
1

ELEC-C7420 16-01-2019

ELEC-C7420 Basic Principles in Networking

Introduction to Socket Programming

Exercise Session -1 (16-01-2019)

Prerequisites

➢ Networking concepts (client server model, Addressing the network)

➢ Basic knowledge of python

What is networking?

Networking, also known as computer networking, is the practice of transporting and exchanging

data between nodes over a shared medium in an information system. Networking comprises not

only the design, construction and use of a network, but also the management, maintenance and

operation of the network infrastructure, software and policies. It is a concept of two programs

communicating across a network. Whether it be from client-client, client-server or even client to

itself.

Client: An end device interfacing with a human

Server: A device providing a service for the clients.

Common Networking Models-

i. Client/Server Model-

➢ Most Common

➢ Clients connect to the server to get the information they require

➢ Web browser (Client) connects to the Google website (Server).

ii. Peer-to Peer Model-

➢ Useful for service that don’t have to be constantly available (Skype, Game Servers etc.)

➢ Clients connect to the clients without the use of a central server.

➢ Is actually a Client/Server model at its core, just clients are acting as a server and client.

https://searchnetworking.techtarget.com/definition/node

2

ELEC-C7420 16-01-2019

Terminology

➢ Address: An IP address, eg 127.0.0.1 (look back address, points back to your own

computer)

➢ Port: A port number, eg. 80 (Port number 1-1024 are reserved for core protocols. Try to

use something above 1024 and below 65535).

What is TCP?

➢ Transmission Control Protocol (TCP).

➢ Reliable Connection Based Protocol. Forms the connections with other device and keeps

the connection going until it is closed.

➢ Ordered & Error checked (simple checksum). If it arrives in an ordered manner. TCP is

slower than other protocols for all these checking and making sure all the data is there. So

it is used in programs that must have all the data arrived.

➢ Used by Web browsers, Email, SSH, FTP etc.

What is socket?

Normally, a server runs on a specific computer and has a socket that is bound to a specific port

number. The server just waits, listening to the socket for a client to make a connection request.

On the client-side: The client knows the hostname of the machine on which the server is running

and the port number on which the server is listening. To make a connection request, the client tries

to rendezvous with the server on the server's machine and port. The client also needs to identify

itself to the server so it binds to a local port number that it will use during this connection. This is

usually assigned by the system.

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new

socket bound to the same local port and also has its remote endpoint set to the address and port of

the client. It needs a new socket so that it can continue to listen to the original socket for connection

requests while tending to the needs of the connected client.

3

ELEC-C7420 16-01-2019

On the client side, if the connection is accepted, a socket is successfully created and the client can

use the socket to communicate with the server.

The client and server can now communicate by writing to or reading from their sockets.

Definition:

A socket is one endpoint of a two-way communication link between two programs running on the

network. A socket is bound to a port number so that the TCP layer can identify the application that

data is destined to be sent to.

To summarize, socket-

➢ Sockets are the programming abstraction for connections

➢ They allow us to communicate in a bidirectional manner

➢ Once they are connected or ready to transmit, we can use them to send and receive data.

➢ They implement the common transport protocols like TCP and UDP.

Socket Methods

To create a socket, you must use the socket.socket() function available in socket module, which

has the general syntax −

s = socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the parameters −

➢ socket_family - This is by default AF_INET, meaning the port and address are given in a

tuple.

➢ socket_type - This is either SOCK_STREAM (TCP) or SOCK_DGRAM (UDP).

➢ protocol - This is usually left out, defaulting to 0.

Once you have socket object, then you can use required functions to create your client or server

program. Following is the list of functions required –

4

ELEC-C7420 16-01-2019

Server Socket Methods-

➢ s.bind((hostname,port))– Tuple of a host address & port.

➢ s.listen() – Start listening to incoming TCP connections.

➢ s.accept() – Accepts a connection when found (returns new socket).

Client Socket Methods-

➢ S.connect((hostname,port)) – From a client side, to request a connection to a listening

server.

General Socket Methods-

➢ s.recv(buffer) – Tries to grab data from a TCP connection (Waits)

➢ s.recvfrom() – Tries to grab data from UDP connection.

➢ s.send() – Attempts to send the data given to it (TCP).

➢ s.sendto() – Attempts to send the data given to it (UDP).

➢ socket.gethostname() – Returns the hostname

➢ s.close() – Closes a socket/connection and frees the port.

Demonstration of Socket Programming

Application Requisites:

➢ Python client (Kivy, PyQt, PyCharm, etc.) for Windows.

➢ Gedit/vi editor for Linux.

An example of a script for connecting to Google:

An example script to connect to Google using socket
programming in Python

import socket # for socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print "Socket successfully created"

port = 80 # default port for socket

host_ip = socket.gethostbyname('www.google.com') # get the server address
s.connect((host_ip, port)) # connecting to the

server

print "the socket has successfully connected to google \
on port == %s" %(host_ip)

5

ELEC-C7420 16-01-2019

Output:

Socket successfully created

the socket has successfully connected to google

on port == 172.217.21.132

In the above demonstration we created a socket. Then we resolved Google’s IP and finally, we

connected to Google. Now we can go for sending some data through a socket.

A Simple Server Demonstration-

To write Internet servers, we use the socket function available in socket module to create a socket

object. A socket object is then used to call other functions to setup a socket server.

Now call bind(hostname, port) function to specify a port for your service on the given host.

Next, call the accept method of the returned object. This method waits until a client connects to

the port you specified, and then returns a connection object that represents the connection to that

client.

#!/usr/bin/python # This is server.py file

import socket # Import socket module

s = socket.socket() # Create a socket object

host = socket.gethostname() # Get local machine name

port = 12345 # Reserve a port for your service.

s.bind((host, port)) # Bind to the port

s.listen(5) # Now wait for client connection.

while True:

 c, addr = s.accept() # Establish connection with client.

 print 'Got connection from', addr

 c.send('Thank you for connecting')

 c.close() # Close the connection

A Simple Client Demonstration

Let us write a very simple client program which opens a connection to a given port 12345 and

given host. This is very simple to create a socket client using Python's socket module function.

6

ELEC-C7420 16-01-2019

The socket.connect(hosname, port) opens a TCP connection to hostname on the port.

Once you have a socket open, you can read from it like any IO object. When done, remember to

close it, as you would close a file.

The following code is a very simple client that connects to a given host and port, reads any

available data from the socket, and then exits −

#!/usr/bin/python # This is client.py file

import socket # Import socket module

s = socket.socket() # Create a socket object

host = socket.gethostname() # Get local machine name

port = 12345 # Reserve a port for your service.

s.connect((host, port))

print s.recv(1024)

s.close() # Close the socket when done

Now run this server.py in background and then run above client.py to see the result.

Following would start a server in background.

$ python server.py

Once server is started run client as follows:

$ python client.py

This would produce following result −

Got connection from ('127.0.0.1', 48437)

Thank you for connecting

Client is connected to the server at the given hostname & port and server sends the connection

confirmation over the socket to the client.

This was a quick start with socket programming. Sockets are flexible and sufficient. Efficient

socket based programming can be easily implemented for general communications. Sockets cause

low network traffic. Over the upcoming weeks, we will go deeper on socket programming and try

to understand the usefulness of socket by implementing some exercise works.

