
3. �otient and remainder
CS-E4500 Advanced Course on Algorithms

Spring 2019

Pe�eri Kaski
Department of Computer Science

Aalto University

Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers

2019 K A L E N T E R I 2019

Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu

1 Ti Uudenvuodenpäivä 1 Pe 1 Pe 1 Ma Vk 14 1 Ke Vappu 1 La

2 Ke 2 La 2 La 2 Ti 2 To 2 Su

3 To 3 Su 3 Su 3 Ke 3 Pe 3 Ma Vk 23

4 Pe 4 Ma Vk 06 4 Ma Vk 10 4 To 4 La 4 Ti

5 La 5 Ti 5 Ti Laskiainen 5 Pe 5 Su 5 Ke

6 Su Loppiainen 6 Ke 6 Ke 6 La 6 Ma Vk 19 6 To

7 Ma Vk 02 7 To 7 To 7 Su 7 Ti 7 Pe

8 Ti 8 Pe 8 Pe 8 Ma Vk 15 8 Ke 8 La

9 Ke 9 La 9 La 9 Ti 9 To 9 Su Helluntaipäivä

10 To 10 Su 10 Su 10 Ke 10 Pe 10 Ma Vk 24

11 Pe 11 Ma Vk 07 11 Ma Vk 11 11 To 11 La 11 Ti

12 La 12 Ti 12 Ti 12 Pe 12 Su Äitienpäivä 12 Ke

13 Su 13 Ke 13 Ke 13 La 13 Ma Vk 20 13 To

14 Ma Vk 03 14 To 14 To 14 Su Palmusunnuntai 14 Ti 14 Pe

15 Ti 15 Pe 15 Pe 15 Ma Vk 16 15 Ke 15 La

16 Ke 16 La 16 La 16 Ti 16 To 16 Su

17 To 17 Su 17 Su 17 Ke 17 Pe 17 Ma Vk 25

18 Pe 18 Ma Vk 08 18 Ma Vk 12 18 To 18 La 18 Ti

19 La 19 Ti 19 Ti 19 Pe Pitkäperjantai 19 Su Kaatuneiden muistopäivä 19 Ke

20 Su 20 Ke 20 Ke Kevätpäiväntasaus 20 La 20 Ma Vk 21 20 To

21 Ma Vk 04 21 To 21 To 21 Su Pääsiäispäivä 21 Ti 21 Pe Kesäpäivänseisaus

22 Ti 22 Pe 22 Pe 22 Ma 2. pääsiäispäivä 22 Ke 22 La Juhannus

23 Ke 23 La 23 La 23 Ti 23 To 23 Su

24 To 24 Su 24 Su 24 Ke 24 Pe 24 Ma Vk 26

25 Pe 25 Ma Vk 09 25 Ma Vk 13 25 To 25 La 25 Ti

26 La 26 Ti 26 Ti 26 Pe 26 Su 26 Ke

27 Su 27 Ke 27 Ke 27 La 27 Ma Vk 22 27 To

28 Ma Vk 05 28 To 28 To 28 Su 28 Ti 28 Pe

29 Ti 29 Pe 29 Ma Vk 18 29 Ke 29 La

30 Ke 30 La 30 Ti 30 To Helatorstai 30 Su

31 To 31 Su Kesäaika alkaa 31 Pe

Vuotuinen kalenteri Marcel Steinger, luotu 9.11.2018 calendar-yearly.com
Käy meillä -> www.calendar-yearly.com L = Lecture; hall T5, Tue 12–14

Q = Q & A session; hall T5, Thu 12–14
D = Problem set deadline; Sun 20:00
 T = Tutorial (model solutions); hall T6, Mon 16–18

Exam
week

L1

Q1

T1
D1

L2

Q2

D2
T2

L3

Q3

D3
T3

L4

Q4

D4
T4

L5

Q5

D5
T5

Break

L6

Q6

D6
T6

L7

Q7

D7
T7

L8

Q8

D8
T8

L9

Q9

D9

T9

 CS-E4500 Advanced Course in Algorithms (5 ECTS, III–IV, Spring 2019)

Recap of last week

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I The positional number system for integers

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution

Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder) (this week)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd)

I Interpolation from partly erroneous data

Further motivation for this week

I The radix-point representation for rational numbers is at the foundation of
floating-point arithmetic

I Most scientific and engineering computations today are executed using hardware that
implements the IEEE 754-2008 standard for floating point arithmetic:

https://doi.org/10.1109%2FIEEESTD.2008.4610935

I Floating-point numbers and floating-point arithmetic are a fantastic tool, but this tool
comes with caveats and must be used with care

I �ick demo:
IEEE 754-2008 in action

https://doi.org/10.1109%2FIEEESTD.2008.4610935

Key content for Lecture 3

I Division (quotient and remainder) for integers and polynomials

I Fast division by reduction to fast multiplication

I Integer division via approximation of the multiplicative inverse of the divisor

I The radix-point representation and approximation of rational numbers

I Newton iteration

I Newton iteration for the multiplicative inverse of the divisor

I Convergence analysis for Newton iteration

I Polynomial division via reversal

I Newton iteration for the inverse of the reverse of the divisor

Fast quotient and remainder (polynomials)

(von zur Gathen and Gerhard [11],
Sections 9.1 and 9.4)

Integer and floating-point arithmetic

(Brent and Zimmermann [4])

Division (quotient and remainder)

I We start by recalling polynomial division and integer division

I We also recall that we can multiply fast, both in the case of polynomials and in the
case of integers

I Our goal for this lecture is to develop division algorithms that are essentially
(up to constants) as fast as our multiplication algorithms

I The key idea is to proceed by reduction to multiplication

I In preparing the reductions, we recall and encounter many useful concepts ...

