# 3. Quotient and remainder 

CS-E4500 Advanced Course on Algorithms
Spring 2019

Petteri Kaski<br>Department of Computer Science<br>Aalto University

## Lecture schedule

| Tue 15 Jan: | 1. Polynomials and integers |
| :--- | :--- |
| Tue 22 Jan: | 2. The fast Fourier transform and fast multiplication |
| Tue 29 Jan: | 3. Quotient and remainder |
| Tue 5 Feb: | 4. Batch evaluation and interpolation |
| Tue 12 Feb: | 5. Extended Euclidean algorithm and interpolation from erroneous data |
| Tue 19 Feb: | Exam week - no lecture |
| Tue 27 Feb: | 6. Identity testing and probabilistically checkable proofs |
| Tue 5 Mar: | Break - no lecture |
| Tue 12 Mar: | 7. Finite fields |
| Tue 19 Mar: | 8. Factoring polynomials over finite fields |
| Tue 26 Mar: | 9. Factoring integers |

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)


L = Lecture;
$\mathrm{Q}=\mathrm{Q}$ \& A session
D = Problem set deadline;
hall T5, Tue 12-14
hall T5, Thu 12-14
T = Tutorial (model solutions); hall T6, Mon 16-18

## Recap of last week

- Evaluation-interpolation duality of polynomials
- Multiplication is a pointwise product in the dual
- Transforming between the primal and a (carefully chosen) dual -roots of unity and the discrete Fourier transform (DFT)
- The positional number system for integers
- Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)
- Fast cyclic convolution (assuming a suitable root of unity exists)
- Fast negative-wrapping cyclic convolution


## Goal: Near-linear-time toolbox for univariate polynomials

- Multiplication
- Division (quotient and remainder) (this week)
- Batch evaluation
- Interpolation
- Extended Euclidean algorithm (gcd)
- Interpolation from partly erroneous data



## Further motivation for this week

- The radix-point representation for rational numbers is at the foundation of floating-point arithmetic
- Most scientific and engineering computations today are executed using hardware that implements the IEEE 754-2008 standard for floating point arithmetic:
https://doi.org/10.1109\%2FIEEESTD.2008.4610935
- Floating-point numbers and floating-point arithmetic are a fantastic tool, but this tool comes with caveats and must be used with care
- Quick demo:

IEEE 754-2008 in action

## Key content for Lecture 3

- Division (quotient and remainder) for integers and polynomials
- Fast division by reduction to fast multiplication
- Integer division via approximation of the multiplicative inverse of the divisor
- The radix-point representation and approximation of rational numbers
- Newton iteration
- Newton iteration for the multiplicative inverse of the divisor
- Convergence analysis for Newton iteration
- Polynomial division via reversal
- Newton iteration for the inverse of the reverse of the divisor


## Fast quotient and remainder (polynomials)

(von zur Gathen and Gerhard [11], Sections 9.1 and 9.4)


## Integer and floating-point arithmetic

(Brent and Zimmermann [4])


## Division (quotient and remainder)

- We start by recalling polynomial division and integer division
- We also recall that we can multiply fast, both in the case of polynomials and in the case of integers
- Our goal for this lecture is to develop division algorithms that are essentially (up to constants) as fast as our multiplication algorithms
- The key idea is to proceed by reduction to multiplication
- In preparing the reductions, we recall and encounter many useful concepts ..


## Polynomial quotient and remainder

- Let $R$ be a ring
- Let $a=\sum_{i=0}^{n} \alpha_{i} x^{i} \in R[x]$ and $b=\sum_{i=0}^{m} \beta_{i} x^{i} \in R[x]$ such that $\alpha_{n} \neq 0$ and $\beta_{m}=1$
- That is, $\operatorname{deg} a=n$ and $b$ is monic with $\operatorname{deg} b=m$
- Then, there exist polynomials $q, r \in R[x]$ that satisfy $a=q b+r$ with $\operatorname{deg} r<\operatorname{deg} b$
- We write $a$ quo $b$ for such a quotient $q$ and $a$ rem $b$ for such a remainder $r$ in the division of $a$ by $b$
- In fact, such $q$ and $r$ are unique (exercise)


## Integer quotient and remainder

- Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ with $\beta \neq 0$
- Then, there exist integers $\eta, \rho \in \mathbb{Z}_{\geq 0}$ that satisfy $\alpha=\eta \beta+\rho$ with $0 \leq \rho \leq \beta-1$
- We write $\alpha$ quo $\beta$ the quotient $\eta$ and $\alpha$ rem $\beta$ the remainder $\rho$ in the division of $\alpha$ by $\beta$
- Such $\eta$ and $\rho$ are unique (exercise)


## The classical division algorithm (for polynomials)

- Let $a=\sum_{i} \alpha_{i} x^{i}, b=\sum_{i} \beta_{i} x^{i} \in R[x]$ be given as input with $\operatorname{deg} a=n, \operatorname{deg} b=m$, $n \geq m \geq 0$, and suppose that $\beta_{m} \in R$ is a unit
- We want to compute $q, r \in R[x]$ with $a=q b+r$ and $\operatorname{deg} r<m$
- The classical division algorithm:

1. $r \leftarrow a, \mu \leftarrow \beta_{m}^{-1}$
2. for $i=n-m, n-m-1, \ldots, 0$ do
3. if $\operatorname{deg} r=m+i$ then $\eta_{i} \leftarrow \operatorname{lc}(r) \mu, r \leftarrow r-\eta_{i} x^{i} b$
else $\eta_{i} \leftarrow 0$
4. return $q=\sum_{i=0}^{n-m} \eta_{i} x^{i}$ and $r$

- The classical algorithm runs in $O\left((n+m)^{2}\right)$ operations in $R$
- ... But could we do better? After Lecture 2, we know how to multiply in near-linear-time ...


## Fast polynomial multiplication

- Let $R$ be a ring
- Given $f, g \in R[x]$ with $\operatorname{deg} f \leq d$ and $\operatorname{deg} g \leq d$ as input, we can compute the product $f g \in R[x]$ in $O(M(d))$ operations in $R$
- We can take $M(d)=O(d \log d)$ if $R$ has a primitive root of unity that supports an appropriate FFT
- In general, we can take $M(d)=O(d \log d \log \log d)$
- (In Lecture 2 we explored Schönhage-Strassen multiplication that assumes 2 is a unit in $R$; this algorithm can be generalized so that $R$ is an arbitrary ring.)


## Fast integer multiplication

- Given as input $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ represented as at most $d$-digit integers in a constant base $B \in \mathbb{Z}_{\geq 2}$, we can compute the product $\alpha \beta \in \mathbb{Z}$ in $O(M(d))$ time
- We can take $\mathcal{M}(d)=O(d \log d \log \log d)[24]$ or $M(d)=O\left(d \log d 2^{O\left(\log ^{*} d\right)}\right)[9,14]$
- (Also recall Problem Set 2 where we reduced multiplication in $\mathbb{Z}$ to multiplication in $\left.\mathbb{Z}_{u}[x].\right)$


## First reduction towards division: the quotient suffices

- Division (viewed from 36,000ft, see earlier slides for details):

$$
\text { Given } a, b \text { we need to compute } q, r \text { such that } a=q b+r
$$

- Observation:

It suffices to compute $q$ since then we can recover $r=a-q b$ by fast multiplication

## High-level idea: iterate for the quotient

- Our approach will be to recover the quotient iteratively
- In essence, we iterate for a (near) multiplicative inverse of the divisor $b$ such that each iteration increases the accuracy of our (near) inverse
- We want the accuracy (e.g. number of digits or polynomial degree) to increase geometrically from $n$ to $2 n$ in one iteration
- Once a sufficiently close approximation of the inverse is available ( $n$ is large enough), we proceed to solve for the quotient
- Each iteration will involve a constant number of multiplications, additions, and subtractions on inputs of size $O(n)$


