

# Brief Recap of Chapter 2 of Brown et al. (2014)

Simo Särkkä

## Contents of Chapter 2 "Classical Response of a Single Nucleus to a Magnetic Field"

- 2.1 Magnetic Moment in the Presence of a Magnetic Field
- 2.1.1 Torque on a Current Loop in a Magnetic Field
- 2.1.2 Magnet Toy Model
- 2.2 Magnetic Moment with Spin: Equation of Motion
- 2.2.1 Torque and Angular Momentum
- 2.2.2 Angular Momentum of the Proton
- 2.2.3 Electrons and Other Elements
- 2.2.4 Equation of Motion
- 2.3 Precession Solution: Phase
- 2.3.1 Precession via the Gyroscope Analogy
- 2.3.2 Geometrical Representation
- 2.3.3 Cartesian Representation
- 2.3.4 Matrix Representation
- 2.3.5 Complex Representations and Phase



#### Introduction

- MRI experiment is really a two-step process where:
  - 1. The proton 'spin' orientation is manipulated by an assortment of applied magnetic fields
  - 2. Changes in orientation can be measured through the interaction of the proton's magnetic field with a coil detector.
- Although each proton field is minuscule, a significant signal can be measured resulting from the sum of all fields of all affected protons of the body.



# Torque on a Current Loop in a Magnetic Field

Lorentz force law:

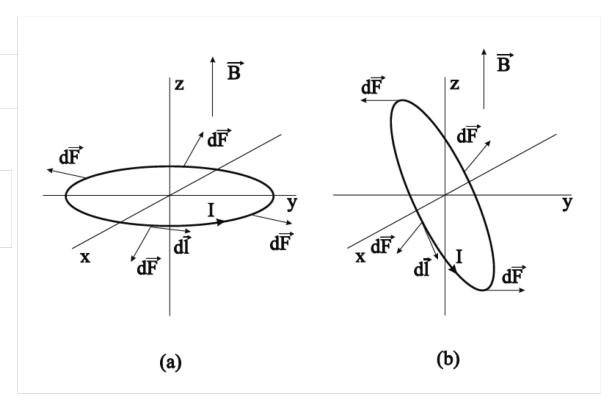
$$d\vec{F} = Id\vec{\ell} \times \vec{B}$$

Newton's law:

$$\vec{F} = \frac{d\vec{p}}{dt}$$

Differential torque:

$$d\vec{N} = \vec{r} \times d\vec{F}$$



# Torque on a Current Loop in a Magnetic Field

• Torque in terms of magnetic dipole moment  $|\vec{\mu}|$ 

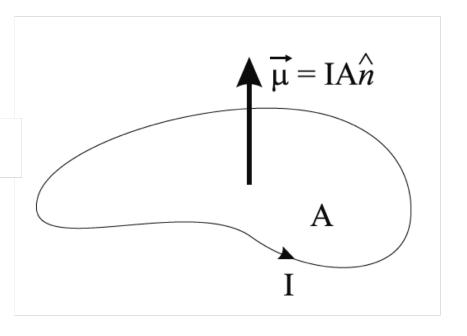
$$\vec{N} = \vec{\mu} \times \vec{B}$$

Which is

$$d\vec{N} = \vec{r} \times (Id\vec{\ell} \times \vec{B}) = Id\vec{\ell} \; (\vec{B} \cdot \vec{r}) - I\vec{B} \; (d\vec{\ell} \cdot \vec{r})$$

We can derive from this:

$$\vec{\mu} = I\pi R^2 \hat{z}$$



## Magnetic Moment with Spin: Equation of Motion

Differential equation for total angular momentum:

$$\frac{d\vec{J}}{dt} = \vec{N}$$

(Spin) Angular momentum of proton:

$$\vec{\mu} = \gamma \vec{J}$$

The gyromagnetic ratio for proton:

$$\gamma = 2.675 \times 10^8 \; \mathrm{rad/s/T}$$

$$\gamma \equiv \frac{\gamma}{2\pi} = 42.58 \text{ MHz/T}$$

Cannot be derived from classical physics, quantum needed

#### Problem 2.1

- a) Show that the angular momentum  $\vec{r} \times \vec{p}$  of the circulating particle with respect to the center is  $mrv\hat{n}$  where  $\hat{n}$  is a unit vector perpendicular to the plane of the circle. Here,  $\hat{n}$  points in a direction given by the right-hand rule applied to the particle's motion.
- b) Show that the magnetic moment associated with the motion of the point charge is qvr/2 and thus that the gyromagnetic ratio is given by (2.19).
- c) Evaluate numerically the gyromagnetic ratio  $\gamma$  (2.19), choosing the same mass  $(1.67 \times 10^{-27} \text{ kg})$  and charge  $(1.60 \times 10^{-19} \text{ C})$  as for a proton. The difference between your answer and (2.17) is due to the more complicated motion of the proton constituents, the 'quarks.' For related reasons, a neutron has a nonvanishing magnetic moment despite its zero overall charge.

$$\gamma = 2.675 \times 10^8 \text{ rad/s/T} \tag{2.17}$$

$$\gamma \text{ (point charge in circular motion)} = \frac{q}{2m}$$
 (2.19)



## Magnetic Moment with Spin: Equation of Motion

 Different gyromagnetic ratios, e.g. for electron:

$$\frac{|\gamma_e|}{\gamma_p}=658$$

Fundamental differential equation for magnetic moment:

$$\frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \times \vec{B}$$

Recall:

$$\omega \equiv \left| \frac{d\phi}{dt} \right| = \gamma B$$

#### A solution:

$$\vec{\mu}(t) = \mu_x(t)\hat{x} + \mu_y(t)\hat{y} + \mu_z(t)\hat{z}$$

$$\mu_x(t) = \mu_x(0)\cos\omega_0 t + \mu_y(0)\sin\omega_0 t$$
  

$$\mu_y(t) = \mu_y(0)\cos\omega_0 t - \mu_x(0)\sin\omega_0 t$$
  

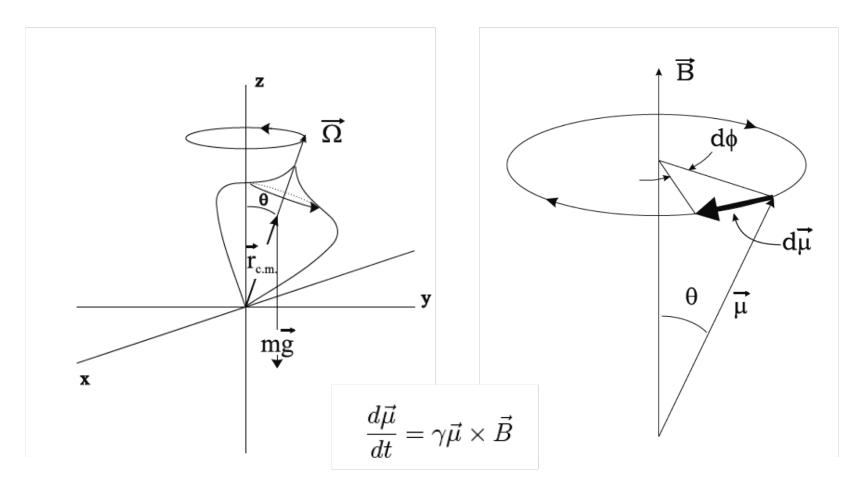
$$\mu_z(t) = \mu_z(0)$$

### **Gyromagnetic ratios**

| Nucleus                    | Spin | Magnetic moment | 7     | Abundance in human body |
|----------------------------|------|-----------------|-------|-------------------------|
| hydrogen <sup>1</sup> H    | 1/2  | 2.7928          | 42.58 | 88 M                    |
| sodium <sup>23</sup> Na    | 3/2  | 2.2175          | 11.27 | $80\mathrm{mM}$         |
| phosphorus <sup>31</sup> P | 1/2  | 1.1316          | 17.25 | $75\mathrm{mM}$         |
| oxygen <sup>17</sup> O     | 5/2  | -1.8938         | -5.77 | $17\mathrm{mM}$         |
| fluorine <sup>19</sup> F   | 1/2  | 2.6289          | 40.08 | $4 m \mu M$             |



#### **Precession**



## Magnetic Moment with Spin: Equation of Motion

#### Matrix representation:

$$\vec{\mu}(t) = R_z(\omega_0 t) \vec{\mu}(0) \qquad \vec{\mu}(t) = \begin{pmatrix} \mu_x(t) \\ \mu_y(t) \\ \mu_z(t) \end{pmatrix}$$

Complex representation:

$$\mu_+(t) = \mu_x(t) + i\mu_y(t)$$

$$\frac{d\mu_{+}}{dt} = -i\omega_{0}\mu_{+}$$

$$\mu_{+}(t) = \mu_{+}(0)e^{-i\omega_{0}t}$$

#### Problem 2.2

It will be useful in later discussions to have the answer (2.33) rederived as a solution to the differential equation (2.24).

a) For  $\vec{B} = B_0 \hat{z}$ , show that the vector differential equation (2.24) decomposes into the three Cartesian equations

$$\frac{d\mu_x}{dt} = \gamma \mu_y B_0 = \omega_0 \mu_y$$

$$\frac{d\mu_y}{dt} = -\gamma \mu_x B_0 = -\omega_0 \mu_x$$

$$\frac{d\mu_z}{dt} = 0.$$
(2.34)

b) By taking additional derivatives, show that the first two equations in (2.34) can be decoupled to give

$$\frac{d^2 \mu_x}{dt^2} = -\omega_0^2 \mu_x$$

$$\frac{d^2 \mu_y}{dt^2} = -\omega_0^2 \mu_y$$
(2.35)

These decoupled second-order differential equations have familiar solutions of the general form  $C_1 \cos \omega_0 t + C_2 \sin \omega_0 t$ .

$$\frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \times \vec{B} \tag{2.24}$$

$$\mu_{x}(t) = \mu_{x}(0) \cos \omega_{0} t + \mu_{y}(0) \sin \omega_{0} t 
\mu_{y}(t) = \mu_{y}(0) \cos \omega_{0} t - \mu_{x}(0) \sin \omega_{0} t 
\mu_{z}(t) = \mu_{z}(0)$$
(2.33)

