C2

Question: Is there an assignment of values 0 and 1 to variables
x1 . . . ,xn so that all inequalities are satisfied?

x1 +2x3 −x4 ≥ 3
3x2 −x3 ≥ 2

x1 +x2 +x3 +x5 ≥ 3
x1 −2x2 −x3 −2x4 −x5 ≥ −2

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

15/??

0/1 Integer Programming: NP-hardness

Theorem
0/1 Integer Programming is NP-hard.

Proof: by reduction from 3-SAT:
I Let ϕ be a 3-CNF formula with m clauses
I Construct a system of inequalities R(ϕ) over the ‘same’ variables
I For each clause C = `1∨ `2∨ `3, add an inequality

z1 + z2 + z3 ≥ 1 ,

where zi = xj if `i = xj, and zi = (1− xj) if `j = ¬xj
I Transform inequalities to normal form

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

16/??

0/1 Integer Programming: NP-hardness

Proof: correctness of the reduction:
I If ϕ has a satisfying assignment, then the inequalities in R(ϕ) are

satisfied by the ‘same’ assignment
I If all inequalities in R(ϕ) can be satisfied, then the ‘same’

assignment satisfies ϕ

I R(ϕ) can be constructed in polynomial time (in |xϕy|)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

17/??

Maximum Independent Set

Maximum Independent Set (MaxIS)

Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is there a set of vertices I such that |I| ≥ k and for all
u,v ∈ I, we have that {u,v} /∈ E?

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

18/??

Maximum Independent Set: NP-hardness

Theorem
Maximum Independent Set is NP-hard.

Proof: by reduction from 3-SAT:
I Let ϕ be a 3-CNF formula with m clauses
I For each clause C, there are 7 satisfying partial assignments to

variables in C
I Construct a graph R(ϕ) by adding a clique on 7 vertices for each

clause C
I Identify each of the 7 vertices with satisfying partial assignments

to variables in C
I Add edges between inconsistent partial assignments
I Set k = m

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

19/??

Maximum Independent Set: NP-hardness

Proof: correctness of the reduction:
I If ϕ has a satisfying assignment z, then R(ϕ) has an independent

set of size k = m
• From each clique, pick the vertex representing the partial

assignment consistent with z
• z satisfying→ can pick a vertex from each clique

I If R(ϕ) has an independent set I of size k = m, then ϕ has a
satisfying assignment

• Partial assignments corresponding to I are consistent with each
other

I R(ϕ) can be constructed in polynomial time (in |xϕy|)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

20/??

3-Colouring

3-Colouring (3-COL)

Instance: Graph G = (V,E).

Question: Is there a function c : V→{1,2,3} such that
c(u) 6= c(v) for all {u,v} ∈ E?

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

21/??

3-Colouring: NP-hardness

Theorem
3-Colouring is NP-hard.

Proof: by reduction from 3-SAT:
I Let ϕ be a 3-CNF formula with n variables and m clauses
I Construct a graph R(ϕ) that is 3-colourable if and only if ϕ if

satisfiable
I We need to build some gadgets for this
I We will go over the ideas of the gadget constructions first, and

then put everything together in the end

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

22/??

3-Colouring: NP-hardness

The Palette:
I A 3-colouring will use three colours
I Assign one colour to stand for true
I Assign one colour to stand for false
I Third colour does not have a semantic meaning (blank)

Use a triangle to assign the semantics to colours

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

23/??

3-Colouring: NP-hardness

Representing ‘variables’:
I Vertex connected to the blank vertex on the palette will get colour

‘true’ or ‘false’
I Used to represent ‘variables’ that are true/false
I Variable and its negation can be represented by two connected

vertices

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

24/??

3-Colouring: NP-hardness

OR gadget for two variables:
I Let v and u be two ‘variables’ connected to blank
I The following construction forces at least one of u and v to get the

colour true

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

25/??

3-Colouring: NP-hardness

OR gadget for three variables:
I OR-gadgets can be composed to get bigger ORs
I Gadget 3-colourable if and only if at least one of the variable

vertices has colour ‘true’

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

26/??

3-Colouring: NP-hardness

Reduction from 3-CNF ϕ to a graph R(ϕ):
I R(ϕ) has one palette
I For each variable xi, add two connected variable vertices

corresponding to xi and ¬xi
I For each clause `1∨ `2∨ `3, add an OR gadget connecting

vertices corresponding to `1, `2 and `3

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

27/??

3-Colouring: NP-hardness

ϕ satisfiable implies R(ϕ) 3-colourable
I Colour palette arbitrarily
I Colour variables according to a satisfying assignment z
I z satisfying implies at least one variable in each or gadget is

coloured with ‘true’, so OR gadgets can also be coloured

R(ϕ) 3-colourable implies ϕ satisfiable
I Assign values to variable xi depending on which variable vertex in

R(ϕ) is coloured ‘true’
I OR gadgets three-coloured implies at least one literal in each

clause is true

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

28/??

3-Colouring: NP-hardness

Reduction gives instances of polynomial size
I 3 vertices for the palette
I 2n vertices for the variables
I 6m vertices for the OR gadgets

Clearly computable in polynomial time

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

29/??

k-Colouring

k-Colouring (k-COL)

Instance: Graph G = (V,E).

Question: Is there a function c : V→{1,2, . . . ,k} such that
c(u) 6= c(v) for all {u,v} ∈ E?

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

30/??

k-Colouring: NP-hardness

Theorem
k-Colouring is NP-hard for any k ≥ 4.

Proof: Lecture 4

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

31/??

Chromatic Number

Chromatic Number
Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is there a function c : V→{1,2, . . . ,k} such that
c(u) 6= c(v) for all {u,v} ∈ E?