Polynomial quotient and remainder

I Let R be a ring

I Let a =
∑n

i=0 αix i ∈ R[x] and b =
∑m

i=0 βix i ∈ R[x] such that αn , 0 and βm = 1

I That is, deg a = n and b is monic with deg b = m

I Then, there exist polynomials q, r ∈ R[x] that satisfy a = qb + r with deg r < deg b

I We write a quo b for such a quotient q and a rem b for such a remainder r in the
division of a by b

I In fact, such q and r are unique (exercise)

Integer quotient and remainder

I Let α , β ∈ Z≥0 with β , 0

I Then, there exist integers η, ρ ∈ Z≥0 that satisfy α = ηβ + ρ with 0 ≤ ρ ≤ β − 1

I We write α quo β the quotient η and α rem β the remainder ρ in the division of α by
β

I Such η and ρ are unique (exercise)

The classical division algorithm (for polynomials)

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n, deg b = m,
n ≥ m ≥ 0, and suppose that βm ∈ R is a unit

I We want to compute q, r ∈ R[x] with a = qb + r and deg r < m

I The classical division algorithm:
1. r ← a, µ ← β−1

m
2. for i = n −m, n −m − 1, . . . , 0 do
3. if deg r = m + i then ηi ← lc(r)µ, r ← r − ηix ib

else ηi ← 0
4. return q =

∑n−m
i=0 ηix i and r

I The classical algorithm runs in O((n +m)2) operations in R

I ... But could we do be�er? A�er Lecture 2, we know how to multiply in
near-linear-time ...

Fast polynomial multiplication

I Let R be a ring

I Given f , g ∈ R[x] with deg f ≤ d and deg g ≤ d as input, we can compute the product
fg ∈ R[x] in O(M(d)) operations in R

I We can take M(d) = O(d log d) if R has a primitive root of unity that supports an
appropriate FFT

I In general, we can take M(d) = O(d log d log log d)

I (In Lecture 2 we explored Schönhage–Strassen multiplication that assumes 2 is a unit
in R; this algorithm can be generalized so that R is an arbitrary ring.)

Fast integer multiplication

I Given as input α , β ∈ Z≥0 represented as at most d-digit integers in a constant base
B ∈ Z≥2, we can compute the product αβ ∈ Z in O(M(d)) time

I We can take M(d) = O(d log d log log d) [24] or M(d) = O(d log d2O(log∗ d)) [9, 14]

I (Also recall Problem Set 2 where we reduced multiplication in Z to multiplication in
Zu[x].)

First reduction towards division: the quotient su�ices

I Division (viewed from 36,000�, see earlier slides for details):

Given a, b we need to compute q, r such that a = qb + r

I Observation:
It su�ices to compute q since then we can recover r = a − qb by fast multiplication

High-level idea: iterate for the quotient

I Our approach will be to recover the quotient iteratively

I In essence, we iterate for a (near) multiplicative inverse of the divisor b such that each
iteration increases the accuracy of our (near) inverse

I We want the accuracy (e.g. number of digits or polynomial degree) to increase
geometrically from n to 2n in one iteration

I Once a su�iciently close approximation of the inverse is available (n is large enough),
we proceed to solve for the quotient

I Each iteration will involve a constant number of multiplications, additions, and
subtractions on inputs of size O(n)

The cost of a geometric iteration

I We say that a function T : Z≥n0 → Z≥0 grows at least linearly if for all
n, n1, n2 ∈ Z≥n0 it holds that n = n1 + n2 implies T (n) ≥ T (n1) + T (n2)

I Examples:
T (n) = Cn log2 n for n0 = 1 and any constant C > 0
T (n) = Cn log2 n log2 log2 n for n0 = 2 and any constant C > 0

Lemma 5 (Last step dominates—the previous steps are “for free”)

Suppose that T grows at least linearly for n ≥ n0 ≥ 1 and let 2k0 be the least integer power of
2 at least n0. Then, for all k ≥ k0 we have

∑k
j=k0

T (2j) ≤ T (2k+1)

Proof.

By induction (exercise). �

Roadmap for fast integer division

I The positional number system in base B recalled and revisited
—the radix-point representation and approximation of rational numbers

I For α , β ∈ Z≥1 given as input, we want a (radix-point) approximation γ for the
multiplicative inverse 1/β

I Provided the approximation γ is accurate enough, from the product αγ we can recover
the quotient α quo β (exercise) and thus the remainder α rem β

I To compute γ fast from a d-digit β given as input, we rely on Newton iteration

I We present a Newton iteration for a normalized rational divisor; that is, we normalize
the integer β to a radix-point ν with B−1 ≤ ν < 1, then compute an approximate
multiplicative inverse µ for ν using Newton iteration, and from µ map back to the
desired γ

Approximating the multiplicative inverse of the divisor

I Given α , β ∈ Z≥1 as input, we seek to approximate 1/β ∈ Q

I We observe in particular that 1/β is a rational number, not an integer

I Thus, first we need means for computing with rational numbers ...

I Let us begin by recalling and revisiting yet further aspects of the positional number
system ...

The positional number system for integers (base B)

I Let B ∈ Z≥2

I Suppose that α ∈ Z with 0 ≤ α ≤ Bd − 1 for some d ∈ Z≥0

I Then, there is a unique finite sequence

(α0,α1, . . . ,αd−2,αd−1) ∈ Z
d
≥0 (20)

with 0 ≤ αi ≤ B − 1 for all i = 0, 1, . . . , d − 1 such that

α =
d−1∑
i=0

αiBd−1−i = α0Bd−1 + α1Bd−2 + . . . + αd−3B2 + αd−2B + αd−1 (21)

I We say that the sequence (20) is the (d-digit) representation of the integer α in the
positional number system with base B (or radix B)

I The elements αi are the digits of α

I We say that α0 is the most significant digit and αd−1 is the least significant digit

Example (base 10)

I Let us represent 123 ∈ Z in base B = 10

I We have

123 = 1 · 102 + 2 · 10 + 3 · 1

I Hence, the sequence (1, 2, 3) represents 123 in base 10

A positional number system for rational numbers?