## The cost of a geometric iteration

- We say that a function $T: \mathbb{Z}_{\geq n_{0}} \rightarrow \mathbb{Z}_{\geq 0}$ grows at least linearly if for all $n, n_{1}, n_{2} \in \mathbb{Z}_{\geq n_{0}}$ it holds that $n=n_{1}+n_{2}$ implies $T(n) \geq T\left(n_{1}\right)+T\left(n_{2}\right)$
- Examples:

$$
\begin{aligned}
& T(n)=C n \log _{2} n \text { for } n_{0}=1 \text { and any constant } C>0 \\
& T(n)=C n \log _{2} n \log _{2} \log _{2} n \text { for } n_{0}=2 \text { and any constant } C>0
\end{aligned}
$$

Lemma 5 (Last step dominates-the previous steps are "for free")
Suppose that $T$ grows at least linearly for $n \geq n_{0} \geq 1$ and let $2^{k_{0}}$ be the least integer power of 2 at least $n_{0}$. Then, for all $k \geq k_{0}$ we have $\sum_{j=k_{0}}^{k} T\left(2^{j}\right) \leq T\left(2^{k+1}\right)$

Proof.
By induction (exercise).

## Roadmap for fast integer division

- The positional number system in base $B$ recalled and revisited -the radix-point representation and approximation of rational numbers
- For $\alpha, \beta \in \mathbb{Z}_{\geq 1}$ given as input, we want a (radix-point) approximation $\gamma$ for the multiplicative inverse $1 / \beta$
- Provided the approximation $\gamma$ is accurate enough, from the product $\alpha \gamma$ we can recover the quotient $\alpha$ quo $\beta$ (exercise) and thus the remainder $\alpha$ rem $\beta$
- To compute $\gamma$ fast from a $d$-digit $\beta$ given as input, we rely on Newton iteration
- We present a Newton iteration for a normalized rational divisor; that is, we normalize the integer $\beta$ to a radix-point $v$ with $B^{-1} \leq v<1$, then compute an approximate multiplicative inverse $\mu$ for $v$ using Newton iteration, and from $\mu$ map back to the desired $\gamma$


## Approximating the multiplicative inverse of the divisor

- Given $\alpha, \beta \in \mathbb{Z}_{\geq 1}$ as input, we seek to approximate $1 / \beta \in \mathbb{Q}$
- We observe in particular that $1 / \beta$ is a rational number, not an integer
- Thus, first we need means for computing with rational numbers ...
- Let us begin by recalling and revisiting yet further aspects of the positional number system ...


## The positional number system for integers (base $B$ )

- Let $B \in \mathbb{Z}_{\geq 2}$
- Suppose that $\alpha \in \mathbb{Z}$ with $0 \leq \alpha \leq B^{d}-1$ for some $d \in \mathbb{Z}_{\geq 0}$
- Then, there is a unique finite sequence

$$
\begin{equation*}
\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-2}, \alpha_{d-1}\right) \in \mathbb{Z}_{\geq 0}^{d} \tag{20}
\end{equation*}
$$

with $0 \leq \alpha_{i} \leq B-1$ for all $i=0,1, \ldots, d-1$ such that

$$
\begin{equation*}
\alpha=\sum_{i=0}^{d-1} \alpha_{i} B^{d-1-i}=\alpha_{0} B^{d-1}+\alpha_{1} B^{d-2}+\ldots+\alpha_{d-3} B^{2}+\alpha_{d-2} B+\alpha_{d-1} \tag{21}
\end{equation*}
$$

- We say that the sequence (20) is the ( $d$-digit) representation of the integer $\alpha$ in the positional number system with base $B$ (or radix $B$ )
- The elements $\alpha_{i}$ are the digits of $\alpha$
- We say that $\alpha_{0}$ is the most significant digit and $\alpha_{d-1}$ is the least significant digit


## Example (base 10)

- Let us represent $123 \in \mathbb{Z}$ in base $B=10$
- We have

$$
123=1 \cdot 10^{2}+2 \cdot 10+3 \cdot 1
$$

- Hence, the sequence $(1,2,3)$ represents 123 in base 10


## A positional number system for rational numbers?

- Could we extend the positional number system to represent (all) rational numbers?
- Let us make an attempt (that will not succeed for all rational numbers) ...


## Radix-point representation (base $B$ )

- Let $B \in \mathbb{Z}_{\geq 2}$
- Let $s \in\{-1,1\}, e \in \mathbb{Z}$, and $d \in \mathbb{Z}_{\geq 1}$
- Let $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}\right) \in \mathbb{Z}^{d}$ such that $0 \leq \alpha_{i} \leq B-1$ for all $i=0,1, \ldots, d-1$
- We say that the three-tuple $\left(s, e,\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}\right)\right)$ is a radix-point representation of the rational number

$$
\begin{equation*}
\alpha=s B^{e} \sum_{i=0}^{d-1} \alpha_{i} B^{-i} \tag{22}
\end{equation*}
$$

using $d$ digits in base $B$

- We say a representation is normal if both $\alpha_{0} \neq 0$ and $\alpha_{d-1} \neq 0$
- Any nonzero rational number that has a radix-point representation in base $B$ has a unique normal representation in base $B$ (exercise)
- Define $(1,0,(0))$ as the unique normal representation for the rational number 0


## Example (base 10)

- Let us represent $1234657 / 10000 \in \mathbb{Q}$ in base $B=10$
- We have

$$
\begin{aligned}
\frac{1234567}{10000} & =1 \cdot 10^{2}+2 \cdot 10+3 \cdot 1+4 \cdot 10^{-1}+5 \cdot 10^{-2}+6 \cdot 10^{-3}+7 \cdot 10^{-4} \\
& =10^{2}\left(1 \cdot 1+2 \cdot 10^{-1}+3 \cdot 10^{-2}+4 \cdot 10^{-3}+5 \cdot 10^{-4}+6 \cdot 10^{-5}+7 \cdot 10^{-6}\right)
\end{aligned}
$$

- Hence, the sequence $(1,2,(1,2,3,4,5,6,7))$ is the (normal) representation of 1234657/10000 using $d=7$ digits and exponent $e=2$ in base $B=10$
- $(1,2,(1,2,3,4,5,6,7))$ is rather cumbersome to write, so often one resorts to notational shorthands such as 123.4567 or $1.23456 \cdot 10^{2}$ where the radix point "." is used to separate the integer and fractional parts of the representation (with the base $B=10$ tacitly understood unless indicated otherwise)


## A positional number system for rational numbers?

- Could we extend the positional number system to represent (all) rational numbers?
- For any base $B$, there exist rational numbers that do not admit radix-point representation in base $B$ (exercise)
- For example, $1 / 3$ cannot be represented in base $B=10$
- However, for any rational number $\tau \in \mathbb{Q}$, one we represent a rational number arbitrarily close to $\tau$ using radix-point representation
- For example, $3.3333333333333333333 \cdot 10^{-1}$ in base $B=10$ is already rather close to $1 / 3$


## Properties of radix-point numbers (1/2)

- Let us fix the base $B \in \mathbb{Z}_{\geq 2}$
- Let us write $\mathbb{Q}_{B}$ for the set of all rational numbers that do admit a radix-point representation in base $B$
- It is immediate that we have $\mathbb{Z} \subseteq \mathbb{Q}_{B}$
- For all $\alpha, \beta \in \mathbb{Q}_{B}$, we have the closure properties $\alpha+\beta \in \mathbb{Q}_{B},-\alpha \in \mathbb{Q}_{B}$, and $\alpha \beta \in \mathbb{Q}_{B}$
- However, as we have seen, for all $\alpha \in \mathbb{Q}_{B}$ it does not hold in general that $1 / \alpha \in \mathbb{Q}_{B}$ (indeed, recall from the previous example that $3 \in \mathbb{Q}_{10}$ and $1 / 3 \notin \mathbb{Q}_{10}$ )