Theorem
Chromatic Number is NP-hard.

Proof: contains 3-Colouring as a special case

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

32/??

Maximum Clique

Maximum Clique (CLIQUE)

Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is there a set of vertices C such that |C| ≥ k and for
all u,v ∈ C, we have that {u,v} ∈ E?

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

33/??

Maximum Clique: NP-hardness

Theorem
Maximum Clique is NP-hard.

Proof: by reduction from Maximum Independent Set

Set U ⊆ V is an independent set in G = (V,E) if and only if U is
a clique in the complement graph G

I Complement graph: G has vertex set V , edge set

E = {{u,v} ⊆ V : {u,v} /∈ E}

I Reduction: R(G,k) = (G,k)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

34/??

Minimum Vertex Cover

Minimum Vertex Cover (MinVC)

Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is there a set of vertices C such that |C| ≤ k and for
all {u,v} ∈ E, either v ∈ C or u ∈ C (or both)?

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

35/??

Minimum Vertex Cover: NP-hardness

Theorem
Minimum Vertex Cover is NP-hard.

Proof: by reduction from Maximum Independent Set

Set U ⊆ V is an independent set if and only if V \U is a vertex
cover

I Reduction: R(G,k) = (G,n− k)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

36/??

Minimum Dominating Set

Minimum Dominating Set (MinDS)

Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is there a set of vertices D such that |D| ≤ k and for all
v ∈ V , either v ∈ D or at least one of the neighbours of v is in D?

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

37/??

Minimum Dominating Set: NP-hardness

Theorem
Minimum Dominating Set is NP-hard.

Proof: by reduction from Minimum Vertex Cover:
I Let G = (V,E) be the minimum vertex cover instance graph
I Construct a new graph G′ by adding a new vertex ve for each

edge {u,v} ∈ E
I Add edges {u,ve} and {v,ve}
I R(G,k) = (G′,k)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

38/??

Minimum Dominating Set: NP-hardness

Proof: correctness of the reduction:
I If G has a vertex cover of size k, then G′ has a dominating set of

size k
I If G′ has a dominating set of size k, then G has a vertex cover of

size k
• We may assume that vertices ve are not used in the dominating set

I G′ can be constructed in polynomial time (in |xGy|)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

39/??

Hamiltonian Path Problems

Directed Hamiltonian Path
Instance: A directed graph G = (V,E), vertices s, t ∈ V .

Question: Does there exist a path from s to t that visits each
vertex exactly once?

NP-hardness: reduction from 3-SAT (complicated)

Undirected Hamiltonian Path
Instance: An undirected graph G = (V,E), vertices s, t ∈ V .

Question: Does there exist a path from s to t that visits each
vertex exactly once?

NP-hardness: reduction from Directed Hamiltonian Path

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

40/??

Hamiltonian Cycle Problems

Hamiltonian Cycle

Instance: An undirected/directed graph G = (V,E).

Question: Is there a cycle that visits each vertex exactly once?

NP-hardness: reduction from Hamiltonian Path

Travelling Salesman Problem

Instance: An undirected/directed graph G = (V,E) with edge
weights, integer W.

Question: Is there a cycle that visits vertices exactly once with
weight at most W?

NP-hardness: contains Hamiltonian Cycle as a special case

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

41/??

Set Cover

Set Cover
Instance: A finite set U, a family S = {S1,S2, . . . ,Sm} of subsets
of U, an integer k.

Question: Is there a subfamily T ⊆ S such that T contains at
most k sets from S , and any element u ∈ U is contained in at
least one set T ∈ T ?

NP-hardness: reduction from Vertex Cover

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

42/??

Exact Cover

Exact Cover
Instance: A finite set U, a family S = {S1,S2, . . . ,Sm} of subsets
of U, an integer k.

Question: Is there a subfamily T ⊆ S such that T contains at
most k sets from S , and any element u ∈ U is contained in
exactly one set T ∈ T ?

NP-hardness: reduction from 3-SAT/3-Colouring

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

43/??

Subset Sum

Subset sum
Instance: A list of integers a1,a2, . . . ,an and an integer T .

Question: Is there a subset of the input list that sums up to T?

NP-hardness: reduction from 3-SAT (slightly technical)

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

44/??

Decision versus Search

We’ve defined P and NP in terms of decision problems
I In practice, we usually want to find a solution, not just know if it

exists

Each NP problem has a natural search version:
I On input x, produce a certificate for x ∈ L or decide that one does

not exist
I E.g. output a satisfying assignment, 3-colouring or an independent

set of size k
I Defined in terms of some fixed verifier

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

45/??

Decision versus Search

Theorem
Suppose P = NP. Then for every language L ∈ NP and a verifier M for
L, there is a polynomial-time Turing machine M′ that computes a
function f : {0,1}∗→{0,1}∗ such that M(x, f (x)) = 1 for all x ∈ L.

Proof: suffices to prove the claim for CNF-SAT by Cook–Levin
theorem

I Try fixing x1 = 1 and x1 = 0, use decision algorithm to see if the
formula remains satisfiable

I Pick the alternative that retains satisfiability, repeat for
x2,x3, . . . ,xn

CS-E4530 Computational Complexity Theory / Lecture 7
Department of Computer Science

46/??

Lecture 7: Summary

Existence of natural NP-complete problems
I CNF-SAT, 3-SAT and Integer Programming
I Chromatic Number and 3-Colouring
I Maximum Independent Set and Maximum Clique
I Minimum Vertex Cover
I Minimum Dominating Set
I Hamiltonian Paths/Cycles and TSP
I Set Cover and Subset Sum