I Could we extend the positional number system to represent (all) rational numbers?

I Let us make an a�empt (that will not succeed for all rational numbers) ...

Radix-point representation (base B)

I Let B ∈ Z≥2

I Let s ∈ {−1, 1}, e ∈ Z, and d ∈ Z≥1

I Let (α0,α1, . . . ,αd−1) ∈ Z
d such that 0 ≤ αi ≤ B − 1 for all i = 0, 1, . . . , d − 1

I We say that the three-tuple (s, e, (α0,α1, . . . ,αd−1)) is a radix-point representation
of the rational number

α = sBe
d−1∑
i=0

αiB−i (22)

using d digits in base B

I We say a representation is normal if both α0 , 0 and αd−1 , 0

I Any nonzero rational number that has a radix-point representation in base B has a
unique normal representation in base B (exercise)

I Define (1, 0, (0)) as the unique normal representation for the rational number 0

Example (base 10)

I Let us represent 1234657/10000 ∈ Q in base B = 10

I We have
1234567
10000

= 1 · 102 + 2 · 10 + 3 · 1 + 4 · 10−1 + 5 · 10−2 + 6 · 10−3 + 7 · 10−4

= 102
(
1 · 1 + 2 · 10−1 + 3 · 10−2 + 4 · 10−3 + 5 · 10−4 + 6 · 10−5 + 7 · 10−6

)
I Hence, the sequence (1, 2, (1, 2, 3, 4, 5, 6, 7)) is the (normal) representation of

1234657/10000 using d = 7 digits and exponent e = 2 in base B = 10

I (1, 2, (1, 2, 3, 4, 5, 6, 7)) is rather cumbersome to write, so o�en one resorts to
notational shorthands such as 123.4567 or 1.23456 · 102 where the radix point “.” is
used to separate the integer and fractional parts of the representation
(with the base B = 10 tacitly understood unless indicated otherwise)

A positional number system for rational numbers?

I Could we extend the positional number system to represent (all) rational numbers?

I For any base B, there exist rational numbers that do not admit radix-point
representation in base B (exercise)

I For example, 1/3 cannot be represented in base B = 10

I However, for any rational number τ ∈ Q, one we represent a rational number
arbitrarily close to τ using radix-point representation

I For example, 3.3333333333333333333 · 10−1 in base B = 10 is already rather close to 1/3

Properties of radix-point numbers (1/2)

I Let us fix the base B ∈ Z≥2

I Let us write QB for the set of all rational numbers that do admit a radix-point
representation in base B

I It is immediate that we have Z ⊆ QB

I For all α , β ∈ QB, we have the closure properties α + β ∈ QB, −α ∈ QB, and αβ ∈ QB

I However, as we have seen, for all α ∈ QB it does not hold in general that 1/α ∈ QB

(indeed, recall from the previous example that 3 ∈ Q10 and 1/3 < Q10)

Example: Closure under multiplication

I Let α , β ∈ QB have radix point representations

α = sBe
c−1∑
i=0

αiB−i

β = tBf
d−1∑
i=0

βiB−i

I We have

αβ = stBe+f−d+1−c+1
(c−1∑

i=0

αiBc−1−i
d−1∑
i=0

βiBd−1−i
)

I The expression in parentheses is a multiplication of two integers in base B

I Since the integer product is representable in base B, we have that αβ admits a
radix-point representation in base B (by shi�ing the position of the radix point)

Properties of radix-point numbers (2/2)

I From the previous example we also observe that if we multiply a c-digit representation
with a d-digit representation, the product has a representation using at most cd digits

I Indeed, the largest integer that one can represent using d digits in base B is
(B − 1)

∑d−1
j=0 Bj = Bd − 1

I �estion/work point:
How about closure under addition? Hint: again reduce to integers, and be careful with the
number of digits you need to represent the sum

I For exact arithmetic, the increase from c and d digits to cd digits at each
multiplication quickly becomes very expensive when evaluating an arithmetic
expression consisting of several operations

I We need a way to control this expense; that is, instead of exact arithmetic, we will be
content on approximation where we can control the accuracy of the approximation ...

Example: Addition

I Let us work in base B = 3

I Suppose that α = 1.121001112 · 32 and β = 2.222221202 · 36

I Aligning the radix points, addition reduces to integer addition (in base B):

112.1001112
+ 2222221.202

10000111.0021112

I The result is thus α + β = 1.00001110021112 · 37

Example: Multiplication

I Let us work in base B = 5

I Suppose that α = 3.011002342 · 54 and β = 1.340011441 · 54

I Multiplication reduces to integer multiplication (in base B):

3011002342 · 5−5

· 1340011441 · 5−5

10140341030320132422 · 5−10

I The result is thus αβ = 1.0140341030320132422 · 59

Cu�ing expenses—rounding

I A principled way of cu�ing the expense of maintaining a d-digit radix-point
representation is to cut the number of digits from d digits to ` digits for some
1 ≤ ` ≤ d

I Being “principled” of course amounts to making sure that the `-digit representation is
a “close approximation” of the d-digit representation

I This general process of cu�ing expenses at intermediate steps of a computation using
“close approximations” is also known as rounding

I We will restrict to a straightforward but blunt form of rounding, namely truncation ...

