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Roadmap for today

@ Computational challenges
@ Computational complexity of GP regression
@ Non-Gaussian likelihoods: GP classification

© Approximate inference
@ Variational inference: scratching the surface
@ Inducing points approximations
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Computational complexity of Gaussian process regression

@ The key equations for predictions (with Gaussian likelihood)

p(fely) = N (fl s, 03)
px = ke, (Ke + 021)71)/

-1
UiZKf*f* —kf*f (Kff+0'2l) kg;f
@ Recall: If A€ RVXM and b € RM, then the cost of computing Ab is O (NM)
@ Recall: If C € RV*N | then the cost of computing C~1 is O (N3)

@ What is computational complexity for computing the posterior distribution for 1 test point
based on a data set with N observations? What is the dominating operation?
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Computational complexity of Gaussian process regression

@ The key equations for predictions (with Gaussian likelihood)

p(fely) = N (fc|pe, %)
px = ke, (Ke + 021)71)/
03 = Kf*f* — kf*f (Kff +0’2I)_1 kg;f

@ Recall: If A€ RVXM and b € RM, then the cost of computing Ab is O (NM)
@ Recall: If C € RV*N | then the cost of computing C~1 is O (N3)

@ What is computational complexity for computing the posterior distribution for 1 test point
based on a data set with N observations? What is the dominating operation?
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Computational complexity of Gaussian process regression

@ The key equations for predictions (with Gaussian likelihood)

p(fely) = N (fc|pe, %)
px = ke, (Ke + 021)71)/
03 = Kf*f* — kf*f (Kff +0’2I)_1 kg;f

Recall: If A € RVXM and b € RM, then the cost of computing Ab is O (NM)

Recall: If C € RV*N | then the cost of computing C~1 is O (N3)

@ What is computational complexity for computing the posterior distribution for 1 test point
based on a data set with N observations? What is the dominating operation?

h= (Kff' + U2I)71y scales as O (N3), s = ke, rh scales as O (N)

@ N < 1000: Fine, N < 10000: Slow, but possible, N > 10000: Prohibitively slow
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Regression vs classification

@ Response variable y is continuous in regression
problems

yn€R

@ Response variable y is discrete in classification

Gaussian process

problems
60 80 100 120 140 160
Area [m?]
yn€{a,c,...,ck} e
er- . 10 & o° ®° oo ° 10
@ Classification problems C %% e 8 %0 00° o I
05...0 O‘ 0' ;'....:0 0.8
X = images, ¥n € {cat,dog} 2 00‘.°.' © 5.0"'.\' :.- . 0o
X — X e o¢ :?'~fo o..: 04
ray scan, ¥n € {tumor, no tumor} %o, o, °
. .. e % & °° % © o2
X = images of digits, yn€40,1,2,...,9} 0o -.‘30. A ;.;‘;'.ff- ° I
-1.0 ° 00
X = emails, Yn € {spam, not spam} T e
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Regression vs classification

@ Response variable y is continuous in regression
problems

yn€R

@ Response variable y is discrete in classification
problems

Gaussian process

60 80 100 120 140 160

Area [m?]
10
I 08

Yn € {Cl,Cz,...,CK}

@ Classification problems

06

X = images, ¥n € {cat,dog} £

X = X-ray scan, ¥n € {tumor, no tumor} £ 04
X = images of digits, va€{0,1,2,...,9} |
X = emails, ¥n € {spam, not spam} S s 00 05 to °
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Why Gaussian processes for classification?

o Complex decision boundaries

Input x

°

© Non-linear boundary

© Can learn complexity of decision boundary
from data

Input x;

@ Probabilistic classification

© How would you classify the green point?

Input X2

@ We want to model the uncertainty

Input X
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Why don’t we use regression models for classification?

@ We focus on binary classification: y, € {0,1} or y, € {—1,1}
@ We are given a data set {x,,,y,,}nN:1 and we want to model
P(¥n = +1|xa)

@ What's wrong with simply using the GP regression model with labels:
yn €{0,1}:

p(yn = +1|x5) = f(xn)

1.0 eee o o
0.5
0.0 oo ®
0 1 2 3
Input x
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Why don’t we use regression models for classification?

@ We focus on binary classification: y, € {0,1} or y, € {—1,1}

@ We are given a data set {x,,,y,,}nN:1 and we want to model
P(yn = +1[x5)

@ What's wrong with simply using the GP regression model with labels:
yn €{0,1}:

p(yn = +1|x5) = f(xn)

—— GPfit
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Gaussian process classification setup (1)

@ We'll use a 'squashing function’ ¢ : R — (0,1) with y, € {-1,1}
p(yn|X,,) =¢(yn-f(xa)) €(0,1)

@ Multiple possible choices for ¢(-), we'll use the standard normal CDF
o (x)= / N (z]0,1)dz

Discuss with your neighbour 06

0.5

— MNz[0,1) = ¢(x)

O What is ¢(0)?

0.4

@ What is ¢(—00)? 03

@ What is ¢(c0)? >

Q@ What is ¢(x) + ¢(—x)? o

Q Is ¢ (yuf (x,)) normalized wrt. y,? g
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Gaussian process classification setup (I1)

@ We map the unknown function f(x) through the squashing function

f(x)
2
0
-2
-4
-5.0 -25 0.0
Input x

@ Example re-visited

1.0 eo o
0.8
0.6
0.4
0.2
0.0 °

Input x

Michael Riis Andersen

2

25

5.0

o(f) p(y = + 1|f) = ¢(f)

1.00

1.00

0.75 0.75

0.50 0.50

0.25 0.25

0.00 0.00

-5.0 -25 0.0 25 5.0 -5.0 -25 0.0 25 5.0
f Input x
10

— plfly)

0 1 2
Input x

Input x
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x.

N N
p(y, ) =[] pvalfa)p(F) =] ¢ (v - f) N (£]0, K)
n=1 n=1

10
@ Step 1: Compute posterior distribution of p(f|y): s
p(y|f)p(f) 0-0 oo &
p(fly) = ——
P(Y) L
@ Step 2: Compute posterior of fi. for new test point xu: 0
p(Ely) = [ p(21F)p (Fly) df
1.00
@ Step 3: Compute predictive distribution 0.75
0.50
ply) = [ 60 £)p(E|y)ar. 0.25\‘—‘/
0.00 -
0
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x.

N N
p(y, ) =[] pvalfa)p(F) =] ¢ (v - f) N (£]0, K)
n=1 n=1

10
@ Step 1: Compute posterior distribution of p(f|y): s
p(y|f)p(f) 0-e o0 & s = g
p(fly) = ——
P(Y) L
. — p(f:ly)
@ Step 2: Compute posterior of fi. for new test point xu: 0 1 )
Input x
p(Ely) = [ p(21F)p (Fly) df
1.00 L) o
@ Step 3: Compute predictive distribution 0.75
0.50
ply) = [ 60 £)p(E|y)ar. 02
4 ply+=1]y)
0.00 -
@ Unfortunately, these distributions are analytically 0 1 2
intractable. Input x
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x.

N N
p(y, ) =[] pvalfa)p(F) =] ¢ (v - f) N (£]0, K)
n=1 n=1
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@ Step 1: Compute posterior distribution of p(f|y): s
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p(fly) = PXDPE) o gr)
P(Y) L
. — p(f:ly)
@ Step 2: Compute posterior of fi. for new test point xu: 0 1 )
Input x
p(Ely) = [ (210 R (Fly) df = [ p(EINa(F)er
1.00 ) -
@ Step 3: Compute predictive distribution 0.75
0.50
ply) = [ 60 £)p(E|y)ar. 02
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@ Unfortunately, these distributions are analytically 0 1 2
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Computational problems

We need to figure out what to do when

@ ... likelihood is non-Gaussian?

@ ... inference becomes slow due to large N7?
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Computational problems

We need to figure out what to do when

@ ... likelihood is non-Gaussian?

@ ... inference becomes slow due to large N7?

Variational inference

@ General framework for approximate Bayesian inference

@ Many recent application in the machine learning literature:
@ GPs for big data
@ GPs with non-Gaussian likelihoods
© Deep Gaussian processes
© Convolutional Gaussian processes
© Variational autoencoders (VAEs)
Q ..
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p
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Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.
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between each of the distribution g € Q and the
intractable distribution p

03

02

01

00

— Intractable posterior p
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

— Intractable posterior p
— &
T G2

03
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

D[g1, p] > D[q2, p]
— Intractable posterior p
— 0
T Q2

03
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

D[g1, p] > D[q2, p]
— Intractable posterior p
— 0
T Q2

03

© Search for the distribution in g € Q such that D[q, p] is  ©2
minimized
04

* = arg min D|q,
q g min Dig, p]
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

D[g1, p] > D[q2, p]
— Intractable posterior p
— 0
T Q2

03

© Search for the distribution in g € Q such that D[q, p] is  ©2
minimized
04

* = arg min D|q,
q g min Dig, p]

@ Use g* as an approximation of p

Here we will always choose Q to be the set of multivariate Gaussian distributions.
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Variational inference |

o We will use to the Kullback-Leibler divergence to " measure
distances” between distributions

D[q||p] = /q(f) In Zggdf = E, [m ZE?;]
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Variational inference |

o We will use to the Kullback-Leibler divergence to " measure
distances” between distributions

D[q||p] = /q(f) In Zggdf = E, [m ZE?;]

@ Most important properties for our purpose:
@ Positive definite: D [q]||p] >0
@ Identity of indiscernibles: D[g||p] =0 <= p=gqg (ae)

© Not-symmetric: D[q||p] # D [p||q]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)
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g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['” p?iET})')]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['” p?iET})')]

=K, [Ing(f) — In p(F|y)]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['” p?iET})')]

=Eq[Ing(f) — Inp(fly)]
=Eq[Inq(f)] — Eq[In p(f|y)]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['” p?iET})')]

=Eq[Ing(f) — Inp(fly)]
=Eq[Inq(f)] — Eq[In p(f|y)]

Define the entropy of q as H [q] = —Eq [In q(f)]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['” p?iET})')]

=Eq[Ing(f) — Inp(fly)]
=Eq[Inq(f)] — Eq[In p(f|y)]

Define the entropy of q as H [q] = —Eq [In q(f)]

D{q(F)llp(Fly)] = = [q] — Eq [In p(fly)]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

Dq(f)l[p(Fly)] = Eq [ q'(‘,lr )]
—F [|nq(f') In (fly)]
= Eq[Inq(f)] — Eq [In p(f]y)]

Define the entropy of q as H [q] = —Eq [In q(f)]

D{q(F)llp(Fly)] = = [q] — Eq [In p(fly)]

Last term depends on the exact posterior p(f|y), which is intractable.
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Variational inference ll|

Using the def. of conditional densities, we can write: p(fly) = 20

p(y)

D{q(F)llp(Fly)] = = [q] — Eq [In p(Fly)]
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Variational inference ll|

Using the def. of conditional densities, we can write: p(fly) = 20

p(y)
Dq(F)[|p(Fly)] = —H[q] — Eq[In p(f|y)]

a- o0
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Variational inference ll|

Using the def. of conditional densities, we can write: p(fly) = 20

p(y)
Dq(F)[|p(Fly)] = —H[q] — Eq[In p(f|y)]

a0

= —H[q] — Eq[Inp(y, F)] + Eq[In p(y)]

Michael Riis Andersen GP Course: Session #4 30/1-19 14 / 33



Variational inference ll|

Using the def. of conditional densities, we can write: p(fly) = 20

p(y)
Dq(F)[|p(Fly)] = —H[q] — Eq[In p(f|y)]

il k|1 PO F)

= —Hlal - Eq [l p(y) ]

= —H[q] — Eq[Inp(y, F)] + Eq[In p(y)]
f)

= —H[q] — Eq[Inp(y, F)] + In p(y)
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Variational inference ll|

Using the def. of conditional densities, we can write: p(f|y) = p‘()’(’}’,')r)

D[q(F)[|p(Fly)] = —H [q] — Eq [In p(f|y)]

- g, P F)

= ~Htlal —E [l p(y) ]
= —H[q] — Eq[Inp(y, F)] + Eq[In p(y)]
= —H[q] — Eq[Inp(y, F)] + In p(y)

Let's re-arrange the terms

Inp(y) = Eq [Inp(y, f)] + H [q] + D [q(f)[[p(Fy)]
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Variational inference ll|

Using the def. of conditional densities, we can write: p(f|y) = %

D[q(F)[|p(Fly)] = —H [q] — Eq [In p(f|y)]

- g, P F)

= ~Htlal —E [l p(y) ]
= —H[q] — Eq[Inp(y, F)] + Eq[In p(y)]
= —H[q] — Eq[Inp(y, F)] + In p(y)

Let's re-arrange the terms

Inp(y) = Eq[Inp(y, f)] + H [q] +D [q(£)[[p(]y)]
L[q]

L [q] does not depend on the posterior p(f|y), but only on the joint
density p(y, f).
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
L[q]
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
L[q]

Let’'s make a few observations
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
L[q]

Let’'s make a few observations

@ Inp(y) is a constant
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
L[q]

Let’'s make a few observations

Q Inp(y) is a constant
@ Dq(f)||p(fly)] > 0 is non-negative
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
L[q]

Let’'s make a few observations

Q Inp(y) is a constant
@ D q(f)||p(f|y)] > 0 is non-negative
@ L|[q] only depends on g and the joint density p(y, f)
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
L[q]

Let’'s make a few observations

Q Inp(y) is a constant

@ D q(f)||p(f|y)] > 0 is non-negative

@ L|[q] only depends on g and the joint density p(y, f)
Some consequences

Q L|[q] is a lower bound of Inp(y). Thatis: Inp(y) > L][q]
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
L[q]

Let’'s make a few observations

Q Inp(y) is a constant

@ D q(f)||p(f|y)] > 0 is non-negative

@ L|[q] only depends on g and the joint density p(y, f)
Some consequences

Q L|[q] is a lower bound of Inp(y). Thatis: Inp(y) > L][q]

@ Maximizing L [q] is equivalent to minizing D [q(F)||p(f|y)]
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Variational inference IV

Inp(y) =Eq[Inp(y, F)] + H [q] +D [q(F)[|p(Fly)]
L[q]

Let’'s make a few observations

Q Inp(y) is a constant
@ D q(f)||p(f|y)] > 0 is non-negative
@ L|[q] only depends on g and the joint density p(y, f)

Some consequences
Q L|[q] is a lower bound of Inp(y). Thatis: Inp(y) > L][q]
@ Maximizing L [q] is equivalent to minizing D [q(F)||p(f|y)]

Key take-away: we can fit the variational approx. g by optimizing £
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Variational inference V

Inp(y) = Eq[Inp(y, )] + H [q] +D [q(F)[p(F]y)]
L[q]

e L[q] is often called the Evidence Lower Bound (ELBO)
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Variational inference V

Inp(y) = Eq[Inp(y, )] + H [q] +D [q(F)[p(F]y)]
L[q]

e L[q] is often called the Evidence Lower Bound (ELBO)

@ The first term in £ [q] can be interpreted as a data fit term and the
second term can be interpreted as a regularization term
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Variational inference V

Inp(y) = Eq[Inp(y, )] + H [q] +D [q(F)[p(F]y)]
L[q]

e L[q] is often called the Evidence Lower Bound (ELBO)

@ The first term in £ [q] can be interpreted as a data fit term and the
second term can be interpreted as a regularization term

e If we want to approximate p(f|y), then g(f) = N (f|m, V)
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Variational inference V

Inp(y) = Eq[Inp(y, )] + H [q] +D [q(F)[p(F]y)]
L[q]

e L[q] is often called the Evidence Lower Bound (ELBO)

@ The first term in £ [q] can be interpreted as a data fit term and the
second term can be interpreted as a regularization term

e If we want to approximate p(f|y), then g(f) = N (f|m, V)
o Define A = {m, V}, then we can write L [q] = L[]

@ In practice, we optimize £ [A] using gradient-based methods
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1D Toy example |

@ Assume we have some model p(y, ) that gives rise to some intractable posterior p(f|y)
@ We want to approximate p(f|y) using a variational approximation

@ In 1D: Q is the the set of univariate Gaussian, i.e. gx(x) = N(x|m,v), where we denote
A={m,v}

@ We initialize our approximation as q(f) = N (f]0,1)
040
035 —— Exact posterior
030
0.25
0.20
015
0.10
0.05
0.00
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1D Toy example |

0.40
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0.30
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Assume we have some model p(y, f) that gives rise to some intractable posterior p(f|y)
We want to approximate p(f|y) using a variational approximation

In 1D: Q is the the set of univariate Gaussian, i.e. gx(x) = N(x|m, v), where we denote

A={m,v}

We initialize our approximation as q(f) = N (f|0,1)

—— Exact posterior
—==-=- Initial approx
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1D Toy example Il

o Gradient ascent: Ajiy1 = Aj +nVAL[A]

o Inply) = LN +Dlar(FlIp(Fly)] = LA

Iteration 0 3 7 Dlq||p] vs parameters
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o Gradient ascent: Ajiy1 = Aj +nVAL[A]
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Dlq||p] vs parameters
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o Gradient ascent: Ajiy1 = Aj +nVAL[A]
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Dlq||p] vs parameters
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o Gradient ascent: Ajiy1 = Aj +nVAL[A]
o Inp(y) =LA+ D[ar(F)llp(Ffly)] = L[A]

Dlq||p] vs parameters

Iteration 4 3 7
040 {\ — Exact posterior \ -=--- KL divergence 6 6.0
0.35 'll'n —— Approximation 2 ‘\\ --—- In p(y) 54
030 f } === Initial approx "\\ — z[q] 5 a8
P! 1 =
ik 4
025 o 42
|
020 i ? 36
1
2
015 ! a0
1
040 | 24
! 18
0.05 ]
; 12
0.00 06
-1 0 1 2

Iterations Log variance (Inv)

30/1-19 18 / 33

GP Course: Session #4

Michael Riis Andersen



1D Toy example Il

o Gradient ascent: Ajiy1 = Aj +nVAL[A]
o Inp(y) =LA+ D[ar(F)llp(Ffly)] = L[A]

Dlq||p] vs parameters
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o Gradient ascent: Ajiy1 = Aj +nVAL[A]
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Computational challenges

@ Let's see how we can use combine the ideas from variational inference
with inducing points methods to solve the two computational
problems:

© The computational complexity of GPs is O(N3)

@ How to handle non-Gaussian likelihoods
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Solution: Inducing point methods

@ The main idea is to "represent” the information from the full dataset
using a smaller "virtual” dataset
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Solution: Inducing point methods

@ The main idea is to "represent” the information from the full dataset
using a smaller "virtual” dataset

@ Recall our GP model:

p(y,f) = p(y|f)p(f), where £ =[f(x1),f(x2),...,F(xpn)]

e We will now introduce a set of inducing points {z,,,}f\n/’:1

@ They live in the same space as the input points, i.e. x;,z; € RP
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Solution: Inducing point methods

@ The main idea is to "represent” the information from the full dataset
using a smaller "virtual” dataset

Recall our GP model:

p(y,f) = p(y|f)p(f), where £ =[f(x1),f(x2),...,F(xpn)]

We will now introduce a set of inducing points {zm}™M_,

They live in the same space as the input points, i.e. x;, z; € RP

@ Let u,, denote the value of the function f evaluated at each z,, i.e.
Um = f(zm)

.and u = [f(z1), f(z2), ..., f(zm)]
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Inducing point methods

* Data /

X;

Input x
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Inducing point methods

* Data /

® Inducing points
ug=flzg) TR O

Us = fZ5) o H -/‘/

F=fX) o

x
o
N

22 Input x
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Inducing point methods

* Data /
®  Inducing points
ug=Rzg) o ‘/ K =
Us=fz) <

fi=fx) P

Zs

@ Goal: choose the set of inducing points such that it contains the
same information as the full dataset
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Inducing point methods

* Data /
® Inducing points
= flz,) B Ll P e D -
s = fiz3) Y

fi=fx) - —IL el

@ Goal: choose the set of inducing points such that it contains the
same information as the full dataset

@ Remember: Both u; = f(z;) and f; = f(x;) are random variables
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Inducing point methods

* Data /
® Inducing points
LS .
/:
M ]
i

@ Goal: choose the set of inducing points such that it contains the
same information as the full dataset

@ Remember: Both u; = f(z;) and f; = f(x;) are random variables

o Next step: Formulate joint model p(y, f, u)
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Inducing point methods: the joint model

@ The augmented model

p(y, f?“) :p(y‘f)p(f, u)

@ Let's decompose the "augmented” model as follows

ply, f,u) = p(y|f)p(f|u)p(u)
@ We can get back to the original model by marginalizing over u

p(y; f)=/p(y|f)p(f7 U)du:p(y!f)/p(f, u)du = p(y|f)p(f)
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)
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@ The idea is now to derive a variational approximation for the posterior p(f, uly)

@ We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where
q(u) =N (ulm, S)

@ Let's write down the KL divergence between g(f, u) and p(f, uly)

p(fIU)q(U)}
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P} = Eate) [ uly)
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)

@ We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where
q(u) =N (ulm, S)

@ Let's write down the KL divergence between g(f, u) and p(f, uly)

flu)g(u
D[qllp] = Eq(u,r) [In %]

@ As before, we use Bayes rule and do some algebra:

p(flu)q(u)

" p(y\f)p(r|u)p(u>] ine(y)

Dql|p] = Eq(u,f)
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)

@ We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where
q(u) =N (ulm, S)

@ Let's write down the KL divergence between g(f, u) and p(f, uly)

flu)g(u
D [q]|p] = Eq(u,r) ['” %}

@ As before, we use Bayes rule and do some algebra:
p(flu)g(u
UOLOMR [
py|f)p(flu)p(u)

- q(u)
= Eaten [0 g+ P0)

D{gllp] = Eqqu.r) [In
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)

@ We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where
q(u) =N (ulm, S)

@ Let's write down the KL divergence between g(f, u) and p(f, uly)

p(fIU)q(U)}

Dqllp] = E [In
P} = Eate) [ uly)

@ As before, we use Bayes rule and do some algebra:

B p(flu)q(u)
Dqllp] = Eq(u,f) ['” p(y[F)p(Flu)p(u)

} +Inp(y)

} +Inp(y)

_ ()
= Eaun) [ 0
= ]Eq(u,f) [ln q(u)] - ]Eq(u,f) [ln p(ylf)] - ]Eq(u,f) [In p(u)] +In p(y)
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)

@ We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where
q(u) =N (ulm, S)

@ Let's write down the KL divergence between g(f, u) and p(f, uly)

p(fIU)q(U)}

Dqllp] = E [In
P} = Eate) [ uly)

@ As before, we use Bayes rule and do some algebra:

B p(flu)q(u)
Dqllp] = Eq(u,f) ['” p(y[F)p(Flu)p(u)

B | q(u) N
*M“”P mnnmm}+'m”

= ]Eq(u,f) [ln q(u)] - ]Eq(u,f) [ln p(ylf)] - ]Eq(u,f) [In p(u)] +In p(y)

} +Inp(y)

@ Re-arranging yields
Inp(y) = Equ,ry In p(Y£)] + Equ,r) [In p(4)] = Equ,f) [In g(u)] + D [q]|p]
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)

@ We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where
q(u) =N (ulm, S)

@ Let's write down the KL divergence between g(f, u) and p(f, uly)

p(fIU)q(U)}

Dqllp] = E [In
P} = Eate) [ uly)

@ As before, we use Bayes rule and do some algebra:

B p(flu)q(u)
Dqllp] = Eq(u,f) ['” p(y[F)p(Flu)p(u)

B | q(u) N
*M“”P mnnmm}+'m”

= ]Eq(u,f) [ln q(u)] - ]Eq(u,f) [ln p(ylf)] - ]Eq(u,f) [In p(u)] +In p(y)

} +Inp(y)

@ Re-arranging yields

Inp(y) = Equ,ry In p(Y£)] + Equ,r) [In p(4)] = Equ,f) [In g(u)] + D [q]|p]
2 Equ,ry [In p(¥[F)] + Equ, £y [In p(1)] = Equ, £y [In q(u)] = L3
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

Inp(y) > Eqeu,r) [In p(Y1F)] + Eqeu, ) [In p(U)] = Equ,r) [In q(u)] = L3
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

Inp(y) > Eqeu,r) [In p(Y1F)] + Eqeu, ) [In p(U)] = Equ,r) [In q(u)] = L3
@ We will now show that the first decomposes in a very convenient way

® Remember: p(y|f) = [T, p(xilf)
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

Inp(y) > Eqeu,r) [In p(Y1F)] + Eqeu, ) [In p(U)] = Equ,r) [In q(u)] = L3
@ We will now show that the first decomposes in a very convenient way

® Remember: p(y|f) = [T, p(xilf)

@ Let's have a closer look at the first term

N
(u f) [Inp(y|f)] = (u,f) |:|an y,f)] = ZEq(u,f) [In p(yi|f)]
=1 i=1
N
- (u, £)In p(y;|f;)dudf
;//q u pLYi u
N
- E// p(filu)N (ulm, S) In p(y;|f;)dudf;
_Z// N (ulm, S) duln p(y;|f;)df;
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Decomposing the likelihood term

@ Let's define the univariate distribution
q(f,) = /p(f,|u)N(u|m, S)dll = N (f,|k,mK,;,},m, R,',' k,mK,;,},SK,;;,km,)

@ then we can write
N
Bqur Inp(y10)] =3 / / p(Fl)N (ulm, S)duln p(yi|f)df
i=1

N
== [ty plulf)as
i=1
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@ Thus, the "likelihood term” decomposes into a sum over 1D integrals
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q(f,) = /p(f,|u)N(u|m, S)dll = N (f,|k,mK,;,},m, R,',' k,mK,;,},SK,;r},km,)

@ then we can write
N
Bqur Inp(y10)] =3 / / p(Fl)N (ulm, S)duln p(yi|f)df
i=1

N
== [ty plulf)as
i=1

@ Thus, the "likelihood term” decomposes into a sum over 1D integrals

@ Can be solved analytically for Gaussian likelihoods and some classification likelihoods
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Decomposing the likelihood term

@ Let's define the univariate distribution
q(f;) = /p(f,|u)N(u|m, S)dll = N (f,|k,mK,;,},m, R,',' k,mK,;,},SK,;r},km,)

@ then we can write

N
B In (31 = / / p(FIu)N (ulm, S) dun p(yi|)df

N
== [ty plulf)as
i=1

Thus, the "likelihood term” decomposes into a sum over 1D integrals
@ Can be solved analytically for Gaussian likelihoods and some classification likelihoods
@ But it is fast to approximate 1D integrals using numerical integration for other likelihoods

@ Take away #2: We can tractably optimize the bound even with non-Gaussian likelihoods
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The resulting bound

@ Substituting back into L3

N
np(y) > L2 =Y [ alh) I p(l)df + Eg lIn p(w)] ~ B lIn ()]

@ We want to optimize L3 wrt. A = {m, S, z} using gradient-based methods

VaLs = vxz/ 5) In p(yil£)dfi + VAE ) [In p(u)] — VAEq() [In g(u)]
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resulting bound

@ Substituting back into L3
N
Inp(y) > L3= / q(£:) In p(yil £:)df; + Egu) [In p(u)] — Eg(u) [In g(u)]
i=1
@ We want to optimize L3 wrt. A = {m, S, z} using gradient-based methods
VaLs = Va Z/ ) In p(yil £;)df; + VAEqqu) [In p(u)] = VAEq() [In g(u)]

@ We can approximate the gradient as follows (mini-batching)

vAZ/ Y p(rl£)d ~ 5= 5~ Va [ al6) n )

i€S
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The resulting bound

@ Substituting back into L3

N
np(y) > L2 =Y [ alh) I p(l)df + Eg lIn p(w)] ~ B lIn ()]

@ We want to optimize L3 wrt. A = {m, S, z} using gradient-based methods

VaLs = Va Z/ ) In p(yil £;)df; + VAEqqu) [In p(u)] = VAEq() [In g(u)]

@ We can approximate the gradient as follows (mini-batching)

vAZ/ Y p(rl£)d ~ 5= 5~ Va [ al6) n )

i€S

@ Take away #3: Because it decomposes as a sum over the data points, the bound
becomes amendable to stochastic gradient descent (mini-batching) and hence, we can
scale the method to really really large datasets!
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Example from the paper

batch 1 batch 2 batch 3 batch 4 batch 5

batch 6 batch 7 batch 8 batch 9 batch 10

-1.0 %o

2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 10 12

Figure 2: Stochastic variational inference on a trivial GP regression problem. Each pane shows the posterior of
the GP after a batch of data, marked as solid points. Previoulsy seen (and discarded) data are marked as empty
points, the distribution g(u) is represented by vertical errorbars.

(from Hensman et al: Gaussian processes for big data)
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Inducing points method summary

@ The inducing point approximation allows us to

o ... scale Gaussian processes to big data
e ... use non-Gaussian likelihoods

o It reduces the computational complexity from O(N3) to O(M?3),
where M < N

@ It's implemented in most GP toolboxes, e.g. GPy (numpy) and gpflow
(tensorflow)

30/1-19 28 /33
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Example: Number of inducing points

Number of data points N = 200 Number of inducing points M = 2

© ¢ Daa
—— GP w.inducing points P
& Inducing points

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of inducing points M = 4 i

Number of data points N = 200
X * Data P

—— GP w.inducing points
& Inducing points

10.0

25 00 25 50 75

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of data points N = 200 Number of inducing points M = 6

* Data
—— GP w.inducing points
& Inducing points

10.0

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of data points N = 200 Number of inducing points M = 8

* Data
—— GP w.inducing points
& Inducing points

10.0

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of inducing points M = 10

Number of data points N = 200
3 * Data e

—— GP w.inducing points
& Inducing points

10.0

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of data points N = 200 Number of inducing points M = 20

* Data s,
—— GP w.inducing points
& Inducing points

10.0

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x.

N N
p(y, ) =[] pvalfa)p(F) =] ¢ (v - f) N (£]0, K)
n=1 n=1

10
5
@ Step 1: Compute posterior distribution of p(f|y): SR .
0re o0 &
p(fly) = Mz q(f) —5/
p(y) v, pifly)
0 1 2
@ Step 2: Compute posterior of fi. for new test point xu: Input x
p(Ely) = [ p(EINp (Fly) df~ [ p(rIfa(Par " . S
075
@ Step 3: Compute predictive distribution 0.50
0.25
ply«ly) = /(b(y* - £) p(fe]y)dfe 000 [ X ply-=1y)
0 1 2

Input x
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Predictive distribution

@ Using the (approximate) posterior g(fi), we can compute p(y«|y)

Pl = 11y) = [ POl )p(E|y)af.
:/¢>(y* - £) p(fe|y)df.
z/d)(y*‘f*)Q(f*)df*

=/¢(y* )N (Felpe, 02) dfs

Discuss with your neighbor

@ What can we say about the predictive distributions for y, when p. is positive? or
negative?

@ How does the uncertainty of the posterior distribution of f; influence the predictions for
y«? What happens as 02 approaches co?
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Gaussian process classification example

Data Mean of f. |y

3 3
2 I2 2 I2

1 ':lf. 1 1 o 1
. o . < ® ol
@ Non-linear classification S0 &N, .;"-' o 5o .
£ ° g o £
problem » B » ‘.
°s -1 -1
-2 -2
I72 I72
@ N = 100 data points c, 0 2 R 0 2
Input x; Input x;
3 Standard deviation of . |y 3 Predictive dist of y . |y
@ Squared exponential kernel

Input X3
Input X3
o

@ Hyperparameters are
chosen by optimizing L3

2 Ioa
1

06

. .

-2 0 2 -2 0 2
Input x; Input x;
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End of todays lecture

@ This will be my last lecture

@ Markus Heinonen, Arno Solin and Aki Vehtari will handle the rest of
the course

o Next time: Markus Heinonen will give a lecture about spectral kernels

@ In two weeks: Arno Solin will give a lecture about spatio-temporal
modelling

@ Now time for questions and assignment #2
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