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Roadmap for today

1 Computational challenges
Computational complexity of GP regression
Non-Gaussian likelihoods: GP classification

2 Approximate inference
Variational inference: scratching the surface
Inducing points approximations
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Computational complexity of Gaussian process regression

The key equations for predictions (with Gaussian likelihood)

p(f∗|y) = N
(
f∗
∣∣µ∗, σ2

∗
)

µ∗ = kf∗f

(
Kff + σ2I

)−1 y

σ2
∗ = Kf∗f∗ − kf∗f

(
Kff + σ2I

)−1 kT
f∗f

Recall: If A ∈ RN×M and b ∈ RM , then the cost of computing Ab is O (NM)

Recall: If C ∈ RN×N , then the cost of computing C−1 is O
(
N3
)

What is computational complexity for computing the posterior distribution for 1 test point
based on a data set with N observations? What is the dominating operation?

h =
(
Kff + σ2I

)−1 y scales as O
(
N3
)

, µ∗ = kf∗f h scales as O (N)

N ≤ 1000: Fine, N ≤ 10000: Slow, but possible, N > 10000: Prohibitively slow
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Regression vs classification

Response variable y is continuous in regression
problems

yn ∈ R

Response variable y is discrete in classification
problems

yn ∈ {c1, c2, . . . , cK}

Classification problems

X = images, yn ∈ {cat, dog}
X = X-ray scan, yn ∈ {tumor, no tumor}
X = images of digits, yn ∈ {0, 1, 2, . . . , 9}
X = emails, yn ∈ {spam, not spam}
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Why Gaussian processes for classification?

Complex decision boundaries

1 Non-linear boundary

2 Can learn complexity of decision boundary
from data

Probabilistic classification

1 How would you classify the green point?

2 We want to model the uncertainty
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Why don’t we use regression models for classification?

We focus on binary classification: yn ∈ {0, 1} or yn ∈ {−1, 1}

We are given a data set {xn, yn}N
n=1 and we want to model

p(yn = +1|xn)

What’s wrong with simply using the GP regression model with labels:
yn ∈ {0, 1}:

p(yn = +1|xn) = f (xn)
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Gaussian process classification setup (I)

We’ll use a ’squashing function’ φ : R→ (0, 1) with yn ∈ {−1, 1}

p(yn

∣∣xn) = φ (yn · f (xn)) ∈ (0, 1)

Multiple possible choices for φ(·), we’ll use the standard normal CDF

φ (x) =

∫ x

−∞
N (z |0, 1) dz

Discuss with your neighbour

1 What is φ(0)?

2 What is φ(−∞)?

3 What is φ(∞)?

4 What is φ(x) + φ(−x)?

5 Is φ (ynf (xn)) normalized wrt. yn?
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Gaussian process classification setup (II)

We map the unknown function f (x) through the squashing function

Example re-visited
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x∗

p (y , f ) =
N∏

n=1

p(yn|fn)p(f ) =
N∏

n=1

φ (yn · fn)N
(
f
∣∣0,K)

Step 1: Compute posterior distribution of p(f |y):

p(f |y) =
p(y |f )p(f )

p(y)

≈ q(f )

Step 2: Compute posterior of f∗ for new test point x∗:

p(f∗
∣∣y) =

∫
p (f∗|f ) p

(
f
∣∣y) df

≈
∫

p (f∗|f ) q (f ) df

Step 3: Compute predictive distribution

p(y∗|y) =

∫
φ (y∗ · f∗) p(f∗

∣∣y)df∗

Unfortunately, these distributions are analytically
intractable.
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Computational problems

We need to figure out what to do when

... likelihood is non-Gaussian?

... inference becomes slow due to large N?

Variational inference

General framework for approximate Bayesian inference

Many recent application in the machine learning literature:
1 GPs for big data
2 GPs with non-Gaussian likelihoods
3 Deep Gaussian processes
4 Convolutional Gaussian processes
5 Variational autoencoders (VAEs)
6 ...
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Variational inference: the big picture

Recipe for approximating intractable distribution p ∈ P

1 Define some ”simple” family of distribution Q.

2 Define some way to compute a ”distance” D[q, p]
between each of the distribution q ∈ Q and the
intractable distribution p

D[q1, p] > D[q2, p]

3 Search for the distribution in q ∈ Q such that D[q, p] is
minimized

q∗ = arg min
q∈Q

D[q, p]

4 Use q∗ as an approximation of p

Here we will always choose Q to be the set of multivariate Gaussian distributions.
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Variational inference I

We will use to the Kullback-Leibler divergence to ”measure
distances” between distributions

D [q||p] =

∫
q(f ) ln

q(f )

p(f )
df = Eq

[
ln

q(f )

p(f )

]

Most important properties for our purpose:

1 Positive definite: D [q||p] ≥ 0

2 Identity of indiscernibles: D [q||p] = 0 ⇐⇒ p = q (a.e.)

3 Not-symmetric: D [q||p] 6= D [p||q]
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Variational inference II

Our goal is to minimize the KL divergence between some approximation
q ∈ Q and some posterior distribution p(f |y)

D [q(f )||p(f |y)] = Eq

[
ln

q(f )

p(f |y)

]
= Eq [ln q(f )− ln p(f |y)]

= Eq [ln q(f )]− Eq [ln p(f |y)]

Define the entropy of q as H [q] ≡ −Eq [ln q(f )]

D [q(f )||p(f |y)] = −H [q]− Eq [ln p(f |y)]

Last term depends on the exact posterior p(f |y), which is intractable.
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Variational inference III

Using the def. of conditional densities, we can write: p(f |y) = p(y ,f )
p(y)

D [q(f )||p(f |y)] = −H [q]− Eq [ln p(f |y)]

= −H [q]− Eq

[
ln

p(y , f )

p(y)

]
= −H [q]− Eq [ln p(y , f )] + Eq [ln p(y)]

= −H [q]− Eq [ln p(y , f )] + ln p(y)

Let’s re-arrange the terms

L [q] does not depend on the posterior p(f |y), but only on the joint
density p(y , f ).
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L [q] does not depend on the posterior p(f |y), but only on the joint
density p(y , f ).
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Variational inference IV

ln p(y) = Eq [ln p(y , f )] +H [q]︸ ︷︷ ︸
L[q]

+D [q(f )||p(f |y)]

Let’s make a few observations

1 ln p(y) is a constant

2 D [q(f )||p(f |y)] ≥ 0 is non-negative

3 L [q] only depends on q and the joint density p(y , f )

Some consequences

1 L [q] is a lower bound of ln p(y). That is: ln p(y) ≥ L [q]

2 Maximizing L [q] is equivalent to minizing D [q(f )||p(f |y)]

Key take-away: we can fit the variational approx. q by optimizing L
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Variational inference V

ln p(y) = Eq [ln p(y , f )] +H [q]︸ ︷︷ ︸
L[q]

+D [q(f )||p(f |y)]

L [q] is often called the Evidence Lower Bound (ELBO)

The first term in L [q] can be interpreted as a data fit term and the
second term can be interpreted as a regularization term

If we want to approximate p(f |y), then q(f ) = N (f |m,V )

Define λ = {m,V }, then we can write L [q] = L [λ]

In practice, we optimize L [λ] using gradient-based methods
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1D Toy example I

Assume we have some model p(y , f ) that gives rise to some intractable posterior p(f |y)

We want to approximate p(f |y) using a variational approximation

In 1D: Q is the the set of univariate Gaussian, i.e. qλ(x) = N (x |m, v), where we denote
λ = {m, v}

We initialize our approximation as q(f ) = N (f |0, 1)
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1D Toy example II

Gradient ascent: λi+1 = λi + η∇λL [λ]

ln p(y) = L [λ] + D [qλ(f )||p(f |y)] ≥ L [λ]
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Computational challenges

Let’s see how we can use combine the ideas from variational inference
with inducing points methods to solve the two computational
problems:

1 The computational complexity of GPs is O(N3)

2 How to handle non-Gaussian likelihoods
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Solution: Inducing point methods

The main idea is to ”represent” the information from the full dataset
using a smaller ”virtual” dataset

Recall our GP model:

p(y , f ) = p(y |f )p(f ), where f = [f (x1), f (x2), . . . , f (xN)]

We will now introduce a set of inducing points {zm}M
m=1

They live in the same space as the input points, i.e. xi , zj ∈ RD

Let um denote the value of the function f evaluated at each zm, i.e.
um = f (zm)

... and u = [f (z1), f (z2), . . . , f (zM)]
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Inducing point methods

Goal: choose the set of inducing points such that it contains the
same information as the full dataset

Remember: Both uj = f (zj ) and fi = f (xi ) are random variables

Next step: Formulate joint model p(y , f ,u)
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Inducing point methods: the joint model

The augmented model

p(y , f ,u) = p(y |f )p(f ,u)

Let’s decompose the ”augmented” model as follows

p(y , f ,u) = p(y |f )p(f |u)p(u)

We can get back to the original model by marginalizing over u

p(y , f ) =

∫
p(y |f )p(f ,u)du = p(y |f )

∫
p(f ,u)du = p(y |f )p(f )
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Setting up the approximation

The idea is now to derive a variational approximation for the posterior p(f , u|y)

We choose Q be the set of all distributions of the form q(f , u) = p(f |u)q(u), where
q(u) = N (u|m,S)

Let’s write down the KL divergence between q(f , u) and p(f , u|y)

D [q||p] = Eq(u,f )

[
ln

p(f |u)q(u)

p(f , u|y)

]

As before, we use Bayes rule and do some algebra:

D [q||p] = Eq(u,f )

[
ln

p(f |u)q(u)

p(y |f )p(f |u)p(u)

]
+ ln p(y)

= Eq(u,f )

[
ln

q(u)

p(y |f )p(u)

]
+ ln p(y)

= Eq(u,f ) [ln q(u)]− Eq(u,f ) [ln p(y |f )]− Eq(u,f ) [ln p(u)] + ln p(y)

Re-arranging yields

ln p(y) = Eq(u,f ) [ln p(y |f )] + Eq(u,f ) [ln p(u)]− Eq(u,f ) [ln q(u)] + D [q||p]

≥ Eq(u,f ) [ln p(y |f )] + Eq(u,f ) [ln p(u)]− Eq(u,f ) [ln q(u)] ≡ L3
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The inducing points approximation

Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

ln p(y) ≥ Eq(u,f ) [ln p(y |f )] + Eq(u,f ) [ln p(u)]− Eq(u,f ) [ln q(u)] ≡ L3

We will now show that the first decomposes in a very convenient way

Remember: p(y |f ) =
∏N

i=1 p(yi |fi )

Let’s have a closer look at the first term

Eq(u,f ) [ln p(y |f )] = Eq(u,f )

[
ln

N∏
i=1

p(yi |fi )

]
=

N∑
i=1

Eq(u,f ) [ln p(yi |fi )]

=
N∑

i=1

∫ ∫
q(u, f ) ln p(yi |fi )dudf

=
N∑

i=1

∫ ∫
p(fi |u)N (u|m,S) ln p(yi |fi )dudfi

=
N∑

i=1

∫ ∫
p(fi |u)N (u|m,S) du ln p(yi |fi )dfi
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Decomposing the likelihood term

Let’s define the univariate distribution

q(fi ) ≡
∫

p(fi |u)N (u|m,S) du = N
(

fi |kimK−1
mmm, K̃ii + kimK−1

mmSK−1
mmkmi

)
then we can write

Eq(u,f ) [ln p(y |f )] =
N∑

i=1

∫ ∫
p(fi |u)N (u|m,S) du ln p(yi |fi )dfi

=
N∑

i=1

∫
q(fi ) ln p(yi |fi )dfi

Thus, the ”likelihood term” decomposes into a sum over 1D integrals

Can be solved analytically for Gaussian likelihoods and some classification likelihoods

But it is fast to approximate 1D integrals using numerical integration for other likelihoods

Take away #2: We can tractably optimize the bound even with non-Gaussian likelihoods
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The resulting bound

Substituting back into L3

ln p(y) ≥ L3 =
N∑

i=1

∫
q(fi ) ln p(yi |fi )dfi + Eq(u) [ln p(u)]− Eq(u) [ln q(u)]

We want to optimize L3 wrt. λ = {m,S, z} using gradient-based methods

∇λL3 = ∇λ

N∑
i=1

∫
q(fi ) ln p(yi |fi )dfi +∇λEq(u) [ln p(u)]−∇λEq(u) [ln q(u)]

We can approximate the gradient as follows (mini-batching)

∇λ

N∑
i=1

∫
q(fi ) ln p(yi |fi )dfi ≈

N

|S |
∑
i∈S

∇λ

∫
q(fi ) ln p(yi |fi )dfi

Take away #3: Because it decomposes as a sum over the data points, the bound
becomes amendable to stochastic gradient descent (mini-batching) and hence, we can
scale the method to really really large datasets!
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Example from the paper

(from Hensman et al: Gaussian processes for big data)
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Inducing points method summary

The inducing point approximation allows us to

... scale Gaussian processes to big data

... use non-Gaussian likelihoods

It reduces the computational complexity from O(N3) to O(M3),
where M � N

It’s implemented in most GP toolboxes, e.g. GPy (numpy) and gpflow
(tensorflow)
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Example: Number of inducing points

We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x∗

p (y , f ) =
N∏

n=1

p(yn|fn)p(f ) =
N∏

n=1

φ (yn · fn)N
(
f
∣∣0,K)

Step 1: Compute posterior distribution of p(f |y):

p(f |y) =
p(y |f )p(f )

p(y)
≈ q(f )

Step 2: Compute posterior of f∗ for new test point x∗:

p(f∗
∣∣y) =

∫
p (f∗|f ) p

(
f
∣∣y) df≈

∫
p (f∗|f ) q (f ) df

Step 3: Compute predictive distribution

p(y∗|y) =

∫
φ (y∗ · f∗) p(f∗

∣∣y)df∗
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Predictive distribution

Using the (approximate) posterior q(f∗), we can compute p(y∗|y)

p(y∗ = 1|y) =

∫
p(y∗|f∗)p(f∗

∣∣y)df∗

=

∫
φ (y∗ · f∗) p(f∗

∣∣y)df∗

≈
∫
φ (y∗ · f∗) q (f∗) df∗

=

∫
φ (y∗ · f∗)N

(
f∗
∣∣µ∗, σ2

∗
)

df∗

= φ

(
µ∗√

1 + σ2
∗

)

Discuss with your neighbor

What can we say about the predictive distributions for y∗ when µ∗ is positive? or
negative?

How does the uncertainty of the posterior distribution of f∗ influence the predictions for
y∗? What happens as σ2

∗ approaches ∞?
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Gaussian process classification example

Non-linear classification
problem

N = 100 data points

Squared exponential kernel

Hyperparameters are
chosen by optimizing L3
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End of todays lecture

This will be my last lecture

Markus Heinonen, Arno Solin and Aki Vehtari will handle the rest of
the course

Next time: Markus Heinonen will give a lecture about spectral kernels

In two weeks: Arno Solin will give a lecture about spatio-temporal
modelling

Now time for questions and assignment #2
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