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Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers
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Recap of last week

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I The positional number system for integers

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution



Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder) (this week)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd)

I Interpolation from partly erroneous data



Further motivation for this week

I The radix-point representation for rational numbers is at the foundation of
floating-point arithmetic

I Most scientific and engineering computations today are executed using hardware that
implements the IEEE 754-2008 standard for floating point arithmetic:

https://doi.org/10.1109%2FIEEESTD.2008.4610935

I Floating-point numbers and floating-point arithmetic are a fantastic tool, but this tool
comes with caveats and must be used with care

I �ick demo:
IEEE 754-2008 in action

https://doi.org/10.1109%2FIEEESTD.2008.4610935


Key content for Lecture 3

I Division (quotient and remainder) for integers and polynomials

I Fast division by reduction to fast multiplication

I Integer division via approximation of the multiplicative inverse of the divisor

I The radix-point representation and approximation of rational numbers

I Newton iteration

I Newton iteration for the multiplicative inverse of the divisor

I Convergence analysis for Newton iteration

I Polynomial division via reversal

I Newton iteration for the inverse of the reverse of the divisor



Fast quotient and remainder (polynomials)

(von zur Gathen and Gerhard [11],
Sections 9.1 and 9.4)



Integer and floating-point arithmetic

(Brent and Zimmermann [4])



Division (quotient and remainder)

I We start by recalling polynomial division and integer division

I We also recall that we can multiply fast, both in the case of polynomials and in the
case of integers

I Our goal for this lecture is to develop division algorithms that are essentially
(up to constants) as fast as our multiplication algorithms

I The key idea is to proceed by reduction to multiplication

I In preparing the reductions, we recall and encounter many useful concepts ...



Polynomial quotient and remainder

I Let R be a ring

I Let a =
∑n

i=0 αix i ∈ R[x] and b =
∑m

i=0 βix i ∈ R[x] such that αn , 0 and βm = 1

I That is, deg a = n and b is monic with deg b = m

I Then, there exist polynomials q, r ∈ R[x] that satisfy a = qb + r with deg r < deg b

I We write a quo b for such a quotient q and a rem b for such a remainder r in the
division of a by b

I In fact, such q and r are unique (exercise)



Integer quotient and remainder

I Let α , β ∈ Z≥0 with β , 0

I Then, there exist integers η, ρ ∈ Z≥0 that satisfy α = ηβ + ρ with 0 ≤ ρ ≤ β − 1

I We write α quo β the quotient η and α rem β the remainder ρ in the division of α by
β

I Such η and ρ are unique (exercise)



The classical division algorithm (for polynomials)

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n, deg b = m,
n ≥ m ≥ 0, and suppose that βm ∈ R is a unit

I We want to compute q, r ∈ R[x] with a = qb + r and deg r < m

I The classical division algorithm:
1. r ← a, µ ← β−1

m
2. for i = n −m, n −m − 1, . . . , 0 do
3. if deg r = m + i then ηi ← lc(r )µ, r ← r − ηix ib

else ηi ← 0
4. return q =

∑n−m
i=0 ηix i and r

I The classical algorithm runs in O((n +m)2) operations in R

I ... But could we do be�er? A�er Lecture 2, we know how to multiply in
near-linear-time ...



Fast polynomial multiplication

I Let R be a ring

I Given f , g ∈ R[x] with deg f ≤ d and deg g ≤ d as input, we can compute the product
fg ∈ R[x] in O(M(d )) operations in R

I We can take M(d ) = O(d log d ) if R has a primitive root of unity that supports an
appropriate FFT

I In general, we can take M(d ) = O(d log d log log d )

I (In Lecture 2 we explored Schönhage–Strassen multiplication that assumes 2 is a unit
in R; this algorithm can be generalized so that R is an arbitrary ring.)



Fast integer multiplication

I Given as input α , β ∈ Z≥0 represented as at most d-digit integers in a constant base
B ∈ Z≥2, we can compute the product αβ ∈ Z in O(M(d )) time

I We can take M(d ) = O(d log d log log d ) [24] or M(d ) = O(d log d2O(log∗ d ) ) [9, 14]

I (Also recall Problem Set 2 where we reduced multiplication in Z to multiplication in
Zu[x].)



First reduction towards division: the quotient su�ices

I Division (viewed from 36,000�, see earlier slides for details):

Given a, b we need to compute q, r such that a = qb + r

I Observation:
It su�ices to compute q since then we can recover r = a − qb by fast multiplication



High-level idea: iterate for the quotient

I Our approach will be to recover the quotient iteratively

I In essence, we iterate for a (near) multiplicative inverse of the divisor b such that each
iteration increases the accuracy of our (near) inverse

I We want the accuracy (e.g. number of digits or polynomial degree) to increase
geometrically from n to 2n in one iteration

I Once a su�iciently close approximation of the inverse is available (n is large enough),
we proceed to solve for the quotient

I Each iteration will involve a constant number of multiplications, additions, and
subtractions on inputs of size O(n)



The cost of a geometric iteration

I We say that a function T : Z≥n0 → Z≥0 grows at least linearly if for all
n, n1, n2 ∈ Z≥n0 it holds that n = n1 + n2 implies T (n) ≥ T (n1) + T (n2)

I Examples:
T (n) = Cn log2 n for n0 = 1 and any constant C > 0
T (n) = Cn log2 n log2 log2 n for n0 = 2 and any constant C > 0

Lemma 5 (Last step dominates—the previous steps are “for free”)

Suppose that T grows at least linearly for n ≥ n0 ≥ 1 and let 2k0 be the least integer power of
2 at least n0. Then, for all k ≥ k0 we have

∑k
j=k0

T (2j ) ≤ T (2k+1)

Proof.