## Example: Closure under multiplication

- Let $\alpha, \beta \in \mathbb{Q}_{B}$ have radix point representations

$$
\begin{aligned}
& \alpha=s B^{e} \sum_{i=0}^{c-1} \alpha_{i} B^{-i} \\
& \beta=t B^{f} \sum_{i=0}^{d-1} \beta_{i} B^{-i}
\end{aligned}
$$

- We have

$$
\alpha \beta=s t B^{e+f-d+1-c+1}\left(\sum_{i=0}^{c-1} \alpha_{i} B^{c-1-i} \sum_{i=0}^{d-1} \beta_{i} B^{d-1-i}\right)
$$

- The expression in parentheses is a multiplication of two integers in base $B$
- Since the integer product is representable in base $B$, we have that $\alpha \beta$ admits a radix-point representation in base $B$ (by shifting the position of the radix point)


## Properties of radix-point numbers (2/2)

- From the previous example we also observe that if we multiply a $c$-digit representation with a $d$-digit representation, the product has a representation using at most $c d$ digits
- Indeed, the largest integer that one can represent using $d$ digits in base $B$ is $(B-1) \sum_{j=0}^{d-1} B^{j}=B^{d}-1$
- Question/work point:

How about closure under addition? Hint: again reduce to integers, and be careful with the number of digits you need to represent the sum

- For exact arithmetic, the increase from $c$ and $d$ digits to $c d$ digits at each multiplication quickly becomes very expensive when evaluating an arithmetic expression consisting of several operations
- We need a way to control this expense; that is, instead of exact arithmetic, we will be content on approximation where we can control the accuracy of the approximation ...


## Example: Addition

- Let us work in base $B=3$
- Suppose that $\alpha=1.121001112 \cdot 3^{2}$ and $\beta=2.222221202 \cdot 3^{6}$
- Aligning the radix points, addition reduces to integer addition (in base $B$ ):
112.1001112
$\frac{+\quad 2222221.202}{10000111.0021112}$
- The result is thus $\alpha+\beta=1.00001110021112 \cdot 3^{7}$


## Example: Multiplication

- Let us work in base $B=5$
- Suppose that $\alpha=3.011002342 \cdot 5^{4}$ and $\beta=1.340011441 \cdot 5^{4}$
- Multiplication reduces to integer multiplication (in base $B$ ):

| $3011002342 \cdot 5^{-5}$ |
| ---: |
| $1340011441 \cdot 5^{-5}$ |
| $\quad 10140341030320132422 \cdot 5^{-10}$ |

- The result is thus $\alpha \beta=1.0140341030320132422 \cdot 5^{9}$


## Cutting expenses-rounding

- A principled way of cutting the expense of maintaining a $d$-digit radix-point representation is to cut the number of digits from $d$ digits to $\ell$ digits for some $1 \leq \ell \leq d$
- Being "principled" of course amounts to making sure that the $\ell$-digit representation is a "close approximation" of the $d$-digit representation
- This general process of cutting expenses at intermediate steps of a computation using "close approximations" is also known as rounding
- We will restrict to a straightforward but blunt form of rounding, namely truncation ...


## Truncation

- Let $\alpha \in \mathbb{Q}_{B}$ with

$$
\alpha=s B^{e} \sum_{i=0}^{d-1} \alpha_{i} B^{-i}
$$

- For $\ell \in \mathbb{Z}_{\geq 1}$, the truncation of $\alpha$ to $\ell \mathbf{d i g i t s}$ is the rational number

$$
\begin{equation*}
\alpha_{\underline{\ell}}=s B^{e} \sum_{i=0}^{\min (\ell, d)-1} \alpha_{i} B^{-i} \tag{23}
\end{equation*}
$$

- That is, in effect we cut out all but the $\ell$ most significant digits of $\alpha$ to obtain $\alpha_{\underline{\ell}}$


## Example: Truncation

- Let us truncate 123.4567 in base $B=10$
- We have

$$
\begin{aligned}
& 123.4567_{\underline{\underline{ }}}=123.4567 \\
& 123.4567_{\underline{6}}=123.456 \\
& 123.4567_{\underline{5}}=123.45 \\
& 123.4567_{\underline{4}}=123.4 \\
& 123.4567_{\underline{3}}=123 \\
& 123.4567_{\underline{2}}=120 \\
& 123.4567_{\underline{1}}=100
\end{aligned}
$$

## Accuracy of truncation

- Let $\alpha \in \mathbb{Q}_{B}$ with $\alpha=s B^{e} \sum_{i=0}^{d-1} \alpha_{i} B^{-i}$ and let $\ell=1,2, \ldots$
- Let us measure the loss in accuracy when truncating from $\alpha$ to $\alpha_{\underline{\ell}}$ by $\delta \in \mathbb{Q}$ with

$$
\alpha_{\underline{\ell}}=\alpha+\delta
$$

- We have

$$
|\delta|=\left|\alpha-\alpha_{\underline{\ell}}\right|=\left|s B^{e} \sum_{i=\ell}^{d-1} \alpha_{i} B^{-i}\right|
$$

Thus,

$$
|\delta| \leq B^{e}(B-1) \sum_{i=\ell}^{d-1} B^{-i}= \begin{cases}B^{e-\ell+1}-B^{e-d+1} & \text { if } \ell \leq d  \tag{24}\\ 0 & \text { if } \ell \geq d\end{cases}
$$

- In particular, for all $\ell=1,2, \ldots$ we have $|\delta|<B^{e-\ell+1}$


## Example: Accuracy of truncation

- Let us again truncate 123.4567 in base $B=10$
- Since $e=2$, we have

$$
\begin{aligned}
& \left|123.4567-123.4567_{\underline{\underline{ }}}\right|=0<10^{2-7+1}=10^{-4} \\
& \left|123.4567-123.4567_{\underline{6}}\right|=0.0007<10^{2-6+1}=10^{-3} \\
& \left|123.4567-123.4567_{\underline{\underline{G}}}\right|=0.0067<10^{2-5+1}=10^{-2} \\
& \left|123.4567-123.4567_{\underline{\underline{L}}}\right|=0.0567<10^{2-4+1}=10^{-1} \\
& \left|123.4567-123.4567_{\underline{3}}\right|=0.4567<10^{2-3+1}=10^{0} \\
& \left|123.4567-123.4567_{\underline{2}}\right|=3.4567<10^{2-2+1}=10^{1} \\
& \left|123.4567-123.4567_{\underline{1}}\right|=23.4567<10^{2-1+1}=10^{2}
\end{aligned}
$$

## Summary-rational numbers with controlled expense

- Let us summarize where we are before proceeding further
- Radix-point numbers in $\mathbb{Q}_{B}$ enable us to compute with arbitrarily close approximations of rational numbers in $\mathbb{Q}$
- Computation in $\mathbb{Q}_{B}$ takes place by easy reductions to integer algorithms for addition, negation, and multiplication
- In particular, we can choose to compute exactly in $\mathbb{Q}_{B}$ as long as we mind the cost of an increase in the number of digits that we need to maintain
- This cost can be controlled by rounding (for example, truncating) intermediate results to fewer digits
- As algorithm designers we can trade off between accuracy and cost of computation by rounding (truncating) to an appropriate number of digits


