Clicker lecture 1 of Topic 2: Smith chart

Jan 24, 2019

Registration

Go with your mobile phone to presemo.aalto.fi/mwe1

Fill your full name into the text field for registration.

Recapitulation of Topic 1

$$
\rho_{L}(z=0)=\frac{\text { reflected voltage at } z=0}{\text { forward voltage at } z=0}=\frac{V^{-}}{V^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

$$
\tau=1+\rho_{L}
$$

Voltage along the line $(z<0)$:
$V(z)=V^{+} e^{-j \beta \cdot z}+V^{-} e^{+j \beta \cdot z}=V^{+} e^{-j \beta \cdot z}\left(1+\rho_{L} \cdot e^{+j 2 \beta z}\right)$

Q1a: The signal propagates to the positive z direction. $Z_{0} \neq Z_{\mathrm{L}}$. How much (\%) of the power is transmitted to the line whose impedance is Z_{L}

Q1b: The signal propagates to the positive z direction. $Z_{0} \neq Z_{\mathrm{L}}$. How much (\%) of the power is transmitted to the line whose impedance is Z_{L}

Z_{L}

$$
\rho_{L}=0.50 \angle 180^{\circ}
$$

1. 12.5%
2. 25%
3. 50%

4. 75%
5. 100%

Q2a: ρ_{L} is the reflection coefficient at $z=0$. Which (1-5) is the expression for ρ at the distance of \boldsymbol{l} from $z=0$?

1. $\rho(z=-l)=\rho_{L} \cdot e^{-\mathrm{j} \beta l}$
2. $\rho(z=-l)=\rho_{L} \cdot e^{+\mathrm{j} \beta l}$
3. $\rho(z=-l)=\rho_{L} \cdot e^{-\mathrm{j} 2 \beta l}$
4. $\rho(z=-l)=\rho_{L} \cdot e^{\mathrm{j} 2 \beta l}$

5. None of above
6. I don't know

Q2b: ρ_{L} is the reflection coefficient at $z=0$. Which (1-5) is the expression for $\boldsymbol{\rho}$ at the distance of \boldsymbol{l} from $z=0$?

5. None of above

Topic 2: Smith chart \& impedance matching

1. What can be observed in the figures?
2. Where do you see (partial) standing waves?
3. What for we need the impedance matching?
4. How the impedance matching is implemented through the matching network?
5. What for the Smith chart is needed?

Q3a: Which is the location of the voltage reflection coefficient ρ_{L} on the complex plane?

$\rho_{L}=0.5 \angle-30^{\circ}$
6. I don't know.

The Smith chart is a complex reflection coefficient plane.

Imaginary axis

Q3b: Which is the location of the voltage reflection coefficient ρ_{L} on the complex plane?

Rotation direction on the complex plane and the Smith chart

clockwise: negative angle

anticlockwise: positive direction

Q4a: The direction from the load impedance towards the generator is

1. always clockwise
2. always anticlockwise (i.e. counterclockwise)
3. either clockwise or anticlockwise; it depends on the location of the ρ_{L} on the Smith chart
4. direction of increasing reflection coefficient.
5. none of above
6. I don't know

Q4b: The direction from the load impedance towards the generator is

1. always clockwise
2. always anticlockwise (i.e. counterclockwise)
3. either clockwise or anticlockwise; it depends on the location of the ρ_{L} on the Smith chart
4. direction of increasing reflection coefficient.
5. none of above

Normalized impedance

On the Smith chart the impedance is always normalized to the "reference impedance" Z_{0}.

The reference impedance Z_{0} is 50Ω (unless otherwise mentioned)

Normalized impedance ("small" letter, unitless)

\section*{$z_{L}=\frac{Z_{L}}{Z_{0}} \xrightarrow[\begin{array}{l}\text { Reference impedance } \\ \text { (typically } 50 \Omega \text {) }\end{array}]{\substack{\text { (}\\}}$}

Q5a: Read from the Smith chart, which is the corresponding normalized impedance z_{L} of ρ_{L} ?

$$
\rho_{L}=0.5 \angle-30^{\circ}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad z_{L}=\frac{Z_{L}}{Z_{0}}, Z_{0}=50 \Omega
$$

1. $z_{\mathrm{L}}=2.0+\mathrm{j} \cdot 1.3$
2. $z_{\mathrm{L}}=2.0-\mathrm{j} \cdot 1.3$
3. $z_{L}=0.40+j \cdot 2.0$
4. $z_{L}=0.40-j \cdot 2.0$
5. $z_{L}=0.50-j 30$
6. I don't know

The Smith chart is also normalized impedance scale

Q5b: Read from the Smith chart, which is the corresponding normalized impedance z_{L} of ρ_{L} ?

$$
\rho_{L}=0.5 \angle-30^{\circ}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad z_{L}=\frac{Z_{L}}{Z_{0}}, Z_{0}=50 \Omega
$$

1. $z_{\mathrm{L}}=2.0+\mathrm{j} \cdot 2.0$
2. $z_{L}=2.0-j \cdot 1.3$
3. $z_{\mathrm{L}}=0.40+\mathrm{j} \cdot 0.5$
4. $z_{\mathrm{L}}=0.50-\mathrm{j} \cdot 2.0$
5. $z_{L}=0.50-j 30$

The Smith chart is also normalized impedance scale

The Smith chart is normalized impedance scale on the complex reflection coefficient plane

All mathematical derivation on one line:

$$
\rho_{L}=u+\mathrm{j} v=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{r+\mathrm{j} x-1}{r+\mathrm{j} x+1} \Leftrightarrow 1:\left(u-\frac{r}{r+1}\right)^{2}+v^{2}=\frac{1}{(r+1)^{2}} \text { and } 2:(u-1)^{2}+\left(v-\frac{1}{x}\right)^{2}=\frac{1}{x^{2}}
$$

1: constant resistance (r) circles:

2: constant reactance (x) circles:

Q6: Which of the points $(1-5)$ corresponds to the matched load impedance?

matched means : $\rho_{L}=0$ (no voltage reflection)
$\rho_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=0 \Leftrightarrow Z_{L}=Z_{0} \Leftrightarrow z_{L}=1$
6. I don't know.

Q7: Which point (1-5) corresponds to "open circuit" impedance?

$$
\rho_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad \text { open circuit }: Z_{L}=\infty
$$

6. I don't know.

Topic 2: Smith chart \& impedance matching

The Smith chart is not only for designing the matching circuits, but oftentimes it is actually used for interpretation of the impedance or reflection coefficient behaviour as a function of the frequency.

-frequency [GHz]

HFSSDesign1

Sehip1: Sweep1