By induction (exercise). �



Roadmap for fast integer division

I The positional number system in base B recalled and revisited
—the radix-point representation and approximation of rational numbers

I For α , β ∈ Z≥1 given as input, we want a (radix-point) approximation γ for the
multiplicative inverse 1/β

I Provided the approximation γ is accurate enough, from the product αγ we can recover
the quotient α quo β (exercise) and thus the remainder α rem β

I To compute γ fast from a d-digit β given as input, we rely on Newton iteration

I We present a Newton iteration for a normalized rational divisor; that is, we normalize
the integer β to a radix-point ν with B−1 ≤ ν < 1, then compute an approximate
multiplicative inverse µ for ν using Newton iteration, and from µ map back to the
desired γ



Approximating the multiplicative inverse of the divisor

I Given α , β ∈ Z≥1 as input, we seek to approximate 1/β ∈ Q

I We observe in particular that 1/β is a rational number, not an integer

I Thus, first we need means for computing with rational numbers ...

I Let us begin by recalling and revisiting yet further aspects of the positional number
system ...



The positional number system for integers (base B)

I Let B ∈ Z≥2

I Suppose that α ∈ Z with 0 ≤ α ≤ Bd − 1 for some d ∈ Z≥0

I Then, there is a unique finite sequence

(α0,α1, . . . ,αd−2,αd−1) ∈ Z
d
≥0 (20)

with 0 ≤ αi ≤ B − 1 for all i = 0, 1, . . . , d − 1 such that

α =
d−1∑
i=0

αiBd−1−i = α0Bd−1 + α1Bd−2 + . . . + αd−3B2 + αd−2B + αd−1 (21)

I We say that the sequence (20) is the (d-digit) representation of the integer α in the
positional number system with base B (or radix B)

I The elements αi are the digits of α

I We say that α0 is the most significant digit and αd−1 is the least significant digit



Example (base 10)

I Let us represent 123 ∈ Z in base B = 10

I We have

123 = 1 · 102 + 2 · 10 + 3 · 1

I Hence, the sequence (1, 2, 3) represents 123 in base 10



A positional number system for rational numbers?

I Could we extend the positional number system to represent (all) rational numbers?

I Let us make an a�empt (that will not succeed for all rational numbers) ...



Radix-point representation (base B)

I Let B ∈ Z≥2

I Let s ∈ {−1, 1}, e ∈ Z, and d ∈ Z≥1

I Let (α0,α1, . . . ,αd−1) ∈ Z
d such that 0 ≤ αi ≤ B − 1 for all i = 0, 1, . . . , d − 1

I We say that the three-tuple (s, e, (α0,α1, . . . ,αd−1)) is a radix-point representation
of the rational number

α = sBe
d−1∑
i=0

αiB−i (22)

using d digits in base B

I We say a representation is normal if both α0 , 0 and αd−1 , 0

I Any nonzero rational number that has a radix-point representation in base B has a
unique normal representation in base B (exercise)

I Define (1, 0, (0)) as the unique normal representation for the rational number 0



Example (base 10)

I Let us represent 1234657/10000 ∈ Q in base B = 10

I We have
1234567
10000

= 1 · 102 + 2 · 10 + 3 · 1 + 4 · 10−1 + 5 · 10−2 + 6 · 10−3 + 7 · 10−4

= 102
(
1 · 1 + 2 · 10−1 + 3 · 10−2 + 4 · 10−3 + 5 · 10−4 + 6 · 10−5 + 7 · 10−6

)
I Hence, the sequence (1, 2, (1, 2, 3, 4, 5, 6, 7)) is the (normal) representation of

1234657/10000 using d = 7 digits and exponent e = 2 in base B = 10

I (1, 2, (1, 2, 3, 4, 5, 6, 7)) is rather cumbersome to write, so o�en one resorts to
notational shorthands such as 123.4567 or 1.23456 · 102 where the radix point “.” is
used to separate the integer and fractional parts of the representation
(with the base B = 10 tacitly understood unless indicated otherwise)



A positional number system for rational numbers?

I Could we extend the positional number system to represent (all) rational numbers?

I For any base B, there exist rational numbers that do not admit radix-point
representation in base B (exercise)

I For example, 1/3 cannot be represented in base B = 10

I However, for any rational number τ ∈ Q, one we represent a rational number
arbitrarily close to τ using radix-point representation

I For example, 3.3333333333333333333 · 10−1 in base B = 10 is already rather close to 1/3



Properties of radix-point numbers (1/2)

I Let us fix the base B ∈ Z≥2

I Let us write QB for the set of all rational numbers that do admit a radix-point
representation in base B

I It is immediate that we have Z ⊆ QB

I For all α , β ∈ QB, we have the closure properties α + β ∈ QB, −α ∈ QB, and αβ ∈ QB

I However, as we have seen, for all α ∈ QB it does not hold in general that 1/α ∈ QB