## Approximating the multiplicative inverse of the divisor

- Let us restate our goal towards fast integer division
- Given $\alpha, \beta \in \mathbb{Z}_{\geq 1}$ as input, we seek to approximate $1 / \beta \in \mathbb{Q}$
- We observe in particular that $1 / \beta$ is a rational number
- We now have a means for working with rational numbers, namely the radix-point number system in base $B \in \mathbb{Z}_{\geq 2}$, with $B=O(1)$
- That is, our goal is to approximate $1 / \beta$ with a radix-point number $\gamma \in \mathbb{Q}_{B}$
- We have that $\gamma$ and $1 / \beta$ are close to each other if and only if $\gamma \beta$ is close to 1
- In what follows our goal is, given as input $t \in \mathbb{Z}_{\geq 1}$ and $v \in \mathbb{Q}_{B}$ with $B^{-1} \leq v<1$, to compute a $\mu \in \mathbb{Q}_{B}$ with $|1-\mu \nu| \leq B^{-t}$ in time $O(M(t))$
- (This running time will be sufficient to obtain an $O(M(n))$-time division algorithm for two given integers $\alpha, \beta \in \mathbb{Z}_{\geq 1}$ with at most $n$ digits each in base $B$ )


## Key idea: Iteration for improved approximation

- Let us set issues of computational cost aside for a moment and look at how to obtain better and better approximations for $1 / v$
- That is to say, suppose we have available an approximation $\mu \in \mathbb{Q}$ of $1 / v$ with

$$
|1-\mu v| \leq \epsilon
$$

for some $0 \leq \epsilon<1$

- We would like to compute from $\mu$ an improved approximation $\hat{\mu} \in \mathbb{Q}$ with, say,

$$
|1-\hat{\mu} v| \leq \epsilon^{2}
$$

- One way to achieve such transformation $\mu \mapsto \hat{\mu}$ is to use Newton iteration ...


## A remark in passing

- While an improvement from $\epsilon$ to $\epsilon^{2}$ in accuracy may at first look innocent, at $\epsilon \leq 1 / B$ it in fact doubles the accuracy in terms of the number of digits at every step
- For example with $B=10$, starting with $\epsilon=0.1$ and iterating, we have

```
        \(\epsilon=0.1\)
\(\epsilon^{2}=0.01\)
\(\epsilon^{4}=0.0001\)
\(\epsilon^{8}=0.0000001\)
\(\epsilon^{16}=0.0000000000000001\)
\(\epsilon^{32}=0.00000000000000000000000000000001\)
\(\epsilon^{64}=0.0000000000000000000000000000000000000000000000000000000000000001\)
```


## Newton iteration (1/3)

- Let us continue to work without considerations of computational cost yet
- Suppose we have a function $\varphi: I \rightarrow \mathbb{R}$ for some open interval $I \subseteq \mathbb{R}$ and we seek to find a $\mu \in I$ such that $\varphi(\mu)=0$
- For example, suppose that $\varphi(x)=1 / x-v$ with $I=(0, \infty)$ for some $v \in \mathbb{R}_{>0}$
- Let us assume that $\varphi(x)$ is well-behaved in the sense that it is differentiable with a nonzero derivative in $I$; continuing the previous example, we have $\varphi^{\prime}(x)=-1 / x^{2}$
- Suppose that we have access to a $\mu \in I$ such that $\varphi(\mu)$ is close to 0
- How could we obtain a $\hat{\mu} \in I$ such that $\varphi(\hat{\mu})$ is even closer to 0 ?


## Newton iteration (2/3)

- Using the fact that $\varphi$ is differentiable, let us linearize $\varphi(x)$ at $x=\mu$
- We obtain the line

$$
y=\varphi^{\prime}(\mu)(x-\mu)+\varphi(\mu)
$$

- Let us set $y=0$ and solve for $x$ to obtain

$$
x=\mu-\frac{\varphi(\mu)}{\varphi^{\prime}(\mu)}
$$

- Setting

$$
\hat{\mu} \leftarrow \mu-\frac{\varphi(\mu)}{\varphi^{\prime}(\mu)}
$$

would now intuitively appear like a good choice to improve from $\mu$ assuming that $\varphi$ does not deviate too much from a line between $\mu$ and an actual zero of $\varphi$

## Newton iteration (3/3)

- In our example with $\varphi(x)=1 / x-v$ and $\varphi^{\prime}(x)=-1 / x^{2}$, we obtain

$$
x=\mu-\frac{\varphi(\mu)}{\varphi^{\prime}(\mu)}=\mu-(-1+\mu v) \mu=(2-\mu v) \mu
$$

- Thus, we obtain the iteration step

$$
\hat{\mu} \leftarrow(2-\mu v) \mu
$$

- Let us next verify that this iteration has the desired convergence property ...


## Convergence analysis

- Let $0 \leq \epsilon<1$ and $v \in(0, \infty)$
- Suppose that $\mu \in(0, \infty)$ satisfies $\mu \nu=1+\delta$ for some $\delta \in \mathbb{R}$ with $|\delta| \leq \epsilon<1$
- Recall the iteration step

$$
\hat{\mu} \leftarrow(2-\mu v) \mu
$$

- We thus have

$$
\hat{\mu} v=(2-\mu \nu) \mu \nu=(2-(1+\delta))(1+\delta)=(1-\delta)(1+\delta)=1-\delta^{2}
$$

- That is, one step of the iteration improves the accuracy from $\epsilon$ to $\epsilon^{2}$ as desired
- Caveat: the iteration must be started from a value $\mu \in(0, \infty)$ with $|1-\mu \nu|<1$


## Accounting for the computational cost

- The previous derivation and analysis assumed no computational cost on the exact arithmetic
- Let us now return to work in $\mathbb{Q}_{B}$ for $B \in \mathbb{Z}_{\geq 2}$ and $B=O(1)$, keeping track on the number of digits in our radix-point numbers, and taking care to truncate to control cost
- This requires an updated convergence analysis to establish convergence even in the presence of truncations...


## Preliminaries: Normalizing the exponent of the divisor

- Rather than work with an integer divisor $\beta \in \mathbb{Z}_{\geq 1}$, it will be convenient to work with a normalized divisor $v \in \mathbb{Q}_{B}$ with $B^{-1} \leq v<1$
- For $\beta=B^{e} \sum_{i=0}^{d-1} \beta_{i} B^{-i}$ with $\beta_{0} \neq 0$ given as input, let us set $v=B^{-e-1} \beta$ to obtain $B^{-1} \leq v<1$
- Note: Setting $v=B^{-e-1} \beta$ merely adjusts the exponent in radix-point representation; or, what is the same, moves the position of the radix point
- Suppose we are also given as input a $t \in \mathbb{Z}_{\geq 1}$
- In what follows we present an algorithm that computes a $\mu \in \mathbb{Q}_{B}$ with $|1-\mu \nu| \leq B^{-t}$ in time $O(M(t))$
- Once $\mu$ is available, we can set $\gamma=B^{-e-1} \mu$ (again, this merely adjusts the exponent) and observe that we have $|1-\gamma \beta|=\left|1-B^{-e-1} \mu \beta\right|=|1-\mu \nu| \leq B^{-t}$, implying that we can indeed without loss of generality work with $v$ instead of $\beta$ in what follows


## Example: Normalizing the exponent of the divisor

- Let us work in base $B=10$ for convenience
- Suppose that $\beta=86295076320=8.6295076320 \cdot 10^{10}$ and $t=6$
- We have $v=0.86295076320=86295076320 \cdot 10^{-11}$
- Suppose the near-inverse algorithm outputs $\mu=1.1588146$ as the near-inverse of $v$
- We thus have $\gamma=1.1588146 \cdot 10^{-11}$
- We can also verify that $|1-\gamma \beta|=|1-\mu \nu|=5.652269728 \cdot 10^{-8} \leq 10^{-6}$


## A Newton iteration with truncation (1/2)

- Suppose we have available a $(t+g)$-digit $\mu \in \mathbb{Q}_{B}$ with $|1-\mu \nu| \leq B^{-t}$
- Here $g \in \mathbb{Z}_{\geq 0}$ is a constant (number of guard digits) whose value will be fixed later
- Let $t \in \mathbb{Z}_{\geq 2}$; initially we can assume that $t=2$ (this needs a preprocessing algorithm; we postpone a discussion)
- We present an $O(M(t))$-time algorithm that computes a $(2 t-1+g)$-digit $\hat{\mu} \in \mathbb{Q}_{B}$ with $|1-\mu \nu| \leq B^{-2 t+1}$
- (Iterating this algorithm will produce a desired $\mu$ for any $v$ and $t$ given as input in time $O(M(t))$; we postpone the analysis)