Truncation

I Let α ∈ QB with

α = sBe
d−1∑
i=0

αiB−i

I For ` ∈ Z≥1, the truncation of α to ` digits is the rational number

α` = sBe
min(`,d)−1∑

i=0

αiB−i (23)

I That is, in e�ect we cut out all but the ` most significant digits of α to obtain α`

Example: Truncation

I Let us truncate 123.4567 in base B = 10

I We have

123.45677 = 123.4567

123.45676 = 123.456

123.45675 = 123.45

123.45674 = 123.4

123.45673 = 123

123.45672 = 120

123.45671 = 100

Accuracy of truncation

I Let α ∈ QB with α = sBe ∑d−1
i=0 αiB−i and let ` = 1, 2, . . .

I Let us measure the loss in accuracy when truncating from α to α` by δ ∈ Q with

α` = α + δ

I We have

|δ | = |α − α` | = |sBe
d−1∑
i=`

αiB−i |

Thus,

|δ | ≤ Be (B − 1)
d−1∑
i=`

B−i =



Be−`+1 − Be−d+1 if ` ≤ d

0 if ` ≥ d
(24)

I In particular, for all ` = 1, 2, . . . we have |δ | < Be−`+1

Example: Accuracy of truncation

I Let us again truncate 123.4567 in base B = 10

I Since e = 2, we have

|123.4567 − 123.45677 | = 0 < 102−7+1 = 10−4

|123.4567 − 123.45676 | = 0.0007 < 102−6+1 = 10−3

|123.4567 − 123.45675 | = 0.0067 < 102−5+1 = 10−2

|123.4567 − 123.45674 | = 0.0567 < 102−4+1 = 10−1

|123.4567 − 123.45673 | = 0.4567 < 102−3+1 = 100

|123.4567 − 123.45672 | = 3.4567 < 102−2+1 = 101

|123.4567 − 123.45671 | = 23.4567 < 102−1+1 = 102

Summary—rational numbers with controlled expense

I Let us summarize where we are before proceeding further

I Radix-point numbers in QB enable us to compute with arbitrarily close
approximations of rational numbers in Q

I Computation in QB takes place by easy reductions to integer algorithms for addition,
negation, and multiplication

I In particular, we can choose to compute exactly in QB as long as we mind the cost of
an increase in the number of digits that we need to maintain

I This cost can be controlled by rounding (for example, truncating) intermediate results
to fewer digits

I As algorithm designers we can trade o� between accuracy and cost of computation by
rounding (truncating) to an appropriate number of digits

Approximating the multiplicative inverse of the divisor

I Let us restate our goal towards fast integer division

I Given α , β ∈ Z≥1 as input, we seek to approximate 1/β ∈ Q

I We observe in particular that 1/β is a rational number

I We now have a means for working with rational numbers, namely the radix-point
number system in base B ∈ Z≥2, with B = O(1)

I That is, our goal is to approximate 1/β with a radix-point number γ ∈ QB

I We have that γ and 1/β are close to each other if and only if γ β is close to 1

I In what follows our goal is, given as input t ∈ Z≥1 and ν ∈ QB with B−1 ≤ ν < 1, to
compute a µ ∈ QB with |1 − µν | ≤ B−t in time O(M(t))

I (This running time will be su�icient to obtain an O(M(n))-time division algorithm for
two given integers α , β ∈ Z≥1 with at most n digits each in base B)

Key idea: Iteration for improved approximation

I Let us set issues of computational cost aside for a moment and look at how to obtain
be�er and be�er approximations for 1/ν

I That is to say, suppose we have available an approximation µ ∈ Q of 1/ν with

|1 − µν | ≤ ϵ

for some 0 ≤ ϵ < 1

I We would like to compute from µ an improved approximation µ̂ ∈ Q with, say,

|1 − µ̂ν | ≤ ϵ2

I One way to achieve such transformation µ 7→ µ̂ is to use Newton iteration ...

A remark in passing

I While an improvement from ϵ to ϵ2 in accuracy may at first look innocent, at ϵ ≤ 1/B
it in fact doubles the accuracy in terms of the number of digits at every step

I For example with B = 10, starting with ϵ = 0.1 and iterating, we have

ϵ = 0.1

ϵ2 = 0.01

ϵ4 = 0.0001

ϵ8 = 0.0000001

ϵ16 = 0.0000000000000001

ϵ32 = 0.00000000000000000000000000000001

ϵ64 = 0.0001
...

Newton iteration (1/3)

I Let us continue to work without considerations of computational cost yet

I Suppose we have a function φ : I → R for some open interval I ⊆ R and we seek to
find a µ ∈ I such that φ (µ) = 0

I For example, suppose that φ (x) = 1/x − ν with I = (0,∞) for some ν ∈ R>0

I Let us assume that φ (x) is well-behaved in the sense that it is di�erentiable with a
nonzero derivative in I; continuing the previous example, we have φ ′(x) = −1/x2

I Suppose that we have access to a µ ∈ I such that φ (µ) is close to 0

I How could we obtain a µ̂ ∈ I such that φ (µ̂) is even closer to 0?

Newton iteration (2/3)

I Using the fact that φ is di�erentiable, let us linearize φ (x) at x = µ

I We obtain the line

y = φ ′(µ) (x − µ) + φ (µ)

I Let us set y = 0 and solve for x to obtain

x = µ −
φ (µ)

φ ′(µ)

I Se�ing

µ̂ ← µ −
φ (µ)

φ ′(µ)

would now intuitively appear like a good choice to improve from µ assuming that φ
does not deviate too much from a line between µ and an actual zero of φ

Newton iteration (3/3)

I In our example with φ (x) = 1/x − ν and φ ′(x) = −1/x2, we obtain

x = µ −
φ (µ)

φ ′(µ)
= µ − (−1 + µν)µ = (2 − µν)µ

I Thus, we obtain the iteration step

µ̂ ← (2 − µν)µ

I Let us next verify that this iteration has the desired convergence property ...

