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1. More Variants of Satisfiability

2SAT

Not-All-Equal SAT (NAESAT)
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2SAT

2SAT can be decided in polynomial time by an algorithm
determining reachability in a graph associated with a given 2CNF
formula φ.

Definition
Let φ be an instance of 2SAT.
Define a graph G(φ) as follows:
– The vertices of G(φ) correspond to the variables of φ and their
negations.
– For every clause α∨β in φ, there are arcs (α,β) and (β,α) in G(φ).

Theorem
Let φ be an instance of 2SAT.
Then φ is unsatisfiable iff there is a variable x such that there are paths
from x to ¬x and from ¬x to x in G(φ).
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Example
Consider the formula
φ = (x1∨ x2)∧ (¬x1∨ x3)∧ (¬x2∨ x3)∧ (¬x3∨¬x3)

The graph G(φ):
¬x1

¬x3

¬x2

x1

x2

x3

φ is unsatisfiable as there is a path from x3 to ¬x3 and from ¬x3
to x3 in G(φ).
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2SAT is in P

Corollary
2SAT is in P.

Proof.
The reachability condition of the preceding theorem can be tested by
standard graph algorithms (e.g. depth-first-search) in polynomial
time.
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Not-All-Equal SAT (NAESAT)

In the NAESAT problem, a given 3CNF formula φ is considered
satisfied if there is a truth assignment so that in each clause of φ, the
three literals do not have the same truth value.

Theorem
NAESAT is NP-complete.

Proof. Reduction from 3SAT. (Exercise.)
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2. More Graph-Theoretic Problems

MIN CUT and MAX CUT

MAX BISECTION and BISECTION WIDTH

HAMILTON PATH and TSP
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MIN CUT and MAX CUT

A cut in an undirected graph G = (V,E) is a partition of the
vertices into two nonempty sets S and V−S.

The size of a cut is the number of edges between S and V−S.

Example
A graph and two cuts (of sizes 2 and 17, resp.):
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The problem of finding a cut with the smallest size is in P:

(i) The size of the smallest cut that separates two given vertices s and
t equals the maximum flow from s to t. (“Max-Flow/Min-Cut Thm”.)

(ii) Minimum cut: find the maximum flow between a fixed s and all
other vertices and choose the smallest value found.

Example
A maximum flow and cut of size 2:

s

t

However, the problem of deciding whether there is a cut of a size
at least K (MAX CUT) is much harder:

Theorem
MAX CUT is NP-complete.
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Reduction from NAESAT to MAX CUT

The NP-completeness of MAX CUT is shown for graphs with multiple
edges between vertices by a reduction from NAESAT.

For a conjunction of clauses φ = C1∧ . . .∧Cm, we construct a
graph G = (V,E) so that

G has a cut of size 5m iff φ is satisfied in the sense of NAESAT.

The vertices of G are x1, . . . ,xn,¬x1, . . . ,¬xn where x1, . . . ,xn are
the variables in φ.

The edges in G include a triangle [α,β,γ] for each clause
α∨β∨ γ and ni copies of the edge {xi,¬xi} where ni is the
number of occurrences of xi or ¬xi in the clauses.

Now a cut (S,V−S) of size 5m in G corresponds to a truth
assignment satisfying φ in the sense of NAESAT.
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Example. Consider the conjunc-
tion of clauses φ:

(¬x1∨x2∨x2)∧(¬x1∨¬x2∨x3)

which is satisfied in the sense
of NAESAT iff the graph G on
the right obtained as the result
of the reduction has a cut of size
5*2=10.
For instance,

({x1,x2,x3},{¬x1,¬x2,¬x3})

is a cut of size 10 and it cor-
responds to a truth assignment
T(x1) = T(x2) = T(x3) = true
satisfying φ in the sense of
NAESAT.

¬x3

x3

¬x2

x2

x1

¬x1
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Correctness of the reduction

It is easy to see that a satisfying truth assignment (in the sense of
NAESAT) gives rise to a cut of size 5m.

Conversely, suppose there is a cut (S,V−S) of size 5m or more.

All variables can be assumed separate from their negations:
If both xi,¬xi are on the same side, they contribute at most 2ni

edges to the cut (where ni is the number of occurrences of xi or
¬xi in the clauses).
Hence, moving the one with fewer neighbours to the other side of
the cut does not decrease the size of the cut.

Let S be the set of true literals and V−S those false.

The total number of edges in the cut joining opposite literals is
3m. The remaining 2m are coming from triangles meaning that all
m triangles are cut, i.e. φ is satisfied in the sense of NAESAT. 2
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Graph problems: MAX BISECTION

In many applications of graph partitioning, the sizes of S and
V−S cannot be arbitrarily small or large.

MAX BISECTION is the problem of determining whether there is
a cut (S,V−S) with size of K or more such that |S|= |V−S|.

Example
Bisections with cut sizes of 2 and 17, respectively:
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Is MAX BISECTION easier than MAX CUT?

Lemma
MAX BISECTION is NP-complete.

Proof.
Reducing MAX CUT to MAX BISECTION by modifying input:
Add |V| disconnected new vertices to G. Now every cut of G can be
made a bisection by appropriately splitting the new vertices.
Now G = (V,E) has a cut (S,V−S) with size of K or more iff the
modified graph has a cut with size of K or more with |S|= |V−S|.

Example
Reducing MAX CUT to MAX BISECTION:
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Graph problems: BISECTION WIDTH

The respective minimisation problem, i.e. MIN CUT with the
bisection requirement, is NP-complete, too.
(Remember that MIN CUT ∈ P).

BISECTION WIDTH: is there a bisection of size K or less?

Theorem
BISECTION WIDTH is NP-complete.

Proof.
A reduction from MAX BISECTION. A graph G = (V,E) where
|V|= 2n for some n has a bisection of size K or more iff the
complement G has a bisection of size n2−K or less.
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Graph problems: HAMILTON PATH

Theorem
HAMILTON PATH is NP-complete.

Proof.

Reduction from 3SAT to HAMILTON PATH:
given a formula φ in CNF with variables x1, . . . ,xn and clauses
C1, . . . ,Cm each with three literals, we construct a graph R(φ)
that has a Hamilton path iff φ is satisfiable.

Choice gadgets select a truth assignment for variables xi.

Consistency gadgets (XOR) enforce that all occurrences of xi

have the same truth value and all occurrences of ¬xi the
opposite.

Constraint gadgets guarantee that all clauses are satisfied.
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Gadgets [Papadimitriou, 1994]
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Reduction from 3SAT to HAMILTON PATH
The graph R(φ) is constructed as follows:

The choice gadgets of variables xi are connected in series.

A constraint gadget (triangle) for each clause with an edge
identified with each literal l in the clause.
– If l is xi, then XOR to true edge of choice gadget of xi.
– If it is ¬xi, then XOR to false edge of choice gadget of xi.

All vertices of the triangles, the end vertex of choice gadgets and
a new vertex 3 form a clique. Add a vertex 2 connected to 3.

Basic idea: each side of the constraint gadget is traversed by the
Hamilton path iff the corresponding literal is false. Hence, at least one
literal in any clause is true since otherwise all sides for its triangle
should be traversed which is impossible (implying no Hamilton path).
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[Papadimitriou, 1994]
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Correctness of the reduction
If φ is satisfiable, there is a Hamilton path:
From a satisfying truth assignment, we construct a Hamilton path
by starting at 1, traversing choice gadgets according to the truth
assignment, the rest is a big clique for which a trivial path can be
found leading to 3 and then to 2.

If there is a Hamilton path, φ is satisfiable:
The path starts at 1, makes a truth assignment, traverses the
triangles in some order and ends up in 2. The truth assignment
satisfies φ as there is no triangle where all sides are traversed,
i.e., where all literals are false. 2
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Travelling salesperson (TSP) revisited

Corollary
TSP(D) is NP-complete.

Proof: A reduction from HAMILTON PATH to TSP(D). Given a graph G
with n vertices, construct a distance matrix dij and a budget B so that
there is a tour of length at most B iff G has a Hamilton path.

There are n cities and the distance dij = 1 if there is {i, j} ∈ G
and dij = 2 otherwise. The budget B = n+1.

If there is a tour of length n+1 or less, then there is at most one
pair (π(i),π(i+1)) in it with cost 2, i.e., a pair for which
{π(i),π(i+1)} is not an edge. Removing it gives a Hamilton
path.

If G has a Hamilton path, then its cost is n−1 and it can be made
into a tour with additional cost of at most 2. 2
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3. Sets and Numbers

TRIPARTITE MATCHING

EXACT COVER BY 3-SETS

KNAPSACK

Pseudopolynomial algorithms

Strong NP-completeness

BIN PACKING
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Sets and numbers: TRIPARTITE MATCHING

Definition
TRIPARTITE MATCHING:
INSTANCE: Three sets B (boys), G (girls), and H (houses) each
containing n elements, and a ternary relation T ⊆ B×G×H.
QUESTION: Is there a set of n triples in T no two of which have a
component in common?

Theorem
TRIPARTITE MATCHING is NP-complete.

Proof. By reduction from 3SAT. Each variable x has a combined
choice and consistency gadget, and each clause c a dedicated pair of
boy bc and girl gc, together with three triples (bc,gc,hl) where hl

ranges over the three houses corresponding to the occurrences of
literals in the clause (appearing in the combined gadgets).
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The combined gadget for choice and consistency

The gadget for a variable x involves k boys,
k girls and 2k houses forming a “k-circle”,
where k is either the number of occur-
rences of x or its negation whichever is
larger. (Recall that k can be assumed to
equal 2.) The case k = 2 is given along-
side.

h1 h3

h4

h2

b1

g2 b2

g1

Occurrences of x in the clauses are connected to the odd houses
h2i−1 in the variable gadget for x and those of ¬x to the even
houses h2i.

Exactly two kinds of matchings in the variable gadget for x are
possible:
– “T(x) = true”: each bi with gi and h2i.
– “T(x) = false”: each bi with gi−1 (gk if i = 1) and h2i−1.
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Example
Reducing 3SAT to TRIPARTITE MATCHING:

gadget for x1 gadget for x2 gadget for x3 gadget for x4

”easy to please 1”

one with
each homeeach home
one with

”easy to please l”

...

C1 = x1 ∨ x2 ∨ x3 C2 = ¬x1 ∨ x2 ∨ x4
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Correctness of the reduction

Note that a “T(x) = true” matching in the variable gadget for x
leaves the odd houses unoccupied, and a “T(x) = false”
matching respectively the even houses.

For a clause c, the dedicated bc and gc can be matched to a
house h in a variable gadget for x that is left unoccupied when x is
assigned a truth values satisfying c.

One more detail needs to be settled: there are now more houses
H than boys B and girls G (but |B|= |G|).
Solution: add l = |H|− |B| new boys and l new girls. The ith new
girl participates in |H| triples containing the ith new boy and each
house.

Now a tripartite matching exists iff the set of clauses is satisfiable.
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Sets and numbers: EXACT COVER BY 3-SETS

Definition
EXACT COVER BY 3-SETS:
INSTANCE: A family F = {S1, . . . ,Sn} of subsets of a finite set U such
that |U|= 3m for some integer m and |Si|= 3 for all i.
QUESTION: Is there a subfamily of m sets in F that are disjoint and
have U as their union?

Corollary
EXACT COVER BY 3-SETS is NP-complete.

sketch.
TRIPARTITE MATCHING can be reduced to EXACT COVER BY
3-SETS by noticing that it is a special case where U is partitioned in
three sets B,G,H with |B|= |G|= |H| and
F = {{b,g,h} | (b,g,h) ∈ T}.

Example
TRIPARTITE MATCHING:
B= {b1, ...,bn},G= {g1, ...,gn},
H = {h1, ...,hn},
T = {(b1,g2,h1),(b1,g2,h2), ...}

EXACT COVER BY 3-SETS:
U = {b1, ...,bn,g1, ...,gn,h1, ...,hn}
F = {{b1,g2,h1},{b1,g2,h2}, ...}
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Sets and numbers: KNAPSACK

Definition
KNAPSACK:
INSTANCE: A set of n items with each item i having a value vi and a
weight wi (both positive integers) and integers W and K.
QUESTION: Is there a subset S of the items such that
Σi∈Swi ≤W but Σi∈Svi ≥ K?

Theorem
KNAPSACK is NP-complete.

Proof. We show that a simple special case of KNAPSACK is
NP-complete where vi = wi for all i and W = K:
INSTANCE: A set of integers w1, . . . ,wn and an integer K.
QUESTION: Is there a subset S of the integers with Σi∈Swi = K?
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Reduction from EXACT COVER BY 3-SETS
The reduction is based on the set U =
{1,2, . . . ,3m} and the sets S1, . . . ,Sn

given as bit vectors {0,1}3m and K =
23m−1. Then the task is to find a sub-
set of bit vectors that sum to K.

→ 0 1 . . . 0 0
1 0 . . . 0 0
...

→ 0 0 . . . 1 1
1 1 . . . 1 1

This does not quite work because of the carry bit, but the problem
can be circumvented by using n+1 as the base rather than 2.

Now each Si corresponds to wi = Σj∈Si(n+1)3m−j.

Then a set of these integers wi adds up to K = ∑
3m−1
j=0 (n+1)j iff

there is an exact cover among {S1,S2, . . . ,Sn}. 2
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Example
Reducing EXACT COVER BY 3-SETS to KNAPSACK

EXACT COVER BY 3-SETS:
U = {e1, ...,e6}
F = {S1 = {e1,e4,e6},S2 = {e1,e3,e6},S3 = {e2,e3,e5}}
reduces to

KNAPSACK:
Integers

w1 = 1 ·46−6 +0 ·46−5 +1 ·46−4 +0 ·46−3 +0 ·46−2 +1 ·46−1 = 1041
w2 = 1 ·46−6 +0 ·46−5 +0 ·46−4 +1 ·46−3 +0 ·46−2 +1 ·46−1 = 1089
w3 = 0 ·46−6 +1 ·46−5 +0 ·46−4 +1 ·46−3 +1 ·46−2 +0 ·46−1 = 324

K = 40 +41 +42 +43 +44 +45 = 1365
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Sets and numbers: Pseudopolynomial algorithms

Proposition

Any instance of KNAPSACK can be solved in O(nW) time where n is
the number of items and W is the weight limit.

Proof.
Define V(w, i): the largest value attainable be selecting some
among the first i items so that their total weight is exactly w.

Each V(w, i) with w = 1, . . . ,W and i = 1, . . . ,n can be computed
by

V(w, i+1) = max{V(w, i),vi+1 +V(w−wi+1, i)}
where V(w, i) =−∞ if w≤ 0, V(0, i) = 0 for all i, and
V(w,0) =−∞ if w≥ 1.

For each entry this can be done in constant number of steps and
there are nW entries. Hence, the algorithm runs in O(nW) time.

An instance is answered “yes” iff there is an entry V(w, i)≥ K.
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Pseudopolynomial algorithm for KNAPSACK: example
Items {(v1 = 3,w1 = 7),(v2 = 4,w2 = 5),(v3 = 4,w3 = 4),
(v4 = 7,w4 = 3),(v5 = 2,w5 = 3)}
weight limit W = 10, capacity limit K = 12

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

−∞ −∞ −∞ −∞ −∞ −∞−∞−∞−∞−∞

−∞ −∞ −∞ −∞ −∞−∞−∞−∞−∞

−∞ −∞ −∞ −∞−∞−∞−∞−∞

−∞ −∞ −∞−∞−∞−∞

−∞−∞−∞

−∞−∞

0

0

0

0

0

0

3

4 3

4 4 3 8

7 4 4 11 11 8 10

7 4 4 9 11 11 8 13

w

iwi

7

5

4

3

32

7

4

4

3

vi V (w, i)
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Sets and numbers: Strong NP-completeness

The preceding algorithm is not polynomial w.r.t. the length of the
input (which is O(n logW)) but exponential (W = 2logW ).

An algorithm where the time bound is polynomial in the integers
in the input (not their logarithms) is called pseudopolynomial.

A problem is called strongly NP-complete if the problem
remains NP-complete even if any instance of length n is restricted
to contain integers of size (i.e. “value”) at most p(n), for a
polynomial p.

+ Strongly NP-complete problems cannot have
pseudopolynomial algorithms (unless P = NP).

SAT, MAX CUT, TSP(D), HAMILTON PATH, . . . are strongly
NP-complete but KNAPSACK is not.
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Sets and numbers: BIN PACKING

Definition
BIN PACKING
INSTANCE: N positive integers a1, . . . ,aN (items) and
integers C (capacity) and B (number of bins).
QUESTION: Is there a partition of the numbers into B subsets such
that for each subset S, Σai∈Sai ≤ C?

BIN PACKING is strongly NP-complete:
Even if the integers are restricted to have polynomial values
(w.r.t. the length of input), BIN PACKING remains NP-complete.
For the proof, see the pages 204–205 in Papadimitriou’s book.

Any pseudopolynomial algorithm for BIN PACKING would yield a
polynomial algorithm for all problems in NP implying P = NP.