## A Newton iteration with truncation (2/2)

- Let us recall that $\hat{\mu} \leftarrow(2-\mu \nu) \mu$ is the iteration step without truncation
- Recall also that we assume $t \geq 2$ and $|1-\mu \nu| \leq B^{-t}$ with $B^{-1} \leq v<1$; furthermore, $\mu \in \mathbb{Q}_{B}$ has $t+g$ digits
- We conclude that $1-B^{-t} \leq \mu \leq B\left(1+B^{-t}\right)$ and thus $\left(1-B^{-t}\right) B^{-1} \leq \mu v_{2 t-1+g}<B\left(1+B^{-t}\right)$
- Let us study the following iteration step with two truncation operations:

$$
\begin{equation*}
\hat{\mu} \leftarrow\left(\left(2-\mu v_{2 t-1+g}\right) \mu\right)_{2 t-1+g} \tag{25}
\end{equation*}
$$

- Apart from the truncation operations, the arithmetic in (25) is exact and no intermediate result uses more than

$$
3+(t+g)+(2 t-1+g)+(t+g)=4 t+3 g+2=O(t) \text { digits in base } B
$$

- Thus we can compute $\hat{\mu}$ from $\mu$ in time $O(M(t))$ as desired


## Example: Newton iteration

- Let us work in base $B=10$
- Suppose we are given as input $t=32$ and
$v=0.171438118087707346963845017798469519992294775$
- From the initialization algorithm (discussed later) we obtain the initial value $\mu=5.834$
- Applying Newton iteration with truncation (25) with $g=6$, we observe:

| $t$ | $g$ | $\mu$ | $\frac{v_{2 t-1+g}}{}$ |
| ---: | :--- | :--- | :--- |
| 2 | 6 | 5.8340000 | 0.171438118 |
| 3 | 6 | 5.83300833 | 0.17143811808 |
| 5 | 6 | 5.8330085000 | 0.171438118087707 |
| 9 | 6 | 5.83300849982735 | 0.17143811808770734696384 |
| 17 | 6 | 5.8330084998273388632428 | 0.171438118087707346963845017798469519992 |
| 33 | 6 | 5.83300849982733886324269185413958594030 |  |

- Disregarding the g guard digits, we observe $\mu$ essentially doubles in length at each step


## Convergence analysis with truncation (1/3)

- Let us first introduce parameters $\delta_{1}$ and $\delta_{2}$ to quantify the inaccuracy introduced by truncation
- Let $v_{2 t-1+g}=v+\delta_{1}$
- Since $B^{-1} \leq v<1$, we can take $\left|\delta_{1}\right| \leq B^{-1-(2 t-1+g)+1}=B^{1-2 t-g}$ by (24)
- Let $\left(\left(2-\mu v_{2 t-1+g}\right) \mu\right)_{2 t-1+g}=\left(2-\mu v_{2 t-1+g}\right) \mu+\delta_{2}$
- Since $\left(2-\mu v_{2 t-1+g}\right) \mu \leq 4 B \leq B^{3}$ and $\left(2-\mu v_{2 t-1+g}\right) \mu \geq\left(2-\mu\left(v+\delta_{1}\right)\right)\left(1-B^{-t}\right) \geq$ $\left(1-B^{-t}-\mu \delta_{1}\right)\left(1-B^{-t}\right) \geq\left(1-B^{-t}-B\left(1+B^{-t}\right) B^{1-2 t-g}\right)\left(1-B^{-t}\right)>0$, we can take $\left|\delta_{2}\right| \leq B^{3-(2 t-1+g)+1}=B^{5-2 t-g}$ by (24)
- In particular, we can control $\delta_{1}$ and $\delta_{2}$ by selection of the constant $g \in \mathbb{Z}_{\geq 0}$
- Let us now proceed to analyze the aggregate convergence ...


## Convergence analysis with truncation (2/3)

- Let $\mu \nu=1+\delta$ with $|\delta| \leq B^{-t}$
- We have

$$
\begin{aligned}
\hat{\mu} v & =\left(\left(2-\mu v_{2 t-1+g}\right) \mu\right)_{2 t-1+g} v \\
& =\left(\left(2-\mu v_{2 t-1+g}\right) \mu+\delta_{2}\right) v \\
& =\left(\left(2-\mu\left(v+\delta_{1}\right)\right) \mu+\delta_{2}\right) v \\
& =(2-\mu v) \mu v-\mu^{2} v \delta_{1}+v \delta_{2} \\
& =(1-\delta)(1+\delta)-\mu^{2} v \delta_{1}+v \delta_{2} \\
& =1-\delta^{2}-\mu^{2} v \delta_{1}+v \delta_{2}
\end{aligned}
$$

## Convergence analysis with truncation (3/3)

- Let us recall that $B^{-1} \leq v<1,1-B^{-t} \leq \mu \nu \leq 1+B^{-t}$, and $\mu \leq B\left(1+B^{-t}\right)$
- Furthermore, we recall that $|\delta| \leq B^{-t},\left|\delta_{1}\right| \leq B^{1-2 t-g}$, and $\left|\delta_{2}\right| \leq B^{5-2 t-g}$
- Thus, also recalling that $B \geq 2$ and $t \geq 2$, we have

$$
\begin{aligned}
|\hat{\mu} v-1| & \leq \delta^{2}+\mu^{2} v\left|\delta_{1}\right|+v\left|\delta_{2}\right| \\
& \leq \delta^{2}+B^{2}\left(1+B^{-t}\right)^{2}\left|\delta_{1}\right|+\left|\delta_{2}\right| \\
& \leq \delta^{2}+B^{2}\left(1+2 B^{-t}+B^{-2 t}\right)\left|\delta_{1}\right|+\left|\delta_{2}\right| \\
& \leq \delta^{2}+B^{3}\left|\delta_{1}\right|+\left|\delta_{2}\right| \\
& \leq B^{-2 t}+B^{4-2 t-g}+B^{5-2 t-g} \\
& \leq B^{-2 t}+B^{6-2 t-g} \\
& \leq B^{-2 t+1}
\end{aligned}
$$

where in the last inequality we have used the assumption that $g \geq 6$

## Running time (1/2)

- Recall that one step of iteration takes an input $\mu$ with $t+g$ digits and produces an output $\hat{\mu}$ of $2 t-1+g$ digits with $|1-\mu v| \leq B^{-2 t+1}$
- Consider the map $\psi(t)=2 t-1$
- Starting with the base case $\psi^{0}(t)=t$, an easy induction shows that the map $\psi$ iterated $k=0,1, \ldots$ times yields the map $\psi^{k}(t)=2^{k} t-2^{k}+1$
- At start, we can assume that the initial value to the Newton iteration has $t+g$ digits with $t=2$ and $g=6$
- (Indeed, the initialization algorithm will run in time $O(1)$; this will be discussed later)
- Thus, after $k$ steps of iteration, the approximate inverse $\mu$ has $\psi^{k}(t)+g=2^{k} t-2^{k}+1+g$ digits and $|1-\mu \nu| \leq B^{-\psi^{k}(t)}$
- Substituting $t=2$ and $g=6$, we obtain that after $k$ steps of iteration $\mu$ has $2^{k} \leq 2^{k+1}-2^{k}+6 \leq 2^{k+4}$ digits and $|1-\mu \nu| \leq B^{-\psi^{k}(2)} \leq B^{-2^{k}}$


## Running time (2/2)

- Let us recall that after $k$ steps of Newton iteration we have at most $2^{k+4}$ digits in $\mu$, and $|1-\mu \nu| \leq B^{-2^{k}}$
- Thus, for a $t \in \mathbb{Z}_{\geq 1}$ given as input, to obtain an approximate inverse $\mu$ with $|1-\mu \nu| \leq B^{-t}$, it suffices to run $k=\left\lceil\log _{2} t\right\rceil$ steps
- We observe that arithmetic during step $k$ works with intermediate results that have at most $4 \cdot 2^{k+6}+3 \cdot 6+2=O\left(2^{k}\right)$ digits
- Furthermore, since the multiplication time $M(d)$ grows at most polynomially in $d$; that is, for all constants $C \geq 1$ there exists a constant $C^{\prime} \geq 1$ such that for all $d=1,2, \ldots$ we have $\mathcal{M}(C d) \leq C^{\prime} M(d)$, the running time of step $k$ is $O\left(M\left(2^{k}\right)\right)$
- By Lemma 5, the total running time to produce approximate inverse $\mu$ with $|1-\mu \nu| \leq B^{-t}$ is $O\left(M\left(2^{\left\lceil\log _{2} t\right\rceil+1}\right)\right)$, which is $O(M(t))$


## Summary-fast integer division (1/2)

- Let integers $\alpha, \beta \in \mathbb{Z}_{\geq 1}$ be given as input in base $B$

1. Normalize $\beta$ to $v \in \mathbb{Q}_{B}$ with $B^{-1} \leq v<1$ by adjusting the exponent
2. From $v$ determine a $(2+g)$-digit initial approximation $\mu \in \mathbb{Q}_{B}$ with $|1-\mu v| \leq B^{-2}$ (this will be discussed in what follows)
3. Run the Newton iteration with truncation (25) until we have a ( $t+g$ )-digit approximation $\mu \in \mathbb{Q}_{B}$ with $|1-\mu \nu| \leq B^{-t}$ for $t$ large enough
4. Adjust the exponent of $\mu$ to obtain $\gamma \in \mathbb{Q}_{B}$ with $|1-\gamma \beta| \leq B^{-t}$
5. Recover the quotient $\eta=\alpha$ quo $\beta$ using the approximate quotient $\tilde{\eta}=\alpha \gamma$
6. Compute the remainder $\rho=\alpha$ rem $\beta=\alpha-\eta \beta$

- (We leave the details of quotient recovery for the exercises)


## Summary-fast integer division (2/2)

- The present algorithm runs in $O(M(n))$ time for two at-most- $n$-digit integers $\alpha, \beta \in \mathbb{Z}_{\geq 1}$ in base $B$ given as input, $B=O(1)$
- However, the algorithm has not been optimized for practical performance (for example, for a specific choice of $B$ such as $B=2^{64}$ )
- Considerable further work would be needed to optimize for a practical implementation (cf. Brent and Zimmermann [4] for a starting point)


## Example: Fast integer division (1/2)

- Let us work in base $B=10$
- Suppose the given input is

$$
\begin{aligned}
& \alpha=1866830377857904687585481026334265282048899060517697915942019834534476682181 \\
& \beta=171438118087707346963845017798469519992294775
\end{aligned}
$$

1. Normalizing $\beta$, we obtain

$$
v=0.171438118087707346963845017798469519992294775
$$

2. The initialization algorithm for $t=2$ gives $\mu=5.834$
3. Running Newton iteration with $g=6$ and $t=32$ gives

$$
\mu=5.83300849982733886324269185413958594030
$$

4. Adjusting the exponent gives

$$
\gamma=5.83300849982733886324269185413958594030 \cdot 10^{-45}
$$

## Example: Fast integer division (2/2)

5. The approximate quotient is thus

$$
\begin{array}{r}
\tilde{\eta}=\alpha \gamma=10889237461781040779701934381166.79300360663554935084051345 \quad \text { \\
} \\
18273843794550524803513473907034720060209940246591397943
\end{array}
$$

from which we recover the quotient

$$
\eta=10889237461781040779701934381166
$$

6. Finally we compute the remainder

$$
\rho=\alpha-\eta \beta=135951042750664786292697660685611556596474531
$$

## Extra: Initial approximation (1/3)

- To complete the algorithm design, we still need an initial value for the Newton iteration
- In precise terms, given $t \in \mathbb{Z}_{\geq 1}$ and $v \in \mathbb{Q}_{B}$ with $B^{-1} \leq v<1$ as input, we need a $(t+g)$-digit $\mu \in \mathbb{Q}_{B}$ with $|1-\mu \nu| \leq B^{-t}$ for some fixed constant $g \in \mathbb{Z}_{\geq 1}$
- The initial approximation needs only constant values of $t$ and $g$; for example, already $t=2$ suffices to initialize our Newton iteration
- Accordingly, we need not be particularly efficient with the initialization (though a practical implementation would carefully optimize this step too)
- For illustration, let us reduce initialization to integer division (which can be solved, for example, with the classical integer division algorithm since $t$ and $g$ are constants)


## Extra: Initial approximation (2/3)

- Let $t \in \mathbb{Z}_{\geq 1}$ and $v \in \mathbb{Q}_{B}$ with $B^{-1} \leq v<1$ be given as input
- Let $a, \ell, k$ be parameters whose values we fix in what follows

1. Set $\alpha=B^{a}$ and $\beta=\left(B^{k+1} v\right)_{\underline{\ell}}$ with $1 \leq \ell \leq k+1$ and $a \geq 0$ so that $\alpha, \beta \in \mathbb{Z}$
2. Run classical integer division to obtain $\eta, \rho \in \mathbb{Z}_{\geq 0}$ with $\alpha=\eta \beta+\rho$ and $0 \leq \rho \leq \beta-1$
3. Return the initial approximation $\mu=B^{-a+k+1} \eta$

- Let us now analyze the accuracy of $\mu$ and the number of digits in $\mu$
- Since $1 \leq \ell \leq k+1$ and $B^{-1} \leq v<1$, we have that $\beta=\left(B^{k+1} v\right)_{\underline{\ell}}=B^{k+1} v_{\underline{\ell}}$
- Let $v_{\underline{\ell}}=v+\delta$ and observe that $|\delta| \leq B^{-\ell}$ by $B^{-1} \leq v<1$ and (24)
- Since $B^{-1} \leq v<1$, we have $B^{k} \leq \beta \leq B^{k+1}-1$


## Extra: Initial approximation (3/3)

- Recall that $\alpha=B^{a}, \beta=B^{k+1}(v+\delta)$ with $|\delta| \leq B^{-\ell}$, and $\mu=B^{-a+k+1} \eta$
- Multiply both sides of $\alpha=\eta \beta+\rho$ by $B^{-a}$ to conclude that $1=\mu(v+\delta)+B^{-a} \rho$
- Recalling that $0 \leq \rho \leq \beta-1$ and that $B^{k} \leq \beta \leq B^{k+1}$, we conclude that $|1-\mu \nu| \leq \delta \mu+B^{-a+k+1}$
- We have $0 \leq \mu \leq B^{-a+k+1} \alpha / \beta \leq B$, implying that $|1-\mu \nu| \leq B^{-\ell+1}+B^{-a+k+1}$
- Now set $a=2 t+3, k=t+1$, and $\ell=t+2$
- Since $B \geq 2$ we conclude that $|1-\mu \nu| \leq B^{-t-1}+B^{-t-1} \leq B^{-t}$
- Since $\alpha=B^{a}$ and $B^{k} \leq \beta \leq B^{k+1}-1$, we have $B^{a-k-1} \leq \alpha / \beta \leq B^{a-k}$, and thus $\eta=\lfloor\alpha / \beta\rfloor$ (and hence $\mu=B^{-a+k+1} \eta$ ) has at most $a-k+1=t+3$ digits
- Accordingly we can take $g=3$ to complete the initial approximation algorithm; using classical division, this algorithm runs in $O\left(t^{2}\right)$ time for $B=O(1)$, but we only apply it for inputs of size $t=O(1)$, such as $t=2$ to initialize our Newton iteration


## Extra: Initial approximation with a look-up table

- Recall that we assume that the base $B$ is a constant
- Since constant $t$ and $g$ suffice, we observe that the parameters $a=2 t+3, k=t+1$, and $\ell=t+2$ are also constants
- Since $\alpha=B^{a}$ is a constant, $\beta=B^{k+1} v_{\underline{\ell}}=B^{t+2} v_{\underline{t+2}}$ suffices to determine the initial approximation $\mu$
- Since $v_{\underline{t+2}}$ has $t+2$ digits, the first of which is nonzero, we can prepare a look-up table with $(B-1) B^{t+1}$ entries for use in initialization
- That is, using the $t+2$ most significant digits of $v$ as an index, we consult the look-up table for a valid initialization $\mu$ (which has at most $t+3$ digits)
- For example, when $B=2$ and $t=2$, it suffices to have a look-up table with $(2-1) 2^{3}=8$ entries, where each entry has at most 5 digits (that is, bits, since $B=2$ )


## Example: Initial approximation

- Let us work in base $B=10$
- Suppose the given input is $t=2$ together with

$$
v=0.171438118087707346963845017798469519992294775
$$

- Following the initialization algorithm, we set

$$
\begin{aligned}
& \alpha=10000000 \\
& \beta=1714
\end{aligned}
$$

and thus obtain the quotient $\eta=\lfloor\alpha / \beta\rfloor=5834$ and hence the initial value $\mu=5.834$

- In particular, we use only $t+2=4$ first digits of $v$ to obtain $\mu$


## Example: Look-up table for initialization

- For $B=2$ and $t=2$, we obtain the following look-up table for initializing the Newton iteration so that $|1-\mu \nu| \leq B^{-t}=1 / 4$ :

| $v_{\underline{4}}$ | $\mu$ |
| :--- | :--- |
| 0.1000 | 10 |
| 0.1001 | 1.11 |
| 0.1010 | 1.1 |
| 0.1011 | 1.011 |
| 0.1100 | 1.01 |
| 0.1101 | 1.001 |
| 0.1110 | 1.001 |
| 0.1111 | 1 |

- In particular, we use only the first $t+2=4$ digits of $v$ to obtain $\mu$


## Key content recalled

- Division (quotient and remainder) for integers and polynomials
- Fast division by reduction to fast multiplication
- Integer division via approximation of the multiplicative inverse of the divisor
- The radix-point representation and approximation of rational numbers
- Newton iteration
- Newton iteration for the multiplicative inverse of the divisor
- Convergence analysis for Newton iteration
- Polynomial division via reversal
- Newton iteration for the inverse of the reverse of the divisor


## Goal for fast polynomial division

- Let $R$ be a ring
- Let $a, b \in R[x]$ with $b$ monic and $d \geq \operatorname{deg} a \geq \operatorname{deg} b$ for some $d \in \mathbb{Z}_{\geq 0}$
- We want an algorithm that computes the quotient $q$ and the remainder $r$ in the division of $a$ by $b$ in $O(M(d))$ operations in $R$
- Here $M(d)=O(d \log d)$ or $M(d)=O(d \log d \log \log d)$ depending on $R$


## First reduction recalled: the quotient suffices

- Division (viewed from 36,000ft, see earlier slides for details):

$$
\text { Given } a, b \text { we need to compute } q, r \text { such that } a=q b+r
$$

- Observation:

It suffices to compute $q$ since then we can recover $r=a-q b$ by fast multiplication

## Reversal to recover the quotient

- For a polynomial

$$
f=\varphi_{0}+\varphi_{1} x+\varphi_{2} x^{2}+\ldots+\varphi_{n} x^{n}
$$

of degree at most $n \in \mathbb{Z}_{\geq 0}$, the $n$-reversal of $f$ is the polynomial

$$
\operatorname{rev}_{n} f=\varphi_{n}+\varphi_{n-1} x+\varphi_{n-2} x^{2}+\ldots+\varphi_{0} x^{n}
$$

- For the quotient-and-remainder identity $a=q b+r$ with $\operatorname{deg} a=n \geq m=\operatorname{deg} b$ and $\operatorname{deg} r \leq m-1$, we observe (exercise) that the reversal operator satisfies

$$
\operatorname{rev}_{n} a=\left(\operatorname{rev}_{n-m} q\right)\left(\operatorname{rev}_{m} b\right)+x^{n-m+1} \operatorname{rev}_{m-1} r
$$

- In particular, working in the factor ring relative to the ideal $\left\langle x^{n-m+1}\right\rangle$,

$$
\operatorname{rev}_{n} a \equiv\left(\operatorname{rev}_{n-m} q\right)\left(\operatorname{rev}_{m} b\right) \quad\left(\bmod x^{n-m+1}\right)
$$

- We can thus compute the quotient $q$ by computing the multiplicative inverse of $\operatorname{rev}_{m} b$ modulo $x^{n-m+1}$ (we will show this inverse exists because $b$ is monic), multiplying by $\operatorname{rev}_{n} a$, and $(n-m)$-reversing the result to obtain $q$


## Example: Reversal (1/2)

- Suppose that in $\mathbb{Z}_{5}[x]$ we have

$$
\begin{aligned}
& a=3+3 x+x^{2}+2 x^{3}+x^{4}+4 x^{6}+x^{7}+3 x^{8}+4 x^{9}+3 x^{10}+x^{11}+x^{12} \\
& b=2+x+x^{2}+3 x^{3}+3 x^{4}+3 x^{5}+x^{6}
\end{aligned}
$$

with $n=\operatorname{deg} a=12$ and $m=\operatorname{deg} b=6$; we also observe that $b$ is monic

- We have $a=q b+r$ and $0 \leq \operatorname{deg} r \leq \operatorname{deg} b-1$ for

$$
\begin{aligned}
& q=3+3 x+3 x^{2}+4 x^{3}+x^{4}+3 x^{5}+x^{6} \\
& r=2+4 x+4 x^{2}+4 x^{3}+4 x^{4}+2 x^{5}
\end{aligned}
$$

- Taking reverses, we have

$$
\begin{aligned}
\operatorname{rev}_{n} a & =1+x+3 x^{2}+4 x^{3}+3 x^{4}+x^{5}+4 x^{6}+x^{8}+2 x^{9}+x^{10}+3 x^{11}+3 x^{12} \\
\operatorname{rev}_{m} b & =1+3 x+3 x^{2}+3 x^{3}+x^{4}+x^{5}+2 x^{6} \\
\operatorname{rev}_{n-m} q & =1+3 x+x^{2}+4 x^{3}+3 x^{4}+3 x^{5}+3 x^{6} \\
\operatorname{rev}_{m-1} r & =2+4 x+4 x^{2}+4 x^{3}+4 x^{4}+2 x^{5}
\end{aligned}
$$

## Example: Reversal (2/2)

- Recalling that

$$
\begin{aligned}
\operatorname{rev}_{n} a & =1+x+3 x^{2}+4 x^{3}+3 x^{4}+x^{5}+4 x^{6}+x^{8}+2 x^{9}+x^{10}+3 x^{11}+3 x^{12} \\
\operatorname{rev}_{m} b & =1+3 x+3 x^{2}+3 x^{3}+x^{4}+x^{5}+2 x^{6} \\
\operatorname{rev}_{n-m} q & =1+3 x+x^{2}+4 x^{3}+3 x^{4}+3 x^{5}+3 x^{6} \\
\operatorname{rev}_{m-1} r & =2+4 x+4 x^{2}+4 x^{3}+4 x^{4}+2 x^{5}
\end{aligned}
$$

with $n=12$ and $m=5$, we can now verify the reversed division equality

$$
\operatorname{rev}_{n} a=\left(\operatorname{rev}_{n-m} q\right)\left(\operatorname{rev}_{m} b\right)+x^{n-m-1} \operatorname{rev}_{m-1} r
$$

- Indeed,

$$
\begin{aligned}
\operatorname{rev}_{n} a & =1+x+3 x^{2}+4 x^{3}+3 x^{4}+x^{5}+4 x^{6}+x^{8}+2 x^{9}+x^{10}+3 x^{11}+3 x^{12} \\
\left(\operatorname{rev}_{n-m} q\right)\left(\operatorname{rev}_{m} b\right) & =1+x+3 x^{2}+4 x^{3}+3 x^{4}+x^{5}+4 x^{6}+3 x^{7}+2 x^{8}+3 x^{9}+2 x^{10}+4 x^{11}+x^{12} \\
x^{n-m-1} r & =2 x^{7}+4 x^{8}+4 x^{9}+4 x^{10}+4 x^{11}+2 x^{12}
\end{aligned}
$$

## The inverse modulo $x^{d}$ by reduction to fast multiplication

- Let $g=\sum_{j} \psi_{j} x^{j} \in R[x]$ with $\psi_{0}=1$ be given as input
- We set up a Newton iteration that doubles $d$ at every step
- Assume inductively that $f \in R[x]$ satisfies $f g \equiv 1\left(\bmod x^{2^{k}}\right)$ for $k \in \mathbb{Z}_{\geq 0}$
- To set up the base case $k=0$, take $f=1$ and observe that the assumption holds
- Compute $\hat{f} \equiv(2-f g) f\left(\bmod x^{2^{k+1}}\right)$ using fast multiplication, truncating both $g$ and $\hat{f}$ using the substitution $x^{2^{k+1}}=0$
- Since the assumption holds for $f$ with parameter value $k$, there exists a $h \in R[x]$ with $f g=1+x^{2^{k}} h$
- We observe that $\hat{f} g \equiv(2-f g) f g \equiv\left(1-x^{2^{k}} h\right)\left(1+x^{2^{k}} h\right) \equiv 1\left(\bmod x^{2^{k+1}}\right)$ and thus the assumption holds for $\hat{f}$ with parameter value $k+1$
- The cost of step $k$ is $O\left(M\left(2^{k}\right)\right)$ since $M$ grows at most polynomially; by Lemma 5 the total cost is $O(M(d))$ operations in $R$


## Example: Iterating for the inverse modulo $x^{d}$

- Let $g=1+3 x+3 x^{2}+3 x^{3}+x^{4}+x^{5}+2 x^{6} \in \mathbb{Z}_{5}[x]$
- Let us compute the multiplicative inverse of $g$ modulo $x^{d}$ for $d=7$
- The least integer $k$ for which $2^{k} \geq d$ is $k=3$, so we need three rounds of Newton iteration
- Truncating $g$ and $\hat{f}$ by setting $x^{2^{k+1}}=0$ and iterating, we have

| $k$ | $f$ | $g$ |
| :--- | :--- | :--- |
| 0 | 1 | $1+3 x$ |
| 1 | $1+2 x$ | $1+3 x+3 x^{2}+3 x^{3}$ |
| 2 | $1+2 x+x^{2}+3 x^{3}$ | $1+3 x+3 x^{2}+3 x^{3}+x^{4}+x^{5}+2 x^{6}$ |
| 3 | $1+2 x+x^{2}+3 x^{3}+x^{4}+2 x^{5}+2 x^{6}+2 x^{7}$ |  |

- Thus, the multiplicative inverse of $g$ modulo $x^{d}$ is

$$
1+2 x+x^{2}+3 x^{3}+x^{4}+2 x^{5}+2 x^{6}
$$

## Example: Division with reversal and Newton iteration

- Suppose that in $\mathbb{Z}_{5}[x]$ we have

$$
\begin{aligned}
& a=3+3 x+x^{2}+2 x^{3}+x^{4}+4 x^{6}+x^{7}+3 x^{8}+4 x^{9}+3 x^{10}+x^{11}+x^{12} \\
& b=2+x+x^{2}+3 x^{3}+3 x^{4}+3 x^{5}+x^{6}
\end{aligned}
$$

with $n=\operatorname{deg} a=12$ and $m=\operatorname{deg} b=6$; we also observe that $b$ is monic

- Reverse $a$ and $b$ to obtain

$$
\begin{aligned}
\operatorname{rev}_{n} a & =1+x+3 x^{2}+4 x^{3}+3 x^{4}+x^{5}+4 x^{6}+x^{8}+2 x^{9}+x^{10}+3 x^{11}+3 x^{12} \\
\operatorname{rev}_{m} b & =1+3 x+3 x^{2}+3 x^{3}+x^{4}+x^{5}+2 x^{6}
\end{aligned}
$$

- Iterate for the inverse $f$ of $\operatorname{rev}_{m} b$ modulo $x^{n-m+1}$ to obtain

$$
f=1+2 x+x^{2}+3 x^{3}+x^{4}+2 x^{5}+2 x^{6}
$$

- Compute $f \operatorname{rev}_{n} a$, truncate with $x^{n-m+1}=0$, and ( $n-m$ )-reverse the result to obtain the quotient $q=3+3 x+3 x^{2}+4 x^{3}+x^{4}+3 x^{5}+x^{6}$
- Compute the remainder $r=a-q b=2+4 x+4 x^{2}+4 x^{3}+4 x^{4}+2 x^{5}$


## Summary-fast polynomial division

- Let $R$ be a ring
- Let $a, b \in R[x]$ with $b$ monic and $d \geq \operatorname{deg} a \geq \operatorname{deg} b$ for some $d \in \mathbb{Z}_{\geq 0}$
- We have an algorithm that computes the quotient $q$ and the remainder $r$ in the division of $a$ by $b$ in $O(M(d))$ operations in $R$

1. Let $n=\operatorname{deg} a$ and $m=\operatorname{deg} b$
2. $m$-reverse $b$ and compute the multiplicative inverse of $\operatorname{rev}_{m} b$ modulo $x^{n-m+1}$ using Newton iteration, multiply by the result by $\operatorname{rev}_{n} a$ modulo $x^{n-m+1}$, and $(n-m)$-reverse the result to obtain the quotient $q$
3. Compute remainder $r$ by $r=a-q b$

- Here $M(d)=O(d \log d)$ or $M(d)=O(d \log d \log \log d)$ depending on $R$


## Recap of key content for Lecture 3

- Division (quotient and remainder) for integers and polynomials
- Fast division by reduction to fast multiplication
- Integer division via approximation of the multiplicative inverse of the divisor
- The radix-point representation and approximation of rational numbers
- Newton iteration
- Newton iteration for the multiplicative inverse of the divisor
- Convergence analysis for Newton iteration
- Polynomial division via reversal
- Newton iteration for the inverse of the reverse of the divisor


## Learning objectives (1/2)

- Terminology and objectives of modern algorithmics, including elements of algebraic, approximation, online, and randomised algorithms
- Ways of coping with uncertainty in computation, including error-correction and proofs of correctness
- The art of solving a large problem by reduction to one or more smaller instances of the same or a related problem
- (Linear) independence, dependence, and their abstractions as enablers of efficient algorithms


## Learning objectives (2/2)

- Making use of duality
- Often a problem has a corresponding dual problem that is obtainable from the original (the primal) problem by means of an easy transformation
- The primal and dual control each other, enabling an algorithm designer to use the interplay between the two representations
- Relaxation and tradeoffs between objectives and resources as design tools
- Instead of computing the exact optimum solution at considerable cost, often a less costly but principled approximation suffices
- Instead of the complete dual, often only a randomly chosen partial dual or other relaxation suffices to arrive at a solution with high probability