Convergence analysis

I Let 0 ≤ ϵ < 1 and ν ∈ (0,∞)

I Suppose that µ ∈ (0,∞) satisfies µν = 1 + δ for some δ ∈ R with |δ | ≤ ϵ < 1

I Recall the iteration step

µ̂ ← (2 − µν)µ

I We thus have

µ̂ν = (2 − µν)µν = (2 − (1 + δ)) (1 + δ) = (1 − δ) (1 + δ) = 1 − δ 2

I That is, one step of the iteration improves the accuracy from ϵ to ϵ2 as desired

I Caveat: the iteration must be started from a value µ ∈ (0,∞) with |1 − µν | < 1

Accounting for the computational cost

I The previous derivation and analysis assumed no computational cost on the exact
arithmetic

I Let us now return to work in QB for B ∈ Z≥2 and B = O(1), keeping track on the
number of digits in our radix-point numbers, and taking care to truncate to control
cost

I This requires an updated convergence analysis to establish convergence even in the
presence of truncations...

Preliminaries: Normalizing the exponent of the divisor

I Rather than work with an integer divisor β ∈ Z≥1, it will be convenient to work with a
normalized divisor ν ∈ QB with B−1 ≤ ν < 1

I For β = Be ∑d−1
i=0 βiB−i with β0 , 0 given as input, let us set ν = B−e−1β to obtain

B−1 ≤ ν < 1

I Note: Se�ing ν = B−e−1β merely adjusts the exponent in radix-point representation;
or, what is the same, moves the position of the radix point

I Suppose we are also given as input a t ∈ Z≥1

I In what follows we present an algorithm that computes a µ ∈ QB with |1 − µν | ≤ B−t

in time O(M(t))

I Once µ is available, we can set γ = B−e−1µ (again, this merely adjusts the exponent)
and observe that we have |1 − γ β | = |1 − B−e−1µβ | = |1 − µν | ≤ B−t , implying that we
can indeed without loss of generality work with ν instead of β in what follows

Example: Normalizing the exponent of the divisor

I Let us work in base B = 10 for convenience

I Suppose that β = 86295076320 = 8.6295076320 · 1010 and t = 6

I We have ν = 0.86295076320 = 86295076320 · 10−11

I Suppose the near-inverse algorithm outputs µ = 1.1588146 as the near-inverse of ν

I We thus have γ = 1.1588146 · 10−11

I We can also verify that |1 − γ β | = |1 − µν | = 5.652269728 · 10−8 ≤ 10−6

A Newton iteration with truncation (1/2)

I Suppose we have available a (t + g)-digit µ ∈ QB with |1 − µν | ≤ B−t

I Here g ∈ Z≥0 is a constant (number of guard digits) whose value will be fixed later

I Let t ∈ Z≥2; initially we can assume that t = 2
(this needs a preprocessing algorithm; we postpone a discussion)

I We present an O(M(t))-time algorithm that computes a (2t − 1 + g)-digit µ̂ ∈ QB with
|1 − µν | ≤ B−2t+1

I (Iterating this algorithm will produce a desired µ for any ν and t given as input in time
O(M(t)); we postpone the analysis)

A Newton iteration with truncation (2/2)

I Let us recall that µ̂ ← (2 − µν)µ is the iteration step without truncation

I Recall also that we assume t ≥ 2 and |1 − µν | ≤ B−t with B−1 ≤ ν < 1;
furthermore, µ ∈ QB has t + g digits

I We conclude that 1 − B−t ≤ µ ≤ B(1 + B−t) and thus
(1 − B−t)B−1 ≤ µν2t−1+g < B(1 + B−t)

I Let us study the following iteration step with two truncation operations:

µ̂ ← ((2 − µν2t−1+g)µ)2t−1+g (25)

I Apart from the truncation operations, the arithmetic in (25) is exact and no
intermediate result uses more than
3 + (t + g) + (2t − 1 + g) + (t + g) = 4t + 3g + 2 = O(t) digits in base B

I Thus we can compute µ̂ from µ in time O(M(t)) as desired

Example: Newton iteration

I Let us work in base B = 10

I Suppose we are given as input t = 32 and
ν = 0.171438118087707346963845017798469519992294775

I From the initialization algorithm (discussed later) we obtain the initial value µ = 5.834

I Applying Newton iteration with truncation (25) with g = 6, we observe:

t g µ ν2t−1+g

2 6 5.8340000 0.171438118
3 6 5.83300833 0.17143811808
5 6 5.8330085000 0.171438118087707
9 6 5.83300849982735 0.17143811808770734696384

17 6 5.8330084998273388632428 0.171438118087707346963845017798469519992
33 6 5.83300849982733886324269185413958594030

I Disregarding the g guard digits, we observe µ essentially doubles in length at each step

Convergence analysis with truncation (1/3)

I Let us first introduce parameters δ1 and δ2 to quantify the inaccuracy introduced by
truncation

I Let ν2t−1+g = ν + δ1

I Since B−1 ≤ ν < 1, we can take |δ1 | ≤ B−1−(2t−1+g)+1 = B1−2t−g by (24)

I Let ((2 − µν2t−1+g)µ)2t−1+g = (2 − µν2t−1+g)µ + δ2

I Since (2 − µν2t−1+g)µ ≤ 4B ≤ B3 and (2 − µν2t−1+g)µ ≥ (2 − µ (ν + δ1)) (1 − B−t) ≥

(1 − B−t − µδ1) (1 − B−t) ≥ (1 − B−t − B(1 + B−t)B1−2t−g) (1 − B−t) > 0,
we can take |δ2 | ≤ B3−(2t−1+g)+1 = B5−2t−g by (24)

I In particular, we can control δ1 and δ2 by selection of the constant g ∈ Z≥0

I Let us now proceed to analyze the aggregate convergence ...

