CS-E4530 Computational Complexity Theory

Lecture 8: More NP-Complete Problems
Aalto University
School of Science
Department of Computer Science
Spring 2019

Agenda

- More variants of satisfiability
- More graph-theoretic problems
- Sets and numbers

1. More Variants of Satisfiability

- 2SAT
- Not-All-Equal SAT (NAESAT)
- 2SAT can be decided in polynomial time by an algorithm determining reachability in a graph associated with a given 2CNF formula ϕ.

Definition

Let ϕ be an instance of 2SAT.
Define a graph $G(\phi)$ as follows:

- The vertices of $G(\phi)$ correspond to the variables of ϕ and their negations.
- For every clause $\alpha \vee \beta$ in ϕ, there are $\operatorname{arcs}(\bar{\alpha}, \beta)$ and $(\bar{\beta}, \alpha)$ in $G(\phi)$.

Theorem

Let ϕ be an instance of 2SAT.
Then ϕ is unsatisfiable iff there is a variable x such that there are paths from x to $\neg x$ and from $\neg x$ to x in $G(\phi)$.

Example

- Consider the formula

$$
\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{3}\right)
$$

- The graph $G(\phi)$:

- ϕ is unsatisfiable as there is a path from x_{3} to $\neg x_{3}$ and from $\neg x_{3}$ to x_{3} in $G(\phi)$.

2SAT is in P

Corollary
2 SAT is in \mathbf{P}.

Proof.
The reachability condition of the preceding theorem can be tested by standard graph algorithms (e.g. depth-first-search) in polynomial time.

Not-All-Equal SAT (NAESAT)

In the NAESAT problem, a given 3CNF formula ϕ is considered satisfied if there is a truth assignment so that in each clause of ϕ, the three literals do not have the same truth value.

Theorem
NAESAT is NP-complete.
Proof. Reduction from 3SAT. (Exercise.)

2. More Graph-Theoretic Problems

- MIN CUT and MAX CUT
- MAX BISECTION and BISECTION WIDTH
- HAMILTON PATH and TSP

MIN CUT and MAX CUT

- A cut in an undirected graph $G=(V, E)$ is a partition of the vertices into two nonempty sets S and $V-S$.
- The size of a cut is the number of edges between S and $V-S$.

Example

A graph and two cuts (of sizes 2 and 17, resp.):

- The problem of finding a cut with the smallest size is in \mathbf{P} :
(i) The size of the smallest cut that separates two given vertices s and t equals the maximum flow from s to t. ("Max-Flow/Min-Cut Thm".)
(ii) Minimum cut: find the maximum flow between a fixed s and all other vertices and choose the smallest value found.

Example

A maximum flow and cut of size 2 :

- However, the problem of deciding whether there is a cut of a size at least K (MAX CUT) is much harder:

Theorem
MAX CUT is NP-complete.

Reduction from NAESAT to MAX CUT

The NP-completeness of MAX CUT is shown for graphs with multiple edges between vertices by a reduction from NAESAT.

- For a conjunction of clauses $\phi=C_{1} \wedge \ldots \wedge C_{m}$, we construct a graph $G=(V, E)$ so that
G has a cut of size $5 m$ iff ϕ is satisfied in the sense of NAESAT.
- The vertices of G are $x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}$ where x_{1}, \ldots, x_{n} are the variables in ϕ.
- The edges in G include a triangle $[\alpha, \beta, \gamma]$ for each clause $\alpha \vee \beta \vee \gamma$ and n_{i} copies of the edge $\left\{x_{i}, \neg x_{i}\right\}$ where n_{i} is the number of occurrences of x_{i} or $\neg x_{i}$ in the clauses.
- Now a cut $(S, V-S)$ of size $5 m$ in G corresponds to a truth assignment satisfying ϕ in the sense of NAESAT.

Example. Consider the conjunction of clauses ϕ :
$\left(\neg x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$
which is satisfied in the sense of NAESAT iff the graph G on the right obtained as the result of the reduction has a cut of size $5^{*} 2=10$.
For instance,

$$
\left(\left\{x_{1}, x_{2}, x_{3}\right\},\left\{\neg x_{1}, \neg x_{2}, \neg x_{3}\right\}\right)
$$

is a cut of size 10 and it corresponds to a truth assignment $T\left(x_{1}\right)=T\left(x_{2}\right)=T\left(x_{3}\right)=$ true satisfying ϕ in the sense of NAESAT.

Correctness of the reduction

- It is easy to see that a satisfying truth assignment (in the sense of NAESAT) gives rise to a cut of size 5 m .
- Conversely, suppose there is a cut $(S, V-S)$ of size $5 m$ or more.
- All variables can be assumed separate from their negations: If both $x_{i}, \neg x_{i}$ are on the same side, they contribute at most $2 n_{i}$ edges to the cut (where n_{i} is the number of occurrences of x_{i} or $\neg x_{i}$ in the clauses).
Hence, moving the one with fewer neighbours to the other side of the cut does not decrease the size of the cut.
- Let S be the set of true literals and $V-S$ those false.
- The total number of edges in the cut joining opposite literals is $3 m$. The remaining $2 m$ are coming from triangles meaning that all m triangles are cut, i.e. ϕ is satisfied in the sense of NAESAT. \square

Graph problems: MAX BISECTION

- In many applications of graph partitioning, the sizes of S and $V-S$ cannot be arbitrarily small or large.
- MAX BISECTION is the problem of determining whether there is a cut $(S, V-S)$ with size of K or more such that $|S|=|V-S|$.

Example

Bisections with cut sizes of 2 and 17, respectively:

- Is MAX BISECTION easier than MAX CUT?

Lemma

MAX BISECTION is NP-complete.

Proof.

Reducing MAX CUT to MAX BISECTION by modifying input: Add $|V|$ disconnected new vertices to G. Now every cut of G can be made a bisection by appropriately splitting the new vertices. Now $G=(V, E)$ has a cut $(S, V-S)$ with size of K or more iff the modified graph has a cut with size of K or more with $|S|=|V-S|$.

Example

Reducing MAX CUT to MAX BISECTION:

Graph problems: BISECTION WIDTH

- The respective minimisation problem, i.e. MIN CUT with the bisection requirement, is NP-complete, too. (Remember that MIN CUT $\in \mathbf{P}$).
- BISECTION WIDTH: is there a bisection of size K or less?

Theorem

BISECTION WIDTH is NP-complete.

Proof.

A reduction from MAX BISECTION. A graph $G=(V, E)$ where $|V|=2 n$ for some n has a bisection of size K or more iff the complement \bar{G} has a bisection of size $n^{2}-K$ or less.

Graph problems: HAMILTON PATH

Theorem

HAMILTON PATH is NP-complete.
Proof.

- Reduction from 3SAT to HAMILTON PATH: given a formula ϕ in CNF with variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m} each with three literals, we construct a graph $R(\phi)$ that has a Hamilton path iff ϕ is satisfiable.
- Choice gadgets select a truth assignment for variables x_{i}.
- Consistency gadgets (XOR) enforce that all occurrences of x_{i} have the same truth value and all occurrences of $\neg x_{i}$ the opposite.
- Constraint gadgets guarantee that all clauses are satisfied.

Gadgets [Papadimitriou, 1994]

(b)
(c)

Figure 9-5. The consistency gadget.

Figure 9-4. The choice gadget.

Figure 9-6. The constraint gadget.

Reduction from 3SAT to HAMILTON PATH

The graph $R(\phi)$ is constructed as follows:

- The choice gadgets of variables x_{i} are connected in series.
- A constraint gadget (triangle) for each clause with an edge identified with each literal l in the clause.
- If l is x_{i}, then XOR to true edge of choice gadget of x_{i}.
- If it is $\neg x_{i}$, then XOR to false edge of choice gadget of x_{i}.
- All vertices of the triangles, the end vertex of choice gadgets and a new vertex 3 form a clique. Add a vertex 2 connected to 3 .
Basic idea: each side of the constraint gadget is traversed by the Hamilton path iff the corresponding literal is false. Hence, at least one literal in any clause is true since otherwise all sides for its triangle should be traversed which is impossible (implying no Hamilton path).

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

[Papadimitriou, 1994]

Correctness of the reduction

- If ϕ is satisfiable, there is a Hamilton path:

From a satisfying truth assignment, we construct a Hamilton path by starting at 1, traversing choice gadgets according to the truth assignment, the rest is a big clique for which a trivial path can be found leading to 3 and then to 2 .

- If there is a Hamilton path, ϕ is satisfiable:

The path starts at 1, makes a truth assignment, traverses the triangles in some order and ends up in 2. The truth assignment satisfies ϕ as there is no triangle where all sides are traversed, i.e., where all literals are false.

Travelling salesperson (TSP) revisited

Corollary

TSP(D) is NP-complete.
Proof: A reduction from HAMILTON PATH to TSP(D). Given a graph G with n vertices, construct a distance matrix $d_{i j}$ and a budget B so that there is a tour of length at most B iff G has a Hamilton path.

- There are n cities and the distance $d_{i j}=1$ if there is $\{i, j\} \in G$ and $d_{i j}=2$ otherwise. The budget $B=n+1$.
- If there is a tour of length $n+1$ or less, then there is at most one pair $(\pi(i), \pi(i+1))$ in it with cost 2, i.e., a pair for which $\{\pi(i), \pi(i+1)\}$ is not an edge. Removing it gives a Hamilton path.
- If G has a Hamilton path, then its cost is $n-1$ and it can be made into a tour with additional cost of at most 2 . \square

3. Sets and Numbers

- TRIPARTITE MATCHING
- EXACT COVER BY 3-SETS
- KNAPSACK
- Pseudopolynomial algorithms
- Strong NP-completeness
- BIN PACKING

Sets and numbers: TRIPARTITE MATCHING

Definition

TRIPARTITE MATCHING:
INSTANCE: Three sets B (boys), G (girls), and H (houses) each containing n elements, and a ternary relation $T \subseteq B \times G \times H$. QUESTION: Is there a set of n triples in T no two of which have a component in common?

Theorem

TRIPARTITE MATCHING is NP-complete.
Proof. By reduction from 3SAT. Each variable x has a combined choice and consistency gadget, and each clause c a dedicated pair of boy b_{c} and girl g_{c}, together with three triples $\left(b_{c}, g_{c}, h_{l}\right)$ where h_{l} ranges over the three houses corresponding to the occurrences of literals in the clause (appearing in the combined gadgets).

The combined gadget for choice and consistency

The gadget for a variable x involves k boys, k girls and $2 k$ houses forming a " k-circle", where k is either the number of occurrences of x or its negation whichever is larger. (Recall that k can be assumed to equal 2.) The case $k=2$ is given alongside.

- Occurrences of x in the clauses are connected to the odd houses $h_{2 i-1}$ in the variable gadget for x and those of $\neg x$ to the even houses $h_{2 i}$.
- Exactly two kinds of matchings in the variable gadget for x are possible:
- " $T(x)=$ true": each b_{i} with g_{i} and $h_{2 i}$.
- " $T(x)=$ false": each b_{i} with $g_{i-1}\left(g_{k}\right.$ if $\left.i=1\right)$ and $h_{2 i-1}$.

Example

Reducing 3SAT to TRIPARTITE MATCHING:

Correctness of the reduction

- Note that a " $T(x)=$ true" matching in the variable gadget for x leaves the odd houses unoccupied, and a " $T(x)=$ false" matching respectively the even houses.
- For a clause c, the dedicated b_{c} and g_{c} can be matched to a house h in a variable gadget for x that is left unoccupied when x is assigned a truth values satisfying c.
- One more detail needs to be settled: there are now more houses H than boys B and girls G (but $|B|=|G|$).
- Solution: add $l=|H|-|B|$ new boys and l new girls. The i th new girl participates in $|H|$ triples containing the i th new boy and each house.
- Now a tripartite matching exists iff the set of clauses is satisfiable.

Sets and numbers: EXACT COVER BY 3-SETS

Definition

EXACT COVER BY 3-SETS:
INSTANCE: A family $F=\left\{S_{1}, \ldots, S_{n}\right\}$ of subsets of a finite set U such that $|U|=3 m$ for some integer m and $\left|S_{i}\right|=3$ for all i.
QUESTION: Is there a subfamily of m sets in F that are disjoint and have U as their union?

Corollary
EXACT COVER BY 3-SETS is NP-complete.
sketch.
TRIPARTITE MATCHING can be reduced to EXACT COVER BY 3-SETS by noticing that it is a special case where U is partitioned in three sets B, G, H with $|B|=|G|=|H|$ and
$F=\{\{b, g, h\} \mid(b, g, h) \in T\}$.

Example

TRIPARTITE MATCHING:
$B=\left\{b_{1}, \ldots, b_{n}\right\}, G=\left\{g_{1}, \ldots, g_{n}\right\}$,
$H=\left\{h_{1}, \ldots, h_{n}\right\}$,
$T=\left\{\left(b_{1}, g_{2}, h_{1}\right),\left(b_{1}, g_{2}, h_{2}\right), \ldots\right\}$

EXACT COVER BY 3-SETS:

$U=\left\{b_{1}, \ldots, b_{n}, g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n}\right\}$
$F=\left\{\left\{b_{1}, g_{2}, h_{1}\right\},\left\{b_{1}, g_{2}, h_{2}\right\}, \ldots\right\}$

Sets and numbers: KNAPSACK

Definition

KNAPSACK:
INSTANCE: A set of n items with each item i having a value v_{i} and a weight w_{i} (both positive integers) and integers W and K.
QUESTION: Is there a subset S of the items such that
$\Sigma_{i \in S} w_{i} \leq W$ but $\Sigma_{i \in S} v_{i} \geq K$?

Theorem

KNAPSACK is NP-complete.
Proof. We show that a simple special case of KNAPSACK is
NP-complete where $v_{i}=w_{i}$ for all i and $W=K$:
INSTANCE: A set of integers w_{1}, \ldots, w_{n} and an integer K.
QUESTION: Is there a subset S of the integers with $\Sigma_{i \in S} w_{i}=K$?

Reduction from EXACT COVER BY 3-SETS

The reduction is based on the set $U=$ $\{1,2, \ldots, 3 m\}$ and the sets S_{1}, \ldots, S_{n} given as bit vectors $\{0,1\}^{3 m}$ and $K=$ $2^{3 m}-1$. Then the task is to find a subset of bit vectors that sum to K.

\rightarrow	0	1	\ldots	0	0
	1	0	\ldots	0	0
	\vdots				
\rightarrow	0	0	\ldots	1	1
	1	1	\ldots	1	1

- This does not quite work because of the carry bit, but the problem can be circumvented by using $n+1$ as the base rather than 2 .
- Now each S_{i} corresponds to $w_{i}=\Sigma_{j \in S_{i}}(n+1)^{3 m-j}$.
- Then a set of these integers w_{i} adds up to $K=\sum_{j=0}^{3 m-1}(n+1)^{j}$ iff there is an exact cover among $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$.

Example

Reducing EXACT COVER BY 3-SETS to KNAPSACK
EXACT COVER BY 3-SETS:
$U=\left\{e_{1}, \ldots, e_{6}\right\}$
$F=\left\{S_{1}=\left\{e_{1}, e_{4}, e_{6}\right\}, S_{2}=\left\{e_{1}, e_{3}, e_{6}\right\}, S_{3}=\left\{e_{2}, e_{3}, e_{5}\right\}\right\}$
reduces to
KNAPSACK:
Integers

$$
\begin{aligned}
& w_{1}=1 \cdot 4^{6-6}+0 \cdot 4^{6-5}+1 \cdot 4^{6-4}+0 \cdot 4^{6-3}+0 \cdot 4^{6-2}+1 \cdot 4^{6-1}=1041 \\
& w_{2}=1 \cdot 4^{6-6}+0 \cdot 4^{6-5}+0 \cdot 4^{6-4}+1 \cdot 4^{6-3}+0 \cdot 4^{6-2}+1 \cdot 4^{6-1}=1089 \\
& w_{3}=0 \cdot 4^{6-6}+1 \cdot 4^{6-5}+0 \cdot 4^{6-4}+1 \cdot 4^{6-3}+1 \cdot 4^{6-2}+0 \cdot 4^{6-1}=324 \\
& K=4^{0}+4^{1}+4^{2}+4^{3}+4^{4}+4^{5}=1365
\end{aligned}
$$

Sets and numbers: Pseudopolynomial algorithms

Proposition

Any instance of KNAPSACK can be solved in $O(n W)$ time where n is the number of items and W is the weight limit.

Proof.

- Define $V(w, i)$: the largest value attainable be selecting some among the first i items so that their total weight is exactly w.
- Each $V(w, i)$ with $w=1, \ldots, W$ and $i=1, \ldots, n$ can be computed by

$$
V(w, i+1)=\max \left\{V(w, i), v_{i+1}+V\left(w-w_{i+1}, i\right)\right\}
$$

where $V(w, i)=-\infty$ if $w \leq 0, V(0, i)=0$ for all i, and $V(w, 0)=-\infty$ if $w \geq 1$.

- For each entry this can be done in constant number of steps and there are $n W$ entries. Hence, the algorithm runs in $O(n W)$ time.
- An instance is answered "yes" iff there is an entry $V(w, i) \geq K$.

Pseudopolynomial algorithm for KNAPSACK: example

Items $\left\{\left(v_{1}=3, w_{1}=7\right),\left(v_{2}=4, w_{2}=5\right),\left(v_{3}=4, w_{3}=4\right)\right.$, $\left.\left(v_{4}=7, w_{4}=3\right),\left(v_{5}=2, w_{5}=3\right)\right\}$
weight limit $W=10$, capacity limit $K=12$

Sets and numbers: Strong NP-completeness

- The preceding algorithm is not polynomial w.r.t. the length of the input (which is $O(n \log W)$) but exponential ($W=2^{\log W}$).
- An algorithm where the time bound is polynomial in the integers in the input (not their logarithms) is called pseudopolynomial.
- A problem is called strongly NP-complete if the problem remains NP-complete even if any instance of length n is restricted to contain integers of size (i.e. "value") at most $p(n)$, for a polynomial p.
[as Strongly NP-complete problems cannot have pseudopolynomial algorithms (unless $\mathbf{P}=\mathbf{N P}$).
- SAT, MAX CUT, TSP(D), HAMILTON PATH, . . . are strongly NP-complete but KNAPSACK is not.

Sets and numbers: BIN PACKING

Definition

BIN PACKING
INSTANCE: N positive integers a_{1}, \ldots, a_{N} (items) and
integers C (capacity) and B (number of bins).
QUESTION: Is there a partition of the numbers into B subsets such that for each subset $S, \Sigma_{a_{i} \in S} a_{i} \leq C$?

- BIN PACKING is strongly NP-complete:

Even if the integers are restricted to have polynomial values (w.r.t. the length of input), BIN PACKING remains NP-complete. For the proof, see the pages 204-205 in Papadimitriou's book.

- Any pseudopolynomial algorithm for BIN PACKING would yield a polynomial algorithm for all problems in NP implying $\mathbf{P}=\mathbf{N P}$.