(indeed, recall from the previous example that 3 ∈ Q10 and 1/3 < Q10)



Example: Closure under multiplication

I Let α , β ∈ QB have radix point representations

α = sBe
c−1∑
i=0

αiB−i

β = tBf
d−1∑
i=0

βiB−i

I We have

αβ = stBe+f−d+1−c+1
( c−1∑

i=0

αiBc−1−i
d−1∑
i=0

βiBd−1−i
)

I The expression in parentheses is a multiplication of two integers in base B

I Since the integer product is representable in base B, we have that αβ admits a
radix-point representation in base B (by shi�ing the position of the radix point)



Properties of radix-point numbers (2/2)

I From the previous example we also observe that if we multiply a c-digit representation
with a d-digit representation, the product has a representation using at most cd digits

I Indeed, the largest integer that one can represent using d digits in base B is
(B − 1)

∑d−1
j=0 Bj = Bd − 1

I �estion/work point:
How about closure under addition? Hint: again reduce to integers, and be careful with the
number of digits you need to represent the sum

I For exact arithmetic, the increase from c and d digits to cd digits at each
multiplication quickly becomes very expensive when evaluating an arithmetic
expression consisting of several operations

I We need a way to control this expense; that is, instead of exact arithmetic, we will be
content on approximation where we can control the accuracy of the approximation ...



Example: Addition

I Let us work in base B = 3

I Suppose that α = 1.121001112 · 32 and β = 2.222221202 · 36

I Aligning the radix points, addition reduces to integer addition (in base B):

112.1001112
+ 2222221.202

10000111.0021112

I The result is thus α + β = 1.00001110021112 · 37



Example: Multiplication

I Let us work in base B = 5

I Suppose that α = 3.011002342 · 54 and β = 1.340011441 · 54

I Multiplication reduces to integer multiplication (in base B):

3011002342 · 5−5

· 1340011441 · 5−5

10140341030320132422 · 5−10

I The result is thus αβ = 1.0140341030320132422 · 59



Cu�ing expenses—rounding

I A principled way of cu�ing the expense of maintaining a d-digit radix-point
representation is to cut the number of digits from d digits to ` digits for some
1 ≤ ` ≤ d

I Being “principled” of course amounts to making sure that the `-digit representation is
a “close approximation” of the d-digit representation

I This general process of cu�ing expenses at intermediate steps of a computation using
“close approximations” is also known as rounding

I We will restrict to a straightforward but blunt form of rounding, namely truncation ...



Truncation

I Let α ∈ QB with

α = sBe
d−1∑
i=0

αiB−i

I For ` ∈ Z≥1, the truncation of α to ` digits is the rational number

α` = sBe
min(`,d )−1∑

i=0

αiB−i (23)

I That is, in e�ect we cut out all but the ` most significant digits of α to obtain α`



Example: Truncation

I Let us truncate 123.4567 in base B = 10

I We have

123.45677 = 123.4567

123.45676 = 123.456

123.45675 = 123.45

123.45674 = 123.4

123.45673 = 123

123.45672 = 120

123.45671 = 100



Accuracy of truncation

I Let α ∈ QB with α = sBe ∑d−1
i=0 αiB−i and let ` = 1, 2, . . .

I Let us measure the loss in accuracy when truncating from α to α` by δ ∈ Q with

α` = α + δ

I We have

|δ | = |α − α` | = |sBe
d−1∑
i=`

αiB−i |

Thus,

|δ | ≤ Be (B − 1)
d−1∑
i=`

B−i =



Be−`+1 − Be−d+1 if ` ≤ d

0 if ` ≥ d
(24)

I In particular, for all ` = 1, 2, . . . we have |δ | < Be−`+1



Example: Accuracy of truncation

I Let us again truncate 123.4567 in base B = 10

I Since e = 2, we have

|123.4567 − 123.45677 | = 0 < 102−7+1 = 10−4

|123.4567 − 123.45676 | = 0.0007 < 102−6+1 = 10−3

|123.4567 − 123.45675 | = 0.0067 < 102−5+1 = 10−2

|123.4567 − 123.45674 | = 0.0567 < 102−4+1 = 10−1

|123.4567 − 123.45673 | = 0.4567 < 102−3+1 = 100

|123.4567 − 123.45672 | = 3.4567 < 102−2+1 = 101

|123.4567 − 123.45671 | = 23.4567 < 102−1+1 = 102



Summary—rational numbers with controlled expense

I Let us summarize where we are before proceeding further

I Radix-point numbers in QB enable us to compute with arbitrarily close
approximations of rational numbers in Q

I Computation in QB takes place by easy reductions to integer algorithms for addition,
negation, and multiplication

I In particular, we can choose to compute exactly in QB as long as we mind the cost of
an increase in the number of digits that we need to maintain

I This cost can be controlled by rounding (for example, truncating) intermediate results
to fewer digits

I As algorithm designers we can trade o� between accuracy and cost of computation by
rounding (truncating) to an appropriate number of digits



Approximating the multiplicative inverse of the divisor

I Let us restate our goal towards fast integer division

I Given α , β ∈ Z≥1 as input, we seek to approximate 1/β ∈ Q

I We observe in particular that 1/β is a rational number

I We now have a means for working with rational numbers, namely the radix-point
number system in base B ∈ Z≥2, with B = O(1)