Convergence analysis with truncation (2/3)

I Let µν = 1 + δ with |δ | ≤ B−t

I We have

µ̂ν = ((2 − µν2t−1+g)µ)2t−1+gν

= ((2 − µν2t−1+g)µ + δ2)ν

= ((2 − µ (ν + δ1))µ + δ2)ν

= (2 − µν)µν − µ2νδ1 + νδ2

= (1 − δ) (1 + δ) − µ2νδ1 + νδ2

= 1 − δ 2 − µ2νδ1 + νδ2

Convergence analysis with truncation (3/3)

I Let us recall that B−1 ≤ ν < 1, 1 − B−t ≤ µν ≤ 1 + B−t , and µ ≤ B(1 + B−t)

I Furthermore, we recall that |δ | ≤ B−t , |δ1 | ≤ B1−2t−g , and |δ2 | ≤ B5−2t−g

I Thus, also recalling that B ≥ 2 and t ≥ 2, we have

|µ̂ν − 1| ≤ δ 2 + µ2ν |δ1 | + ν |δ2 |

≤ δ 2 + B2 (1 + B−t)2 |δ1 | + |δ2 |

≤ δ 2 + B2 (1 + 2B−t + B−2t) |δ1 | + |δ2 |

≤ δ 2 + B3 |δ1 | + |δ2 |

≤ B−2t + B4−2t−g + B5−2t−g

≤ B−2t + B6−2t−g

≤ B−2t+1

where in the last inequality we have used the assumption that g ≥ 6

Running time (1/2)

I Recall that one step of iteration takes an input µ with t + g digits and produces an
output µ̂ of 2t − 1 + g digits with |1 − µν | ≤ B−2t+1

I Consider the mapψ (t) = 2t − 1

I Starting with the base caseψ 0 (t) = t , an easy induction shows that the mapψ iterated
k = 0, 1, . . . times yields the mapψ k (t) = 2k t − 2k + 1

I At start, we can assume that the initial value to the Newton iteration has t + g digits
with t = 2 and g = 6

I (Indeed, the initialization algorithm will run in time O(1); this will be discussed later)

I Thus, a�er k steps of iteration, the approximate inverse µ has
ψ k (t) + g = 2k t − 2k + 1 + g digits and |1 − µν | ≤ B−ψ

k (t)

I Substituting t = 2 and g = 6, we obtain that a�er k steps of iteration µ has
2k ≤ 2k+1 − 2k + 6 ≤ 2k+4 digits and |1 − µν | ≤ B−ψ

k (2) ≤ B−2k

Running time (2/2)

I Let us recall that a�er k steps of Newton iteration we have at most 2k+4 digits in µ,
and |1 − µν | ≤ B−2k

I Thus, for a t ∈ Z≥1 given as input, to obtain an approximate inverse µ with
|1 − µν | ≤ B−t , it su�ices to run k = dlog2 te steps

I We observe that arithmetic during step k works with intermediate results that have at
most 4 · 2k+6 + 3 · 6 + 2 = O(2k) digits

I Furthermore, since the multiplication time M(d) grows at most polynomially in d ;
that is, for all constants C ≥ 1 there exists a constant C′ ≥ 1 such that for all
d = 1, 2, . . . we have M(Cd) ≤ C′M(d), the running time of step k is O(M(2k))

I By Lemma 5, the total running time to produce approximate inverse µ with
|1 − µν | ≤ B−t is O(M(2 dlog2 t e+1)), which is O(M(t))

Summary—fast integer division (1/2)

I Let integers α , β ∈ Z≥1 be given as input in base B

1. Normalize β to ν ∈ QB with B−1 ≤ ν < 1 by adjusting the exponent

2. From ν determine a (2 + g)-digit initial approximation µ ∈ QB with |1 − µν | ≤ B−2

(this will be discussed in what follows)

3. Run the Newton iteration with truncation (25) until we have a (t + g)-digit
approximation µ ∈ QB with |1 − µν | ≤ B−t for t large enough

4. Adjust the exponent of µ to obtain γ ∈ QB with |1 − γ β | ≤ B−t

5. Recover the quotient η = α quo β using the approximate quotient η̃ = αγ

6. Compute the remainder ρ = α rem β = α − ηβ

I (We leave the details of quotient recovery for the exercises)

Summary—fast integer division (2/2)

I The present algorithm runs in O(M(n)) time for two at-most-n-digit integers
α , β ∈ Z≥1 in base B given as input, B = O(1)

I However, the algorithm has not been optimized for practical performance
(for example, for a specific choice of B such as B = 264)

I Considerable further work would be needed to optimize for a practical implementation
(cf. Brent and Zimmermann [4] for a starting point)

Example: Fast integer division (1/2)
I Let us work in base B = 10

I Suppose the given input is

α = 1866830377857904687585481026334265282048899060517697915942019834534476682181

β = 171438118087707346963845017798469519992294775

1. Normalizing β , we obtain

ν = 0.171438118087707346963845017798469519992294775

2. The initialization algorithm for t = 2 gives µ = 5.834

3. Running Newton iteration with g = 6 and t = 32 gives

µ = 5.83300849982733886324269185413958594030

4. Adjusting the exponent gives

γ = 5.83300849982733886324269185413958594030 · 10−45

Example: Fast integer division (2/2)

5. The approximate quotient is thus

η̃ = αγ = 10889237461781040779701934381166.79300360663554935084051345 \\

18273843794550524803513473907034720060209940246591397943

from which we recover the quotient

η = 10889237461781040779701934381166

6. Finally we compute the remainder

ρ = α − ηβ = 135951042750664786292697660685611556596474531

Extra: Initial approximation (1/3)

