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Summary of the Last Lecture

@ Probabilistic state space models consist of Markovian
dynamic models and conditionally independent
measurement models.

@ Special cases are, for example, linear Gaussian models
and non-linear and non-Gaussian models.

@ Bayesian filtering equations form the formal solution to
general Bayesian filtering problem.

@ The Bayesian filtering equations consist of prediction and
update steps.

@ Kalman filter is the closed form filtering solution to linear
Gaussian models.
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EKF Filtering Model

Extended Kalman filter (EKF) can be used in models of the
form:

Xk = f(Xk_1) + qQx—_1
Vi = h(xk) + rg

@ X, € R"is the state

® yx € R™Mis the measurement

@ gx_1 ~ N(0,Q_1) is the Gaussian process noise
@ rix ~ N(0,Ry) is the Gaussian measurement noise
@ f(.) is the dynamic model function

@ h(-) is the measurement model function
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Bayesian Optimal Filtering Equations

@ The EKF model is clearly a special case of probabilistic
state space models with

P(Xk | Xk—1) = N(Xx [ f(Xk—1), Qk_1)
P(Yk | Xk) = N(Yk [ h(Xk), Rk)

@ Recall the formal optimal filtering solution:
P(Xk | Y1:k—1) = /p(xk | Xk—1) P(Xk—1 | Y1:6-1) dXg—1
1
P(Xk |Y1:4) = ZP(Vk | Xk) P(Xk | Y1:k—1)

@ No closed form solution for non-linear f and h.
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The Idea of Extended Kalman Filter

@ In EKEF, the non-linear functions are linearized (via the first
order Taylor series expansion) as follows:

f(
h(

Q

f(m) + Fx(m) (x — m)

X)
X) ~ h(m) + Hx(m) (x —m)

Q

where x ~ N(m, P), and Fyx, Hy are the Jacobian matrices
of f, h, respectively.

@ If we replace f(x) and h(x) with their linearizations, we get
a linear Gaussian model — Kalman filter can be used.

@ Can also be seen as approximate transformations of
random variables — let us look into that point of view next.
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Linear Approximations of Non-Linear Transforms [1/4]

@ Consider the transformation of x into y:

X ~ N(m,P)
y =9g(x)

@ The probability density of y is now non-Gaussian:
p(y) = [9(y)| N(g~'(y) Im,P)
@ Taylor series expansion of g on mean m:
g(x) = g(m + 6x) = g(m) + Gx(m) ox
+ XI: %5XT G{)(m)oxe; + ...

where ix = x — m.
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Linear Approximations of Non-Linear Transforms [2/4]

@ First order, that is, linear approximation:
g(x) ~ g(m) + Gx(m) 6x

@ Taking expectations on both sides gives approximation of
the mean:

E[g(x)] ~ g(m)
@ For covariance we get the approximation:
Covlg(x)] = E |(9(x) — Elg(x)]) (9(x) — Elg(x)))'|

~E [(g(x) —g(m)) (g(x) — 9("‘))1
~ Gx(m) PG-)I(-(m)
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Linear Approximations of Non-Linear Transforms [3/4]

@ In EKF we will need the joint covariance of x and g(x) + q,
where g ~ N(0, Q).
@ Consider the pair of transformations
X ~ N(m,P)
q~ N(0,Q)
Yi=X
y2 = g(x) +Qq.

@ Applying the linear approximation gives

e ( (xi+ =gt

g
cOvKg(x +q>] ~ <GX(I.:1)p Gx(m;alfé?nl)jta)
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Linear Approximations of Non-Linear Transforms [4/4]

Linear Approximation of Non-Linear Transform

The linear Gaussian approximation to the joint distribution of x
and y = g(x) + q, where x ~ N(m,P) and q ~ N(0,Q) is

) (o) (& <)

where
py = g(m)
S, = Gx(m)PGj(m)+Q
C.=PG)(m).
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Derivation of EKF [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian

P(Xk—1 | Y1:k—1) = N(Xk—1 [ My_1,Px_1)

@ The joint distribution of x,x_1 and xx = f(Xx_1) + qx_1 is
non-Gaussian, but can be approximated linearly as

) O
p(xk—17xk7 |V1:k—1) ~ N <|: i 1:| ’m/7P,>a
k

where
my_4
m =
<f(mk1)>
p_ < Pi1 Pi—1 Fx(my_1) > ‘
Fr(Mk_1)Pr—1  Fx(Mmy_1)Px_1 FI(Mk_1) + Qx_
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Derivation of EKF [2/4]

@ Recall that if x and y have the joint Gaussian probability

e

y-~ N(ba B)

then

@ Thus, the approximate predicted distribution of X, given
Yi.k—1 is Gaussian with moments

m; = f(my_4)
P, = Fx(my_1)Px_1 FL(my_1) + Qx4
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Derivation of EKF [3/4]

@ The joint distribution of xx and yx = h(xx) + r is also
non-Gaussian, but by linear approximation we get

X
P(Xk; Yk | Y1:k—1) = N <[ k] ‘m”, P") :
Yk

where
()
h(m,)
P’ — < P; P; HI(m;) >
Hx(m ) Py Hx(m) P Hx(m;) + Ry
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@ Recall that if
) ~(6) (& 5)

x|y~N(@+CB'(y-—b),A-—CB~'C).

then

@ Thus we get

P(Xk | Yk, Y1:k—1) = N(Xx | My, Pyg),
where

my = m; + P, Hy(Hx P, Hx + R) ' [yx — h(m})]
Py = P, — P, Hy (Hx P, Hy + Ry) ' Hy Py
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EKF Equations
Extended Kalman filter

@ Prediction:

m, = f(my_+)
Py = Fx(my_1) Pe_1 Fy(my_1) + Q1.

@ Update:
Vi =Yk —h(m,)
Sk = Hx(m, ) P, Hi(m,) + R«
Ki = P, Hy(m,) S,
mg=m, + Ky vi
Py = P, — K Sk KF.
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EKF Example [1/2]

@ Pendulum with mass m = 1, pole
length L = 1 and random force w(t):

d?a _
oz =9 sin(a) + w(t).

@ In state space form:

gt <dao;dt) - (-Zifn?2>)+(w‘2n>

@ Assume that we measure the
X-position:

Yk = sin(a(tk)) + Ik,
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EKF Example [2/2]

@ If we define state as x = («, da/dt), by Euler integration
with time step At we get

() (it ()
Xjc Xic_1 — g sin(x,_,) At Qic_+
f(Xic—1)
;

Yk = Sin(Xk)+rk7
——
h(xk)

@ The required Jacobian matrices are:

Fx(x):<_g cos1(X1)At A1t>’ Hx(0) = (cos(x) 0)
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Advantages of EKF

@ Almost same as basic Kalman filter, easy to use.

@ Intuitive, engineering way of constructing the
approximations.

@ Works very well in practical estimation problems.
@ Computationally efficient.
@ Theoretical stability results well available.
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Limitations of EKF

@ Does not work with strong non-linearities.
@ Only Gaussian noise processes are allowed.

@ Measurement model and dynamic model functions need to
be differentiable.

@ Computation and programming of Jacobian matrices can
be quite error prone.

Simo Sarkka Lecture 4: EKF and SLF



The Idea of Statistically Linearized Filter

@ In SLF, the non-linear functions are statistically linearized:

f(x) ~ bs + Af (x —m)
h(x) =~ by + Ap(x — m)

where x ~ N(m, P).

@ Corresponds to replacing Taylor series in EKF with
Fourier—Hermite series expansion.

@ The parameters by, As and by, A, are chosen to minimize
the mean squared errors of the form
MSEy(by, Af) = E[|[f(X) — b — A7 6x||°]
MSEp(bp, Ap) = E[||h(X) — by, — A, 5x][?]
where 6x = x — m.

@ Describing functions of the non-linearities with Gaussian
input.
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Statistical Linearization of Non-Linear Transforms [1/4]

@ Again, consider the transformations

X ~ N(m,P)
y =g(x).

@ Form linear approximation to the transformation:
g(x) ~ b+ Aox,

where /X = X — m.

@ Instead of using the Taylor series approximation, we
minimize the mean squared error:

MSE(b, A) = E[(g(x) — b — Adx)T(g(x) — b — Adx)]
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Statistical Linearization of Non-Linear Transforms [2/4]

@ Expanding the MSE expression gives:

MSE(b, A) = E[g"(x) g(x) — 2g"(x)b — 2g"(x) Asx
+b"b—2bT Adx+x" AT A 6x]
N N e

=0 tr{APAT}

@ Derivatives are:
OMSE(b, A
aﬁ’) = —2E[g(x)] +2b
ngf\b"\) — _2E[g(x)ox"] + 2AP
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Statistical Linearization of Non-Linear Transforms [3/4]

@ Setting derivatives with respect to b and A zero gives

b = E[g(x)]
A = E[g(x)ox"|P~".

@ Thus we get the approximations

Elg(x)] ~ E[g(x)]
Covfg(x)] ~ E[g(x) 5x"]P~" Elg(x) 6x"]".

@ The mean is exact, but the covariance is approximation.
@ The expectations have to be calculated in closed form!
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Statistical Linearization of Non-Linear Transforms [4/4]

Statistical linearization

The statistically linearized Gaussian approximation to the joint
distribution of x and y = g(x) + q where x ~ N(m, P) and
q ~ N(0,Q) is given as

()~ ((5) et s)

ps = E[g(x)]
Ss = E[g(x)5x"]P~" E[g(x)éx"]" + Q
Cs = E[g(x) ox™]".

where
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Statistically Linearized Filter [1/3]

@ The statistically linearized filter (SLF) can be derived in the
same manner as EKF.

@ Statistical linearization is used instead of Taylor series
based linearization.

@ Requires closed form computation of the following
expectations for arbitrary x ~ N(m, P):

E[f(x)]
E[f(x) 0x']
E[h(x)]
E[h(x) 0x'],

where ix = x — m.
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Statistically Linearized Filter [2/3]

@ Prediction (expectations w.r.t. Xx_1 ~ N(mMx_1,Px_1)):

my = E[f(X_1)]
P = E[f(Xk_1) 0x}_1] Py E[f(Xk_1) 0xj_4]" + Qk_1,

@ Update (expectations w.r.t. xx ~ N(m,,P,)):
Vi = Yk — E[h(xx)]
Sk = E[h(x) 0xi] (P, )~ E[h(xx) oxz]" + R«
Kk = E[h(xk) ox}]" S,
mg =m, + Ky vi
Py = P, — Kk Sk K.
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Statistically Linearized Filter [3/3]

@ If the function g(x) is differentiable, we have
E[g(x) (x — m)'] = E[Gx(X)] P,

where Gy (x) is the Jacobian of g(x), and x ~ N(m,P).

@ In practice, we can use the following property for
computation of the expectation of the Jacobian:

@ The resulting filter resembles EKF very closely.

@ Related to replacing Taylor series with Fourier-Hermite
series in the approximation.
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Statistically Linearized Filter: Example [1/2]

@ Recall the discretized pendulum model

(x,l) < x,11+xk1At > < 0 )
2) = +
X Xi_y — g sin(x{_y) At k1

f(Xk_1)
Vi = sin(X}) +7k,
——
h(xx)

@ If x ~ N(m, P), by brute-force calculation we get

my + mo At
E[f(x)] = <m2 g sin(,;m exzp(_Pﬁ/z) At>

E[A(X)] = sin(m) exp(—Pi1/2)
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Statistically Linearized Filter: Example [2/2]

@ The required cross-correlation for prediction step is

EMf(x) (X — m)T Ci1 C12> ’
) ( )] <Cz1 Co2
where

Ci1 = P11+ At Py
Ci2 = Pi2 + At P
Co1 = P12 — g At cos(my) P11 exp(—P11/2)
Co2 = Pop — g At cos(my) P12 exp(—Pi1/2)

@ The required term for update step is

cos(myq) P11 exp(—P11/2)
E{r(x) (- m)T) = (S 1 S pE))
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Advantages of SLF

@ Global approximation, linearization is based on a range of
function values.

@ Often more accurate and more robust than EKF.

@ No differentiability or continuity requirements for
measurement and dynamic models.

@ Jacobian matrices do not need to be computed.
@ Often computationally efficient.
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Limitations of SLF

@ Works only with Gaussian noise terms.

@ Expected values of the non-linear functions have to be
computed in closed form.

@ Computation of expected values is hard and error prone.

@ BUT — sigma-point filters such as UKF can be seen as
modified numerical-integration versions of SLF, we come
back to this later.

@ If the expected values cannot be computed in closed form,
there is not much we can do.
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@ EKF, SLF and FHKF can be applied to filtering models of
the form

Xk = f(Xk—1) + Ak—1
Yk = h(xx) + rg,

@ EKF is based on Taylor series expansions of f and h.

e Advantages: Simple, intuitive, computationally efficient
e Disadvantages: Local approximation, differentiability
requirements, only for Gaussian noises.

@ SLF is based on statistical linearization:
e Advantages: Global approximation, no differentiability
requirements, computationally efficient
e Disadvantages: Closed form computation of expectations,
only for Gaussian noises.
e But, there is a connection to sigma-point filters (e.g., UKF).
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