I That is, our goal is to approximate 1/β with a radix-point number γ ∈ QB

I We have that γ and 1/β are close to each other if and only if γ β is close to 1

I In what follows our goal is, given as input t ∈ Z≥1 and ν ∈ QB with B−1 ≤ ν < 1, to
compute a µ ∈ QB with |1 − µν | ≤ B−t in time O(M(t ))

I (This running time will be su�icient to obtain an O(M(n))-time division algorithm for
two given integers α , β ∈ Z≥1 with at most n digits each in base B)



Key idea: Iteration for improved approximation

I Let us set issues of computational cost aside for a moment and look at how to obtain
be�er and be�er approximations for 1/ν

I That is to say, suppose we have available an approximation µ ∈ Q of 1/ν with

|1 − µν | ≤ ϵ

for some 0 ≤ ϵ < 1

I We would like to compute from µ an improved approximation µ̂ ∈ Q with, say,

|1 − µ̂ν | ≤ ϵ2

I One way to achieve such transformation µ 7→ µ̂ is to use Newton iteration ...



A remark in passing

I While an improvement from ϵ to ϵ2 in accuracy may at first look innocent, at ϵ ≤ 1/B
it in fact doubles the accuracy in terms of the number of digits at every step

I For example with B = 10, starting with ϵ = 0.1 and iterating, we have

ϵ = 0.1

ϵ2 = 0.01

ϵ4 = 0.0001

ϵ8 = 0.0000001

ϵ16 = 0.0000000000000001

ϵ32 = 0.00000000000000000000000000000001

ϵ64 = 0.0000000000000000000000000000000000000000000000000000000000000001
...



Newton iteration (1/3)

I Let us continue to work without considerations of computational cost yet

I Suppose we have a function φ : I → R for some open interval I ⊆ R and we seek to
find a µ ∈ I such that φ (µ ) = 0

I For example, suppose that φ (x ) = 1/x − ν with I = (0,∞) for some ν ∈ R>0

I Let us assume that φ (x ) is well-behaved in the sense that it is di�erentiable with a
nonzero derivative in I; continuing the previous example, we have φ ′(x ) = −1/x2

I Suppose that we have access to a µ ∈ I such that φ (µ ) is close to 0

I How could we obtain a µ̂ ∈ I such that φ (µ̂ ) is even closer to 0?



Newton iteration (2/3)

I Using the fact that φ is di�erentiable, let us linearize φ (x ) at x = µ

I We obtain the line

y = φ ′(µ ) (x − µ ) + φ (µ )

I Let us set y = 0 and solve for x to obtain

x = µ −
φ (µ )

φ ′(µ )

I Se�ing

µ̂ ← µ −
φ (µ )

φ ′(µ )

would now intuitively appear like a good choice to improve from µ assuming that φ
does not deviate too much from a line between µ and an actual zero of φ



Newton iteration (3/3)

I In our example with φ (x ) = 1/x − ν and φ ′(x ) = −1/x2, we obtain

x = µ −
φ (µ )

φ ′(µ )
= µ − (−1 + µν )µ = (2 − µν )µ

I Thus, we obtain the iteration step

µ̂ ← (2 − µν )µ

I Let us next verify that this iteration has the desired convergence property ...



Convergence analysis

I Let 0 ≤ ϵ < 1 and ν ∈ (0,∞)

I Suppose that µ ∈ (0,∞) satisfies µν = 1 + δ for some δ ∈ R with |δ | ≤ ϵ < 1

I Recall the iteration step

µ̂ ← (2 − µν )µ

I We thus have

µ̂ν = (2 − µν )µν = (2 − (1 + δ )) (1 + δ ) = (1 − δ ) (1 + δ ) = 1 − δ 2

I That is, one step of the iteration improves the accuracy from ϵ to ϵ2 as desired

I Caveat: the iteration must be started from a value µ ∈ (0,∞) with |1 − µν | < 1



Accounting for the computational cost

I The previous derivation and analysis assumed no computational cost on the exact
arithmetic

I Let us now return to work in QB for B ∈ Z≥2 and B = O(1), keeping track on the
number of digits in our radix-point numbers, and taking care to truncate to control
cost

I This requires an updated convergence analysis to establish convergence even in the
presence of truncations...



Preliminaries: Normalizing the exponent of the divisor

I Rather than work with an integer divisor β ∈ Z≥1, it will be convenient to work with a
normalized divisor ν ∈ QB with B−1 ≤ ν < 1

I For β = Be ∑d−1
i=0 βiB−i with β0 , 0 given as input, let us set ν = B−e−1β to obtain

B−1 ≤ ν < 1

I Note: Se�ing ν = B−e−1β merely adjusts the exponent in radix-point representation;
or, what is the same, moves the position of the radix point

I Suppose we are also given as input a t ∈ Z≥1

I In what follows we present an algorithm that computes a µ ∈ QB with |1 − µν | ≤ B−t

in time O(M(t ))

I Once µ is available, we can set γ = B−e−1µ (again, this merely adjusts the exponent)
and observe that we have |1 − γ β | = |1 − B−e−1µβ | = |1 − µν | ≤ B−t , implying that we
can indeed without loss of generality work with ν instead of β in what follows