I To complete the algorithm design, we still need an initial value for the Newton
iteration

I In precise terms, given t ∈ Z≥1 and ν ∈ QB with B−1 ≤ ν < 1 as input, we need a
(t + g)-digit µ ∈ QB with |1 − µν | ≤ B−t for some fixed constant g ∈ Z≥1

I The initial approximation needs only constant values of t and g;
for example, already t = 2 su�ices to initialize our Newton iteration

I Accordingly, we need not be particularly e�icient with the initialization
(though a practical implementation would carefully optimize this step too)

I For illustration, let us reduce initialization to integer division (which can be solved, for
example, with the classical integer division algorithm since t and g are constants)

Extra: Initial approximation (2/3)

I Let t ∈ Z≥1 and ν ∈ QB with B−1 ≤ ν < 1 be given as input

I Let a, `, k be parameters whose values we fix in what follows

1. Set α = Ba and β = (Bk+1ν)` with 1 ≤ ` ≤ k + 1 and a ≥ 0 so that α , β ∈ Z

2. Run classical integer division to obtain η, ρ ∈ Z≥0 with α = ηβ + ρ and 0 ≤ ρ ≤ β − 1

3. Return the initial approximation µ = B−a+k+1η

I Let us now analyze the accuracy of µ and the number of digits in µ

I Since 1 ≤ ` ≤ k + 1 and B−1 ≤ ν < 1, we have that β = (Bk+1ν)` = Bk+1ν`

I Let ν` = ν + δ and observe that |δ | ≤ B−` by B−1 ≤ ν < 1 and (24)

I Since B−1 ≤ ν < 1, we have Bk ≤ β ≤ Bk+1 − 1

Extra: Initial approximation (3/3)

I Recall that α = Ba, β = Bk+1 (ν + δ) with |δ | ≤ B−` , and µ = B−a+k+1η

I Multiply both sides of α = ηβ + ρ by B−a to conclude that 1 = µ (ν + δ) + B−aρ

I Recalling that 0 ≤ ρ ≤ β − 1 and that Bk ≤ β ≤ Bk+1, we conclude that
|1 − µν | ≤ δµ + B−a+k+1

I We have 0 ≤ µ ≤ B−a+k+1α/β ≤ B, implying that |1 − µν | ≤ B−`+1 + B−a+k+1

I Now set a = 2t + 3, k = t + 1, and ` = t + 2

I Since B ≥ 2 we conclude that |1 − µν | ≤ B−t−1 + B−t−1 ≤ B−t

I Since α = Ba and Bk ≤ β ≤ Bk+1 − 1, we have Ba−k−1 ≤ α/β ≤ Ba−k , and thus
η = bα/βc (and hence µ = B−a+k+1η) has at most a − k + 1 = t + 3 digits

I Accordingly we can take g = 3 to complete the initial approximation algorithm;
using classical division, this algorithm runs in O(t2) time for B = O(1), but we only
apply it for inputs of size t = O(1), such as t = 2 to initialize our Newton iteration

Extra: Initial approximation with a look-up table

I Recall that we assume that the base B is a constant

I Since constant t and g su�ice, we observe that the parameters a = 2t + 3, k = t + 1,
and ` = t + 2 are also constants

I Since α = Ba is a constant, β = Bk+1ν` = Bt+2νt+2 su�ices to determine the initial
approximation µ

I Since νt+2 has t + 2 digits, the first of which is nonzero, we can prepare a look-up
table with (B − 1)Bt+1 entries for use in initialization

I That is, using the t + 2 most significant digits of ν as an index, we consult the look-up
table for a valid initialization µ (which has at most t + 3 digits)

I For example, when B = 2 and t = 2, it su�ices to have a look-up table with
(2 − 1)23 = 8 entries, where each entry has at most 5 digits (that is, bits, since B = 2)

Example: Initial approximation

I Let us work in base B = 10

I Suppose the given input is t = 2 together with

ν = 0.171438118087707346963845017798469519992294775

I Following the initialization algorithm, we set

α = 10000000

β = 1714

and thus obtain the quotient η = bα/βc = 5834 and hence the initial value µ = 5.834

I In particular, we use only t + 2 = 4 first digits of ν to obtain µ

Example: Look-up table for initialization

I For B = 2 and t = 2, we obtain the following look-up table for initializing the Newton
iteration so that |1 − µν | ≤ B−t = 1/4:

ν4 µ

0.1000 10
0.1001 1.11
0.1010 1.1
0.1011 1.011
0.1100 1.01
0.1101 1.001
0.1110 1.001
0.1111 1

I In particular, we use only the first t + 2 = 4 digits of ν to obtain µ

Key content recalled

I Division (quotient and remainder) for integers and polynomials

I Fast division by reduction to fast multiplication

I Integer division via approximation of the multiplicative inverse of the divisor

I The radix-point representation and approximation of rational numbers

I Newton iteration

I Newton iteration for the multiplicative inverse of the divisor

I Convergence analysis for Newton iteration

I Polynomial division via reversal

I Newton iteration for the inverse of the reverse of the divisor

Goal for fast polynomial division

I Let R be a ring

I Let a, b ∈ R[x] with b monic and d ≥ deg a ≥ deg b for some d ∈ Z≥0

I We want an algorithm that computes the quotient q and the remainder r in the
division of a by b in O(M(d)) operations in R

I Here M(d) = O(d log d) or M(d) = O(d log d log log d) depending on R

First reduction recalled: the quotient su�ices

I Division (viewed from 36,000�, see earlier slides for details):

Given a, b we need to compute q, r such that a = qb + r

I Observation:
It su�ices to compute q since then we can recover r = a − qb by fast multiplication

Reversal to recover the quotient

I For a polynomial

f = φ0 + φ1x + φ2x2 + . . . + φnxn

of degree at most n ∈ Z≥0, the n-reversal of f is the polynomial

revn f = φn + φn−1x + φn−2x2 + . . . + φ0xn

I For the quotient-and-remainder identity a = qb + r with deg a = n ≥ m = deg b and
deg r ≤ m − 1, we observe (exercise) that the reversal operator satisfies

revn a = (revn−m q) (revm b) + xn−m+1 revm−1 r

I In particular, working in the factor ring relative to the ideal 〈xn−m+1〉,

revn a ≡ (revn−m q) (revm b) (mod xn−m+1)

I We can thus compute the quotient q by computing the multiplicative inverse of revm b
modulo xn−m+1 (we will show this inverse exists because b is monic), multiplying by
revn a, and (n −m)-reversing the result to obtain q

Example: Reversal (1/2)

I Suppose that in Z5[x] we have

a = 3 + 3x + x2 + 2x3 + x4 + 4x6 + x7 + 3x8 + 4x9 + 3x10 + x11 + x12

b = 2 + x + x2 + 3x3 + 3x4 + 3x5 + x6

with n = deg a = 12 and m = deg b = 6; we also observe that b is monic

I We have a = qb + r and 0 ≤ deg r ≤ deg b − 1 for

q = 3 + 3x + 3x2 + 4x3 + x4 + 3x5 + x6

r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

I Taking reverses, we have

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

revn−m q = 1 + 3x + x2 + 4x3 + 3x4 + 3x5 + 3x6

revm−1 r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

Example: Reversal (2/2)

I Recalling that

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

revn−m q = 1 + 3x + x2 + 4x3 + 3x4 + 3x5 + 3x6

revm−1 r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

with n = 12 and m = 5, we can now verify the reversed division equality

revn a = (revn−m q) (revm b) + xn−m−1 revm−1 r

I Indeed,

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

(revn−m q) (revm b) = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + 3x7 + 2x8 + 3x9 + 2x10 + 4x11 + x12

xn−m−1r = 2x7 + 4x8 + 4x9 + 4x10 + 4x11 + 2x12

The inverse modulo xd by reduction to fast multiplication
I Let g =

∑
jψjx j ∈ R[x] withψ0 = 1 be given as input

I We set up a Newton iteration that doubles d at every step

I Assume inductively that f ∈ R[x] satisfies fg ≡ 1 (mod x2k
) for k ∈ Z≥0

I To set up the base case k = 0, take f = 1 and observe that the assumption holds

I Compute f̂ ≡ (2 − fg)f (mod x2k+1
) using fast multiplication,

truncating both g and f̂ using the substitution x2k+1
= 0

I Since the assumption holds for f with parameter value k, there exists a h ∈ R[x] with
fg = 1 + x2k

h

I We observe that f̂ g ≡ (2 − fg)fg ≡ (1 − x2k
h) (1 + x2k

h) ≡ 1 (mod x2k+1
) and thus the

assumption holds for f̂ with parameter value k + 1

I The cost of step k is O(M(2k)) since M grows at most polynomially; by Lemma 5 the
total cost is O(M(d)) operations in R

Example: Iterating for the inverse modulo xd

I Let g = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6 ∈ Z5[x]

I Let us compute the multiplicative inverse of g modulo xd for d = 7

I The least integer k for which 2k ≥ d is k = 3, so we need three rounds of Newton
iteration

I Truncating g and f̂ by se�ing x2k+1
= 0 and iterating, we have

k f g
0 1 1 + 3x
1 1 + 2x 1 + 3x + 3x2 + 3x3

2 1 + 2x + x2 + 3x3 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

3 1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6 + 2x7

I Thus, the multiplicative inverse of g modulo xd is

1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6

Example: Division with reversal and Newton iteration

I Suppose that in Z5[x] we have

a = 3 + 3x + x2 + 2x3 + x4 + 4x6 + x7 + 3x8 + 4x9 + 3x10 + x11 + x12

b = 2 + x + x2 + 3x3 + 3x4 + 3x5 + x6

with n = deg a = 12 and m = deg b = 6; we also observe that b is monic

I Reverse a and b to obtain

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

I Iterate for the inverse f of revm b modulo xn−m+1 to obtain

f = 1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6

I Compute f revn a, truncate with xn−m+1 = 0, and (n −m)-reverse the result to obtain
the quotient q = 3 + 3x + 3x2 + 4x3 + x4 + 3x5 + x6

I Compute the remainder r = a − qb = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

Summary—fast polynomial division

I Let R be a ring

I Let a, b ∈ R[x] with b monic and d ≥ deg a ≥ deg b for some d ∈ Z≥0

I We have an algorithm that computes the quotient q and the remainder r in the
division of a by b in O(M(d)) operations in R

1. Let n = deg a and m = deg b
2. m-reverse b and compute the multiplicative inverse of revm b modulo xn−m+1 using

Newton iteration, multiply by the result by revn a modulo xn−m+1, and (n −m)-reverse
the result to obtain the quotient q

3. Compute remainder r by r = a − qb

I Here M(d) = O(d log d) or M(d) = O(d log d log log d) depending on R

Recap of key content for Lecture 3

I Division (quotient and remainder) for integers and polynomials

I Fast division by reduction to fast multiplication

I Integer division via approximation of the multiplicative inverse of the divisor

I The radix-point representation and approximation of rational numbers

I Newton iteration

I Newton iteration for the multiplicative inverse of the divisor

I Convergence analysis for Newton iteration

I Polynomial division via reversal

I Newton iteration for the inverse of the reverse of the divisor

Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic,
approximation, online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms

Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability

