

CS-E4530 Computational Complexity Theory

Lecture 8: More NP-Complete Problems

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- More variants of satisfiability
- More graph-theoretic problems
- Sets and numbers

1. More Variants of Satisfiability

2SAT

Not-All-Equal SAT (NAESAT)

2SAT

 2SAT can be decided in polynomial time by an algorithm determining reachability in a graph associated with a given 2CNF formula φ.

Definition

Let ϕ be an instance of 2SAT.

Define a graph $G(\phi)$ as follows:

- The vertices of $G(\phi)$ correspond to the variables of ϕ and their negations.
- For every clause $\alpha \lor \beta$ in ϕ , there are arcs $(\overline{\alpha}, \beta)$ and $(\overline{\beta}, \alpha)$ in $G(\phi)$.

Theorem

Let ϕ be an instance of 2SAT.

Then ϕ is unsatisfiable iff there is a variable *x* such that there are paths from *x* to $\neg x$ and from $\neg x$ to *x* in *G*(ϕ).

Example

- Consider the formula $\phi = (x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (\neg x_2 \lor x_3) \land (\neg x_3 \lor \neg x_3)$
- The graph $G(\phi)$:

• ϕ is unsatisfiable as there is a path from x_3 to $\neg x_3$ and from $\neg x_3$ to x_3 in $G(\phi)$.

2SAT is in P

Corollary 2SAT is in **P**.

Proof.

The reachability condition of the preceding theorem can be tested by standard graph algorithms (e.g. depth-first-search) in polynomial time.

Not-All-Equal SAT (NAESAT)

In the NAESAT problem, a given 3CNF formula ϕ is considered satisfied if there is a truth assignment so that in each clause of ϕ , the three literals do not have the same truth value.

Theorem

NAESAT is NP-complete.

Proof. Reduction from 3SAT. (Exercise.)

2. More Graph-Theoretic Problems

- MIN CUT and MAX CUT
- MAX BISECTION and BISECTION WIDTH
- HAMILTON PATH and TSP

MIN CUT and MAX CUT

- A cut in an undirected graph G = (V, E) is a partition of the vertices into two nonempty sets *S* and V S.
- The size of a cut is the number of edges between S and V S.

Example

A graph and two cuts (of sizes 2 and 17, resp.):

- The problem of finding a cut with the smallest size is in P:
 - The size of the smallest cut that separates two given vertices s and t equals the maximum flow from s to t. ("Max-Flow/Min-Cut Thm".)
 - (ii) Minimum cut: find the maximum flow between a fixed *s* and all other vertices and choose the smallest value found.

Example

• However, the problem of deciding whether there is a cut of a size at least *K* (MAX CUT) is much harder:

Theorem

MAX CUT is NP-complete.

Reduction from NAESAT to MAX CUT

The NP-completeness of MAX CUT is shown for graphs with multiple edges between vertices by a reduction from NAESAT.

For a conjunction of clauses φ = C₁ ∧ ... ∧ C_m, we construct a graph G = (V,E) so that

G has a cut of size 5m iff ϕ is satisfied in the sense of NAESAT.

- The vertices of *G* are x₁,...,x_n, ¬x₁,..., ¬x_n where x₁,...,x_n are the variables in φ.
- The edges in *G* include a triangle [α, β, γ] for each clause α ∨ β ∨ γ and n_i copies of the edge {x_i, ¬x_i} where n_i is the number of occurrences of x_i or ¬x_i in the clauses.
- Now a cut (S, V S) of size 5m in G corresponds to a truth assignment satisfying ϕ in the sense of NAESAT.

Example. Consider the conjunction of clauses ϕ :

$$(\neg x_1 \lor x_2 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

which is satisfied in the sense of NAESAT iff the graph G on the right obtained as the result of the reduction has a cut of size $5^{2}=10$.

For instance,

$$(\{x_1, x_2, x_3\}, \{\neg x_1, \neg x_2, \neg x_3\})$$

is a cut of size 10 and it corresponds to a truth assignment $T(x_1) = T(x_2) = T(x_3) =$ **true** satisfying ϕ in the sense of NAESAT.

Correctness of the reduction

- It is easy to see that a satisfying truth assignment (in the sense of NAESAT) gives rise to a cut of size 5m.
- Conversely, suppose there is a cut (S, V S) of size 5m or more.
- All variables can be assumed separate from their negations: If both x_i, ¬x_i are on the same side, they contribute at most 2n_i edges to the cut (where n_i is the number of occurrences of x_i or ¬x_i in the clauses).

Hence, moving the one with fewer neighbours to the other side of the cut does not decrease the size of the cut.

- Let *S* be the set of true literals and V S those false.
- The total number of edges in the cut joining opposite literals is 3m. The remaining 2m are coming from triangles meaning that all m triangles are cut, i.e. φ is satisfied in the sense of NAESAT.

Graph problems: MAX BISECTION

- In many applications of graph partitioning, the sizes of S and V-S cannot be arbitrarily small or large.
- MAX BISECTION is the problem of determining whether there is a cut (S, V S) with size of *K* or more such that |S| = |V S|.

Example

• Is MAX BISECTION easier than MAX CUT?

Lemma

MAX BISECTION is NP-complete.

Proof.

Reducing MAX CUT to MAX BISECTION by modifying input: Add |V| disconnected new vertices to *G*. Now every cut of *G* can be made a bisection by appropriately splitting the new vertices. Now G = (V, E) has a cut (S, V - S) with size of *K* or more iff the modified graph has a cut with size of *K* or more with |S| = |V - S|.

Example

Reducing MAX CUT to MAX BISECTION:

Graph problems: BISECTION WIDTH

- The respective minimisation problem, i.e. MIN CUT with the bisection requirement, is NP-complete, too.
 (Remember that MIN CUT ∈ P).
- BISECTION WIDTH: is there a bisection of size K or less?

Theorem

BISECTION WIDTH is NP-complete.

Proof.

A reduction from MAX BISECTION. A graph G = (V, E) where |V| = 2n for some *n* has a bisection of size *K* or more iff the complement \overline{G} has a bisection of size $n^2 - K$ or less.

CS-E4530 Computational Complexity Theory / Lecture 8 Department of Computer Science 16/36

Graph problems: HAMILTON PATH

Theorem

HAMILTON PATH is NP-complete.

Proof.

- Reduction from 3SAT to HAMILTON PATH: given a formula ϕ in CNF with variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m each with three literals, we construct a graph $R(\phi)$ that has a Hamilton path iff ϕ is satisfiable.
- *Choice gadgets* select a truth assignment for variables *x_i*.
- Consistency gadgets (XOR) enforce that all occurrences of x_i have the same truth value and all occurrences of $\neg x_i$ the opposite.
- Constraint gadgets guarantee that all clauses are satisfied.

Gadgets [Papadimitriou, 1994]

Figure 9-6. The constraint gadget.

Reduction from 3SAT to HAMILTON PATH

The graph $R(\phi)$ is constructed as follows:

- The *choice gadgets* of variables *x_i* are connected in series.
- A *constraint gadget* (triangle) for each clause with an edge identified with each literal *l* in the clause.
 - If l is x_i , then XOR to **true** edge of choice gadget of x_i .
 - If it is $\neg x_i$, then XOR to **false** edge of choice gadget of x_i .
- All vertices of the triangles, the end vertex of choice gadgets and a new vertex 3 form a clique. Add a vertex 2 connected to 3.

Basic idea: each side of the constraint gadget is traversed by the Hamilton path iff the corresponding literal is **false**. Hence, at least one literal in any clause is **true** since otherwise all sides for its triangle should be traversed which is impossible (implying no Hamilton path).

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

[Papadimitriou, 1994]

Correctness of the reduction

- If \$\phi\$ is satisfiable, there is a Hamilton path: From a satisfying truth assignment, we construct a Hamilton path by starting at 1, traversing choice gadgets according to the truth assignment, the rest is a big clique for which a trivial path can be found leading to 3 and then to 2.
- If there is a Hamilton path, ϕ is satisfiable:

The path starts at 1, makes a truth assignment, traverses the triangles in some order and ends up in 2. The truth assignment satisfies ϕ as there is no triangle where all sides are traversed, i.e., where all literals are **false**. \Box

Travelling salesperson (TSP) revisited

Corollary

TSP(D) is NP-complete.

Proof: A reduction from HAMILTON PATH to TSP(D). Given a graph G with n vertices, construct a distance matrix d_{ij} and a budget B so that there is a tour of length at most B iff G has a Hamilton path.

- There are *n* cities and the distance *d_{ij}* = 1 if there is {*i,j*} ∈ G and *d_{ij}* = 2 otherwise. The budget *B* = *n* + 1.
- If there is a tour of length n + 1 or less, then there is at most one pair (π(i), π(i+1)) in it with cost 2, i.e., a pair for which {π(i), π(i+1)} is not an edge. Removing it gives a Hamilton path.
- If G has a Hamilton path, then its cost is n − 1 and it can be made into a tour with additional cost of at most 2. □

3. Sets and Numbers

- TRIPARTITE MATCHING
- EXACT COVER BY 3-SETS
- KNAPSACK
- Pseudopolynomial algorithms
- Strong NP-completeness
- BIN PACKING

Sets and numbers: TRIPARTITE MATCHING

Definition

TRIPARTITE MATCHING:

INSTANCE: Three sets *B* (boys), *G* (girls), and *H* (houses) each containing *n* elements, and a ternary relation $T \subseteq B \times G \times H$. QUESTION: Is there a set of *n* triples in *T* no two of which have a component in common?

Theorem

TRIPARTITE MATCHING is NP-complete.

Proof. By reduction from 3SAT. Each variable *x* has a combined choice and consistency gadget, and each clause *c* a dedicated pair of boy b_c and girl g_c , together with three triples (b_c, g_c, h_l) where h_l ranges over the three houses corresponding to the occurrences of literals in the clause (appearing in the combined gadgets).

The combined gadget for choice and consistency

The gadget for a variable *x* involves *k* boys, *k* girls and 2k houses forming a "*k*-circle", where *k* is either the number of occurrences of *x* or its negation whichever is larger. (Recall that *k* can be assumed to equal 2.) The case k = 2 is given along-side.

- Occurrences of *x* in the clauses are connected to the odd houses *h*_{2*i*−1} in the variable gadget for *x* and those of ¬*x* to the even houses *h*_{2*i*}.
- Exactly two kinds of matchings in the variable gadget for *x* are possible:

$$-$$
 " $T(x) =$ **true**": each b_i with g_i and h_{2i} .

- T(x) =**false**": each b_i with g_{i-1} (g_k if i = 1) and h_{2i-1} .

Example

Reducing 3SAT to TRIPARTITE MATCHING:

Correctness of the reduction

- Note that a "T(x) = true" matching in the variable gadget for x leaves the odd houses unoccupied, and a "T(x) = false" matching respectively the even houses.
- For a clause *c*, the dedicated *b_c* and *g_c* can be matched to a house *h* in a variable gadget for *x* that is left unoccupied when *x* is assigned a truth values satisfying *c*.
- One more detail needs to be settled: there are now more houses H than boys B and girls G (but |B| = |G|).
- Solution: add l = |H| |B| new boys and l new girls. The *i*th new girl participates in |H| triples containing the *i*th new boy and each house.
- Now a tripartite matching exists iff the set of clauses is satisfiable.

Sets and numbers: EXACT COVER BY 3-SETS

Definition

EXACT COVER BY 3-SETS: INSTANCE: A family $F = \{S_1, \ldots, S_n\}$ of subsets of a finite set U such that |U| = 3m for some integer m and $|S_i| = 3$ for all i. QUESTION: Is there a subfamily of m sets in F that are disjoint and have U as their union?

Corollary

EXACT COVER BY 3-SETS is NP-complete.

sketch.

TRIPARTITE MATCHING can be reduced to EXACT COVER BY 3-SETS by noticing that it is a special case where U is partitioned in three sets B, G, H with |B| = |G| = |H| and $F = \{\{b, g, h\} \mid (b, g, h) \in T\}.$

Example

 TRIPARTITE MATCHING:
 EXACT COVER BY 3-SETS:

 $B = \{b_1, ..., b_n\}, G = \{g_1, ..., g_n\},$ $U = \{b_1, ..., b_n, g_1, ..., g_n, h_1, ..., h_n\}$
 $H = \{h_1, ..., h_n\},$ $F = \{\{b_1, g_2, h_1\}, \{b_1, g_2, h_2\}, ...\}$

Sets and numbers: KNAPSACK

Definition KNAPSACK: INSTANCE: A set of *n* items with each item *i* having a value v_i and a weight w_i (both positive integers) and integers *W* and *K*. QUESTION: Is there a subset *S* of the items such that $\Sigma_{i \in S} w_i \leq W$ but $\Sigma_{i \in S} v_i \geq K$?

Theorem

KNAPSACK is NP-complete.

Proof. We show that a simple special case of KNAPSACK is NP-complete where $v_i = w_i$ for all *i* and W = K: INSTANCE: A set of integers w_1, \ldots, w_n and an integer *K*. QUESTION: Is there a subset *S* of the integers with $\sum_{i \in S} w_i = K$?

Reduction from EXACT COVER BY 3-SETS

The reduction is based on the set $U = \rightarrow 0 \ 1 \ \dots \ 0 \ 0$ $\{1,2,\dots,3m\}$ and the sets S_1,\dots,S_n given as bit vectors $\{0,1\}^{3m}$ and $K = 2^{3m} - 1$. Then the task is to find a subset of bit vectors that sum to K. $\rightarrow 0 \ 0 \ \dots \ 1 \ 1$

- This does not quite work because of the carry bit, but the problem can be circumvented by using n + 1 as the base rather than 2.
- Now each S_i corresponds to $w_i = \sum_{j \in S_i} (n+1)^{3m-j}$.
- Then a set of these integers w_i adds up to $K = \sum_{j=0}^{3m-1} (n+1)^j$ iff there is an exact cover among $\{S_1, S_2, \dots, S_n\}$. \Box

Example

Reducing EXACT COVER BY 3-SETS to KNAPSACK EXACT COVER BY 3-SETS:

$$U = \{e_1, \dots, e_6\}$$

$$F = \{S_1 = \{e_1, e_4, e_6\}, S_2 = \{e_1, e_3, e_6\}, S_3 = \{e_2, e_3, e_5\}\}$$

reduces to

KNAPSACK:

Integers

$$\begin{split} w_1 &= 1 \cdot 4^{6-6} + 0 \cdot 4^{6-5} + 1 \cdot 4^{6-4} + 0 \cdot 4^{6-3} + 0 \cdot 4^{6-2} + 1 \cdot 4^{6-1} = 1041 \\ w_2 &= 1 \cdot 4^{6-6} + 0 \cdot 4^{6-5} + 0 \cdot 4^{6-4} + 1 \cdot 4^{6-3} + 0 \cdot 4^{6-2} + 1 \cdot 4^{6-1} = 1089 \\ w_3 &= 0 \cdot 4^{6-6} + 1 \cdot 4^{6-5} + 0 \cdot 4^{6-4} + 1 \cdot 4^{6-3} + 1 \cdot 4^{6-2} + 0 \cdot 4^{6-1} = 324 \\ K &= 4^0 + 4^1 + 4^2 + 4^3 + 4^4 + 4^5 = 1365 \end{split}$$

Sets and numbers: Pseudopolynomial algorithms

Proposition

Any instance of KNAPSACK can be solved in O(nW) time where *n* is the number of items and *W* is the weight limit.

Proof.

- Define V(w, i): the largest value attainable be selecting some among the first i items so that their total weight is exactly w.
- Each V(w,i) with w = 1, ..., W and i = 1, ..., n can be computed by

$$V(w, i+1) = \max\{V(w, i), v_{i+1} + V(w - w_{i+1}, i)\}$$

where $V(w,i) = -\infty$ if $w \le 0$, V(0,i) = 0 for all i, and $V(w,0) = -\infty$ if $w \ge 1$.

- For each entry this can be done in constant number of steps and there are *nW* entries. Hence, the algorithm runs in *O*(*nW*) time.
- An instance is answered "yes" iff there is an entry $V(w,i) \ge K$.

Pseudopolynomial algorithm for KNAPSACK: example Items { $(v_1 = 3, w_1 = 7), (v_2 = 4, w_2 = 5), (v_3 = 4, w_3 = 4), (v_4 = 7, w_4 = 3), (v_5 = 2, w_5 = 3)$ } weight limit W = 10, capacity limit K = 12

Sets and numbers: Strong NP-completeness

- The preceding algorithm is not polynomial w.r.t. the length of the input (which is $O(n \log W)$) but exponential ($W = 2^{\log W}$).
- An algorithm where the time bound is polynomial in the integers in the input (not their logarithms) is called *pseudopolynomial*.
- A problem is called **strongly NP-complete** if the problem remains NP-complete even if any instance of length *n* is restricted to contain integers of size (i.e. "value") at most *p*(*n*), for a polynomial *p*.

Strongly NP-complete problems cannot have pseudopolynomial algorithms (unless P = NP).

• SAT, MAX CUT, TSP(D), HAMILTON PATH, ... are strongly NP-complete but KNAPSACK is not.

Sets and numbers: BIN PACKING

Definition BIN PACKING INSTANCE: *N* positive integers a_1, \ldots, a_N (items) and integers *C* (capacity) and *B* (number of bins). QUESTION: Is there a partition of the numbers into *B* subsets such that for each subset *S*, $\sum_{a_i \in S} a_i \leq C$?

- BIN PACKING is strongly NP-complete: Even if the integers are restricted to have polynomial values (w.r.t. the length of input), BIN PACKING remains NP-complete. For the proof, see the pages 204–205 in Papadimitriou's book.
- Any pseudopolynomial algorithm for BIN PACKING would yield a polynomial algorithm for all problems in NP implying $\mathbf{P} = \mathbf{NP}$.