Example: Normalizing the exponent of the divisor

I Let us work in base B = 10 for convenience

I Suppose that β = 86295076320 = 8.6295076320 · 1010 and t = 6

I We have ν = 0.86295076320 = 86295076320 · 10−11

I Suppose the near-inverse algorithm outputs µ = 1.1588146 as the near-inverse of ν

I We thus have γ = 1.1588146 · 10−11

I We can also verify that |1 − γ β | = |1 − µν | = 5.652269728 · 10−8 ≤ 10−6



A Newton iteration with truncation (1/2)

I Suppose we have available a (t + g)-digit µ ∈ QB with |1 − µν | ≤ B−t

I Here g ∈ Z≥0 is a constant (number of guard digits) whose value will be fixed later

I Let t ∈ Z≥2; initially we can assume that t = 2
(this needs a preprocessing algorithm; we postpone a discussion)

I We present an O(M(t ))-time algorithm that computes a (2t − 1 + g)-digit µ̂ ∈ QB with
|1 − µν | ≤ B−2t+1

I (Iterating this algorithm will produce a desired µ for any ν and t given as input in time
O(M(t )); we postpone the analysis)



A Newton iteration with truncation (2/2)

I Let us recall that µ̂ ← (2 − µν )µ is the iteration step without truncation

I Recall also that we assume t ≥ 2 and |1 − µν | ≤ B−t with B−1 ≤ ν < 1;
furthermore, µ ∈ QB has t + g digits

I We conclude that 1 − B−t ≤ µ ≤ B(1 + B−t ) and thus
(1 − B−t )B−1 ≤ µν2t−1+g < B(1 + B−t )

I Let us study the following iteration step with two truncation operations:

µ̂ ← ((2 − µν2t−1+g )µ )2t−1+g (25)

I Apart from the truncation operations, the arithmetic in (25) is exact and no
intermediate result uses more than
3 + (t + g) + (2t − 1 + g) + (t + g) = 4t + 3g + 2 = O(t ) digits in base B

I Thus we can compute µ̂ from µ in time O(M(t )) as desired



Example: Newton iteration

I Let us work in base B = 10

I Suppose we are given as input t = 32 and
ν = 0.171438118087707346963845017798469519992294775

I From the initialization algorithm (discussed later) we obtain the initial value µ = 5.834

I Applying Newton iteration with truncation (25) with g = 6, we observe:

t g µ ν2t−1+g

2 6 5.8340000 0.171438118
3 6 5.83300833 0.17143811808
5 6 5.8330085000 0.171438118087707
9 6 5.83300849982735 0.17143811808770734696384

17 6 5.8330084998273388632428 0.171438118087707346963845017798469519992
33 6 5.83300849982733886324269185413958594030

I Disregarding the g guard digits, we observe µ essentially doubles in length at each step



Convergence analysis with truncation (1/3)

I Let us first introduce parameters δ1 and δ2 to quantify the inaccuracy introduced by
truncation

I Let ν2t−1+g = ν + δ1

I Since B−1 ≤ ν < 1, we can take |δ1 | ≤ B−1−(2t−1+g)+1 = B1−2t−g by (24)

I Let ((2 − µν2t−1+g )µ )2t−1+g = (2 − µν2t−1+g )µ + δ2

I Since (2 − µν2t−1+g )µ ≤ 4B ≤ B3 and (2 − µν2t−1+g )µ ≥ (2 − µ (ν + δ1)) (1 − B−t ) ≥

(1 − B−t − µδ1) (1 − B−t ) ≥ (1 − B−t − B(1 + B−t )B1−2t−g ) (1 − B−t ) > 0,
we can take |δ2 | ≤ B3−(2t−1+g)+1 = B5−2t−g by (24)

I In particular, we can control δ1 and δ2 by selection of the constant g ∈ Z≥0

I Let us now proceed to analyze the aggregate convergence ...



Convergence analysis with truncation (2/3)

I Let µν = 1 + δ with |δ | ≤ B−t

I We have

µ̂ν = ((2 − µν2t−1+g )µ )2t−1+gν

= ((2 − µν2t−1+g )µ + δ2)ν

= ((2 − µ (ν + δ1))µ + δ2)ν

= (2 − µν )µν − µ2νδ1 + νδ2

= (1 − δ ) (1 + δ ) − µ2νδ1 + νδ2

= 1 − δ 2 − µ2νδ1 + νδ2



Convergence analysis with truncation (3/3)

I Let us recall that B−1 ≤ ν < 1, 1 − B−t ≤ µν ≤ 1 + B−t , and µ ≤ B(1 + B−t )

I Furthermore, we recall that |δ | ≤ B−t , |δ1 | ≤ B1−2t−g , and |δ2 | ≤ B5−2t−g

I Thus, also recalling that B ≥ 2 and t ≥ 2, we have

|µ̂ν − 1| ≤ δ 2 + µ2ν |δ1 | + ν |δ2 |

≤ δ 2 + B2 (1 + B−t )2 |δ1 | + |δ2 |

≤ δ 2 + B2 (1 + 2B−t + B−2t ) |δ1 | + |δ2 |

≤ δ 2 + B3 |δ1 | + |δ2 |

≤ B−2t + B4−2t−g + B5−2t−g

≤ B−2t + B6−2t−g

≤ B−2t+1

where in the last inequality we have used the assumption that g ≥ 6



Running time (1/2)

I Recall that one step of iteration takes an input µ with t + g digits and produces an
output µ̂ of 2t − 1 + g digits with |1 − µν | ≤ B−2t+1

I Consider the mapψ (t ) = 2t − 1

I Starting with the base caseψ 0 (t ) = t , an easy induction shows that the mapψ iterated
k = 0, 1, . . . times yields the mapψ k (t ) = 2k t − 2k + 1

I At start, we can assume that the initial value to the Newton iteration has t + g digits
with t = 2 and g = 6

I (Indeed, the initialization algorithm will run in time O(1); this will be discussed later)

I Thus, a�er k steps of iteration, the approximate inverse µ has
ψ k (t ) + g = 2k t − 2k + 1 + g digits and |1 − µν | ≤ B−ψ

k (t )

I Substituting t = 2 and g = 6, we obtain that a�er k steps of iteration µ has
2k ≤ 2k+1 − 2k + 6 ≤ 2k+4 digits and |1 − µν | ≤ B−ψ

k (2) ≤ B−2k



Running time (2/2)

I Let us recall that a�er k steps of Newton iteration we have at most 2k+4 digits in µ,
and |1 − µν | ≤ B−2k

I Thus, for a t ∈ Z≥1 given as input, to obtain an approximate inverse µ with
|1 − µν | ≤ B−t , it su�ices to run k = dlog2 te steps

I We observe that arithmetic during step k works with intermediate results that have at
most 4 · 2k+6 + 3 · 6 + 2 = O(2k ) digits

I Furthermore, since the multiplication time M(d ) grows at most polynomially in d ;
that is, for all constants C ≥ 1 there exists a constant C′ ≥ 1 such that for all
d = 1, 2, . . . we have M(Cd ) ≤ C′M(d ), the running time of step k is O(M(2k ))

I By Lemma 5, the total running time to produce approximate inverse µ with
|1 − µν | ≤ B−t is O(M(2 dlog2 t e+1)), which is O(M(t ))



Summary—fast integer division (1/2)

I Let integers α , β ∈ Z≥1 be given as input in base B

1. Normalize β to ν ∈ QB with B−1 ≤ ν < 1 by adjusting the exponent

2. From ν determine a (2 + g)-digit initial approximation µ ∈ QB with |1 − µν | ≤ B−2

(this will be discussed in what follows)

3. Run the Newton iteration with truncation (25) until we have a (t + g)-digit
approximation µ ∈ QB with |1 − µν | ≤ B−t for t large enough

4. Adjust the exponent of µ to obtain γ ∈ QB with |1 − γ β | ≤ B−t

5. Recover the quotient η = α quo β using the approximate quotient η̃ = αγ

6. Compute the remainder ρ = α rem β = α − ηβ

I (We leave the details of quotient recovery for the exercises)



Summary—fast integer division (2/2)

I The present algorithm runs in O(M(n)) time for two at-most-n-digit integers
α , β ∈ Z≥1 in base B given as input, B = O(1)

I However, the algorithm has not been optimized for practical performance
(for example, for a specific choice of B such as B = 264)

I Considerable further work would be needed to optimize for a practical implementation
(cf. Brent and Zimmermann [4] for a starting point)



Example: Fast integer division (1/2)
I Let us work in base B = 10

I Suppose the given input is

α = 1866830377857904687585481026334265282048899060517697915942019834534476682181

β = 171438118087707346963845017798469519992294775

1. Normalizing β , we obtain

ν = 0.171438118087707346963845017798469519992294775

2. The initialization algorithm for t = 2 gives µ = 5.834

3. Running Newton iteration with g = 6 and t = 32 gives

µ = 5.83300849982733886324269185413958594030

4. Adjusting the exponent gives

γ = 5.83300849982733886324269185413958594030 · 10−45



Example: Fast integer division (2/2)

5. The approximate quotient is thus

η̃ = αγ = 10889237461781040779701934381166.79300360663554935084051345 \\

18273843794550524803513473907034720060209940246591397943

from which we recover the quotient

η = 10889237461781040779701934381166

6. Finally we compute the remainder

ρ = α − ηβ = 135951042750664786292697660685611556596474531



Extra: Initial approximation (1/3)

I To complete the algorithm design, we still need an initial value for the Newton
iteration

I In precise terms, given t ∈ Z≥1 and ν ∈ QB with B−1 ≤ ν < 1 as input, we need a
(t + g)-digit µ ∈ QB with |1 − µν | ≤ B−t for some fixed constant g ∈ Z≥1

I The initial approximation needs only constant values of t and g;
for example, already t = 2 su�ices to initialize our Newton iteration

I Accordingly, we need not be particularly e�icient with the initialization
(though a practical implementation would carefully optimize this step too)

I For illustration, let us reduce initialization to integer division (which can be solved, for
example, with the classical integer division algorithm since t and g are constants)



Extra: Initial approximation (2/3)

I Let t ∈ Z≥1 and ν ∈ QB with B−1 ≤ ν < 1 be given as input

I Let a, `, k be parameters whose values we fix in what follows

1. Set α = Ba and β = (Bk+1ν )` with 1 ≤ ` ≤ k + 1 and a ≥ 0 so that α , β ∈ Z

2. Run classical integer division to obtain η, ρ ∈ Z≥0 with α = ηβ + ρ and 0 ≤ ρ ≤ β − 1

3. Return the initial approximation µ = B−a+k+1η

I Let us now analyze the accuracy of µ and the number of digits in µ

I Since 1 ≤ ` ≤ k + 1 and B−1 ≤ ν < 1, we have that β = (Bk+1ν )` = Bk+1ν`

I Let ν` = ν + δ and observe that |δ | ≤ B−` by B−1 ≤ ν < 1 and (24)

I Since B−1 ≤ ν < 1, we have Bk ≤ β ≤ Bk+1 − 1



Extra: Initial approximation (3/3)

I Recall that α = Ba, β = Bk+1 (ν + δ ) with |δ | ≤ B−` , and µ = B−a+k+1η

I Multiply both sides of α = ηβ + ρ by B−a to conclude that 1 = µ (ν + δ ) + B−aρ

I Recalling that 0 ≤ ρ ≤ β − 1 and that Bk ≤ β ≤ Bk+1, we conclude that
|1 − µν | ≤ δµ + B−a+k+1

I We have 0 ≤ µ ≤ B−a+k+1α/β ≤ B, implying that |1 − µν | ≤ B−`+1 + B−a+k+1

I Now set a = 2t + 3, k = t + 1, and ` = t + 2

I Since B ≥ 2 we conclude that |1 − µν | ≤ B−t−1 + B−t−1 ≤ B−t

I Since α = Ba and Bk ≤ β ≤ Bk+1 − 1, we have Ba−k−1 ≤ α/β ≤ Ba−k , and thus
η = bα/βc (and hence µ = B−a+k+1η) has at most a − k + 1 = t + 3 digits

I Accordingly we can take g = 3 to complete the initial approximation algorithm;
using classical division, this algorithm runs in O(t2) time for B = O(1), but we only
apply it for inputs of size t = O(1), such as t = 2 to initialize our Newton iteration



Extra: Initial approximation with a look-up table

I Recall that we assume that the base B is a constant

I Since constant t and g su�ice, we observe that the parameters a = 2t + 3, k = t + 1,
and ` = t + 2 are also constants

I Since α = Ba is a constant, β = Bk+1ν` = Bt+2νt+2 su�ices to determine the initial
approximation µ

I Since νt+2 has t + 2 digits, the first of which is nonzero, we can prepare a look-up
table with (B − 1)Bt+1 entries for use in initialization

I That is, using the t + 2 most significant digits of ν as an index, we consult the look-up
table for a valid initialization µ (which has at most t + 3 digits)

I For example, when B = 2 and t = 2, it su�ices to have a look-up table with
(2 − 1)23 = 8 entries, where each entry has at most 5 digits (that is, bits, since B = 2)



Example: Initial approximation

I Let us work in base B = 10

I Suppose the given input is t = 2 together with

ν = 0.171438118087707346963845017798469519992294775

I Following the initialization algorithm, we set

α = 10000000

β = 1714

and thus obtain the quotient η = bα/βc = 5834 and hence the initial value µ = 5.834

I In particular, we use only t + 2 = 4 first digits of ν to obtain µ



Example: Look-up table for initialization

I For B = 2 and t = 2, we obtain the following look-up table for initializing the Newton
iteration so that |1 − µν | ≤ B−t = 1/4:

ν4 µ

0.1000 10
0.1001 1.11
0.1010 1.1
0.1011 1.011
0.1100 1.01
0.1101 1.001
0.1110 1.001
0.1111 1

I In particular, we use only the first t + 2 = 4 digits of ν to obtain µ



Key content recalled

I Division (quotient and remainder) for integers and polynomials

I Fast division by reduction to fast multiplication

I Integer division via approximation of the multiplicative inverse of the divisor

I The radix-point representation and approximation of rational numbers

I Newton iteration

I Newton iteration for the multiplicative inverse of the divisor

I Convergence analysis for Newton iteration

I Polynomial division via reversal

I Newton iteration for the inverse of the reverse of the divisor



Goal for fast polynomial division

I Let R be a ring

I Let a, b ∈ R[x] with b monic and d ≥ deg a ≥ deg b for some d ∈ Z≥0

I We want an algorithm that computes the quotient q and the remainder r in the
division of a by b in O(M(d )) operations in R

I Here M(d ) = O(d log d ) or M(d ) = O(d log d log log d ) depending on R



First reduction recalled: the quotient su�ices

I Division (viewed from 36,000�, see earlier slides for details):

Given a, b we need to compute q, r such that a = qb + r

I Observation:
It su�ices to compute q since then we can recover r = a − qb by fast multiplication



Reversal to recover the quotient

I For a polynomial

f = φ0 + φ1x + φ2x2 + . . . + φnxn

of degree at most n ∈ Z≥0, the n-reversal of f is the polynomial

revn f = φn + φn−1x + φn−2x2 + . . . + φ0xn

I For the quotient-and-remainder identity a = qb + r with deg a = n ≥ m = deg b and
deg r ≤ m − 1, we observe (exercise) that the reversal operator satisfies

revn a = (revn−m q) (revm b) + xn−m+1 revm−1 r

I In particular, working in the factor ring relative to the ideal 〈xn−m+1〉,

revn a ≡ (revn−m q) (revm b) (mod xn−m+1)

I We can thus compute the quotient q by computing the multiplicative inverse of revm b
modulo xn−m+1 (we will show this inverse exists because b is monic), multiplying by
revn a, and (n −m)-reversing the result to obtain q



Example: Reversal (1/2)

I Suppose that in Z5[x] we have

a = 3 + 3x + x2 + 2x3 + x4 + 4x6 + x7 + 3x8 + 4x9 + 3x10 + x11 + x12

b = 2 + x + x2 + 3x3 + 3x4 + 3x5 + x6

with n = deg a = 12 and m = deg b = 6; we also observe that b is monic

I We have a = qb + r and 0 ≤ deg r ≤ deg b − 1 for

q = 3 + 3x + 3x2 + 4x3 + x4 + 3x5 + x6

r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

I Taking reverses, we have

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

revn−m q = 1 + 3x + x2 + 4x3 + 3x4 + 3x5 + 3x6

revm−1 r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5



Example: Reversal (2/2)

I Recalling that

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

revn−m q = 1 + 3x + x2 + 4x3 + 3x4 + 3x5 + 3x6

revm−1 r = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5

with n = 12 and m = 5, we can now verify the reversed division equality

revn a = (revn−m q) (revm b) + xn−m−1 revm−1 r

I Indeed,

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

(revn−m q) (revm b) = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + 3x7 + 2x8 + 3x9 + 2x10 + 4x11 + x12

xn−m−1r = 2x7 + 4x8 + 4x9 + 4x10 + 4x11 + 2x12



The inverse modulo xd by reduction to fast multiplication
I Let g =

∑
jψjx j ∈ R[x] withψ0 = 1 be given as input

I We set up a Newton iteration that doubles d at every step

I Assume inductively that f ∈ R[x] satisfies fg ≡ 1 (mod x2k
) for k ∈ Z≥0

I To set up the base case k = 0, take f = 1 and observe that the assumption holds

I Compute f̂ ≡ (2 − fg)f (mod x2k+1
) using fast multiplication,

truncating both g and f̂ using the substitution x2k+1
= 0

I Since the assumption holds for f with parameter value k, there exists a h ∈ R[x] with
fg = 1 + x2k

h

I We observe that f̂ g ≡ (2 − fg)fg ≡ (1 − x2k
h) (1 + x2k

h) ≡ 1 (mod x2k+1
) and thus the

assumption holds for f̂ with parameter value k + 1

I The cost of step k is O(M(2k )) since M grows at most polynomially; by Lemma 5 the
total cost is O(M(d )) operations in R



Example: Iterating for the inverse modulo xd

I Let g = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6 ∈ Z5[x]

I Let us compute the multiplicative inverse of g modulo xd for d = 7

I The least integer k for which 2k ≥ d is k = 3, so we need three rounds of Newton
iteration

I Truncating g and f̂ by se�ing x2k+1
= 0 and iterating, we have

k f g
0 1 1 + 3x
1 1 + 2x 1 + 3x + 3x2 + 3x3

2 1 + 2x + x2 + 3x3 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

3 1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6 + 2x7

I Thus, the multiplicative inverse of g modulo xd is

1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6



Example: Division with reversal and Newton iteration

I Suppose that in Z5[x] we have

a = 3 + 3x + x2 + 2x3 + x4 + 4x6 + x7 + 3x8 + 4x9 + 3x10 + x11 + x12

b = 2 + x + x2 + 3x3 + 3x4 + 3x5 + x6

with n = deg a = 12 and m = deg b = 6; we also observe that b is monic

I Reverse a and b to obtain

revn a = 1 + x + 3x2 + 4x3 + 3x4 + x5 + 4x6 + x8 + 2x9 + x10 + 3x11 + 3x12

revm b = 1 + 3x + 3x2 + 3x3 + x4 + x5 + 2x6

I Iterate for the inverse f of revm b modulo xn−m+1 to obtain

f = 1 + 2x + x2 + 3x3 + x4 + 2x5 + 2x6

I Compute f revn a, truncate with xn−m+1 = 0, and (n −m)-reverse the result to obtain
the quotient q = 3 + 3x + 3x2 + 4x3 + x4 + 3x5 + x6

I Compute the remainder r = a − qb = 2 + 4x + 4x2 + 4x3 + 4x4 + 2x5



Summary—fast polynomial division

I Let R be a ring

I Let a, b ∈ R[x] with b monic and d ≥ deg a ≥ deg b for some d ∈ Z≥0

I We have an algorithm that computes the quotient q and the remainder r in the
division of a by b in O(M(d )) operations in R

1. Let n = deg a and m = deg b
2. m-reverse b and compute the multiplicative inverse of revm b modulo xn−m+1 using

Newton iteration, multiply by the result by revn a modulo xn−m+1, and (n −m)-reverse
the result to obtain the quotient q

3. Compute remainder r by r = a − qb

I Here M(d ) = O(d log d ) or M(d ) = O(d log d log log d ) depending on R



Recap of key content for Lecture 3

I Division (quotient and remainder) for integers and polynomials

I Fast division by reduction to fast multiplication

I Integer division via approximation of the multiplicative inverse of the divisor

I The radix-point representation and approximation of rational numbers

I Newton iteration

I Newton iteration for the multiplicative inverse of the divisor

I Convergence analysis for Newton iteration

I Polynomial division via reversal

I Newton iteration for the inverse of the reverse of the divisor



Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic,
approximation, online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms



Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability


