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Summary of the Last Lecture

Probabilistic state space models consist of Markovian
dynamic models and conditionally independent
measurement models.
Special cases are, for example, linear Gaussian models
and non-linear and non-Gaussian models.
Bayesian filtering equations form the formal solution to
general Bayesian filtering problem.
The Bayesian filtering equations consist of prediction and
update steps.
Kalman filter is the closed form filtering solution to linear
Gaussian models.

Simo Särkkä Lecture 4: EKF and SLF



EKF Filtering Model

Extended Kalman filter (EKF) can be used in models of the
form:

xk = f(xk−1) + qk−1

yk = h(xk ) + rk

xk ∈ Rn is the state
yk ∈ Rm is the measurement
qk−1 ∼ N(0,Qk−1) is the Gaussian process noise
rk ∼ N(0,Rk ) is the Gaussian measurement noise
f(·) is the dynamic model function
h(·) is the measurement model function

Simo Särkkä Lecture 4: EKF and SLF



Bayesian Optimal Filtering Equations

The EKF model is clearly a special case of probabilistic
state space models with

p(xk |xk−1) = N(xk | f(xk−1),Qk−1)

p(yk |xk ) = N(yk |h(xk ),Rk )

Recall the formal optimal filtering solution:

p(xk |y1:k−1) =

∫
p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1

p(xk |y1:k ) =
1
Zk

p(yk |xk ) p(xk |y1:k−1)

No closed form solution for non-linear f and h.
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The Idea of Extended Kalman Filter

In EKF, the non-linear functions are linearized (via the first
order Taylor series expansion) as follows:

f(x) ≈ f(m) + Fx(m) (x−m)

h(x) ≈ h(m) + Hx(m) (x−m)

where x ∼ N(m,P), and Fx, Hx are the Jacobian matrices
of f, h, respectively.
If we replace f(x) and h(x) with their linearizations, we get
a linear Gaussian model – Kalman filter can be used.
Can also be seen as approximate transformations of
random variables – let us look into that point of view next.
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Linear Approximations of Non-Linear Transforms [1/4]

Consider the transformation of x into y:

x ∼ N(m,P)

y = g(x)

The probability density of y is now non-Gaussian:

p(y) = |J(y)| N(g−1(y) |m,P)

Taylor series expansion of g on mean m:

g(x) = g(m + δx) = g(m) + Gx(m) δx

+
∑

i

1
2
δxT G(i)

xx(m) δx ei + . . .

where δx = x−m.
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Linear Approximations of Non-Linear Transforms [2/4]

First order, that is, linear approximation:

g(x) ≈ g(m) + Gx(m) δx

Taking expectations on both sides gives approximation of
the mean:

E[g(x)] ≈ g(m)

For covariance we get the approximation:

Cov[g(x)] = E
[
(g(x)− E[g(x)]) (g(x)− E[g(x)])T

]
≈ E

[
(g(x)− g(m)) (g(x)− g(m))T

]
≈ Gx(m) P GT

x(m)
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Linear Approximations of Non-Linear Transforms [3/4]

In EKF we will need the joint covariance of x and g(x) + q,
where q ∼ N(0,Q).
Consider the pair of transformations

x ∼ N(m,P)

q ∼ N(0,Q)

y1 = x
y2 = g(x) + q.

Applying the linear approximation gives

E

[(
x

g(x) + q

)]
≈
(

m
g(m)

)
Cov

[(
x

g(x) + q

)]
≈
(

P P GT
x(m)

Gx(m) P Gx(m) P GT
x(m) + Q

)
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Linear Approximations of Non-Linear Transforms [4/4]

Linear Approximation of Non-Linear Transform
The linear Gaussian approximation to the joint distribution of x
and y = g(x) + q, where x ∼ N(m,P) and q ∼ N(0,Q) is(

x
y

)
∼ N

((
m
µL

)
,

(
P CL
CT

L SL

))
,

where

µL = g(m)

SL = Gx(m) P GT
x(m) + Q

CL = P GT
x(m).
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Derivation of EKF [1/4]

Assume that the filtering distribution of previous step is
Gaussian

p(xk−1 |y1:k−1) ≈ N(xk−1 |mk−1,Pk−1)

The joint distribution of xk−1 and xk = f(xk−1) + qk−1 is
non-Gaussian, but can be approximated linearly as

p(xk−1,xk , |y1:k−1) ≈ N

([
xk−1
xk

] ∣∣∣m′,P′) ,
where

m′ =

(
mk−1

f(mk−1)

)
P′ =

(
Pk−1 Pk−1 FT

x (mk−1)
Fx (mk−1) Pk−1 Fx (mk−1) Pk−1 FT

x (mk−1) + Qk−1

)
.
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Derivation of EKF [2/4]

Recall that if x and y have the joint Gaussian probability
distribution (

x
y

)
∼ N

((
a
b

)
,

(
A C
CT B

))
,

then
y ∼ N(b,B)

Thus, the approximate predicted distribution of xk given
y1:k−1 is Gaussian with moments

m−k = f(mk−1)

P−k = Fx (mk−1) Pk−1 FT
x (mk−1) + Qk−1

Simo Särkkä Lecture 4: EKF and SLF



Derivation of EKF [3/4]

The joint distribution of xk and yk = h(xk ) + rk is also
non-Gaussian, but by linear approximation we get

p(xk ,yk |y1:k−1) ≈ N

([
xk
yk

] ∣∣∣m′′,P′′) ,
where

m′′ =

(
m−k

h(m−k )

)
P′′ =

(
P−k P−k HT

x(m−k )
Hx(m−k ) P−k Hx(m−k ) P−k HT

x(m−k ) + Rk

)
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Derivation of EKF [4/4]

Recall that if (
x
y

)
∼ N

((
a
b

)
,

(
A C
CT B

))
,

then

x |y ∼ N(a + C B−1 (y− b),A− C B−1CT).

Thus we get

p(xk |yk ,y1:k−1) ≈ N(xk |mk ,Pk ),

where

mk = m−k + P−k HT
x(Hx P−k HT

x + Rk )−1[yk − h(m−k )]

Pk = P−k − P−k HT
x (Hx P−k HT

x + Rk )−1 Hx P−k
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EKF Equations

Extended Kalman filter
Prediction:

m−k = f(mk−1)

P−k = Fx(mk−1) Pk−1 FT
x(mk−1) + Qk−1.

Update:

vk = yk − h(m−k )

Sk = Hx(m−k ) P−k HT
x(m−k ) + Rk

Kk = P−k HT
x(m−k ) S−1

k

mk = m−k + Kk vk

Pk = P−k − Kk Sk KT
k .
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EKF Example [1/2]

g

w(t)

α

Pendulum with mass m = 1, pole
length L = 1 and random force w(t):

d2α

dt2 = −g sin(α) + w(t).

In state space form:

d
dt

(
α

dα/dt

)
=

(
dα/dt
−g sin(α)

)
+

(
0

w(t)

)
Assume that we measure the
x-position:

yk = sin(α(tk )) + rk ,
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EKF Example [2/2]

If we define state as x = (α,dα/dt), by Euler integration
with time step ∆t we get(

x1
k

x2
k

)
=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1) ∆t

)
︸ ︷︷ ︸

f(xk−1)

+

(
q1

k−1
q2

k−1

)

yk = sin(x1
k )︸ ︷︷ ︸

h(xk)

+rk ,

The required Jacobian matrices are:

Fx (x) =

(
1 ∆t

−g cos(x1) ∆t 1

)
, Hx (x) =

(
cos(x1) 0

)
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Advantages of EKF

Almost same as basic Kalman filter, easy to use.
Intuitive, engineering way of constructing the
approximations.
Works very well in practical estimation problems.
Computationally efficient.
Theoretical stability results well available.
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Limitations of EKF

Does not work with strong non-linearities.
Only Gaussian noise processes are allowed.
Measurement model and dynamic model functions need to
be differentiable.
Computation and programming of Jacobian matrices can
be quite error prone.
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The Idea of Statistically Linearized Filter

In SLF, the non-linear functions are statistically linearized:

f(x) ≈ bf + Af (x−m)

h(x) ≈ bh + Ah (x−m)

where x ∼ N(m,P).
Corresponds to replacing Taylor series in EKF with
Fourier–Hermite series expansion.
The parameters bf , Af and bh, Ah are chosen to minimize
the mean squared errors of the form

MSEf (bf ,Af ) = E[||f(x)− bf − Af δx||2]

MSEh(bh,Ah) = E[||h(x)− bh − Ah δx||2]

where δx = x−m.
Describing functions of the non-linearities with Gaussian
input.
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Statistical Linearization of Non-Linear Transforms [1/4]

Again, consider the transformations

x ∼ N(m,P)

y = g(x).

Form linear approximation to the transformation:

g(x) ≈ b + A δx,

where δx = x−m.
Instead of using the Taylor series approximation, we
minimize the mean squared error:

MSE(b,A) = E[(g(x)− b− A δx)T(g(x)− b− A δx)]
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Statistical Linearization of Non-Linear Transforms [2/4]

Expanding the MSE expression gives:

MSE(b,A) = E[gT(x) g(x)− 2 gT(x) b− 2 gT(x) A δx

+ bT b− 2 bT A δx︸ ︷︷ ︸
=0

+ δxT AT A δx︸ ︷︷ ︸
tr{A P AT}

]

Derivatives are:

∂MSE(b,A)

∂b
= −2 E[g(x)] + 2 b

∂MSE(b,A)

∂A
= −2 E[g(x) δxT] + 2 A P
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Statistical Linearization of Non-Linear Transforms [3/4]

Setting derivatives with respect to b and A zero gives

b = E[g(x)]

A = E[g(x) δxT] P−1.

Thus we get the approximations

E[g(x)] ≈ E[g(x)]

Cov[g(x)] ≈ E[g(x) δxT] P−1 E[g(x) δxT]T.

The mean is exact, but the covariance is approximation.
The expectations have to be calculated in closed form!
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Statistical Linearization of Non-Linear Transforms [4/4]

Statistical linearization
The statistically linearized Gaussian approximation to the joint
distribution of x and y = g(x) + q where x ∼ N(m,P) and
q ∼ N(0,Q) is given as(

x
y

)
∼ N

((
m
µS

)
,

(
P CS

CT
S SS

))
,

where

µS = E[g(x)]

SS = E[g(x) δxT] P−1 E[g(x) δxT]T + Q

CS = E[g(x) δxT]T.

Simo Särkkä Lecture 4: EKF and SLF



Statistically Linearized Filter [1/3]

The statistically linearized filter (SLF) can be derived in the
same manner as EKF.
Statistical linearization is used instead of Taylor series
based linearization.
Requires closed form computation of the following
expectations for arbitrary x ∼ N(m,P):

E[f(x)]

E[f(x) δxT]

E[h(x)]

E[h(x) δxT],

where δx = x−m.
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Statistically Linearized Filter [2/3]

Statistically linearized filter

Prediction (expectations w.r.t. xk−1 ∼ N(mk−1,Pk−1)):

m−k = E[f(xk−1)]

P−k = E[f(xk−1) δxT
k−1] P−1

k−1 E[f(xk−1) δxT
k−1]T + Qk−1,

Update (expectations w.r.t. xk ∼ N(m−k ,P
−
k )):

vk = yk − E[h(xk )]

Sk = E[h(xk ) δxT
k ] (P−k )−1 E[h(xk ) δxT

k ]T + Rk

Kk = E[h(xk ) δxT
k ]T S−1

k

mk = m−k + Kk vk

Pk = P−k − Kk Sk KT
k .
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Statistically Linearized Filter [3/3]

If the function g(x) is differentiable, we have

E[g(x) (x−m)T] = E[Gx (x)] P,

where Gx (x) is the Jacobian of g(x), and x ∼ N( m,P).
In practice, we can use the following property for
computation of the expectation of the Jacobian:

µ(m) = E[g(x)]

∂µ(m)

∂m
= E[Gx (x)].

The resulting filter resembles EKF very closely.
Related to replacing Taylor series with Fourier-Hermite
series in the approximation.
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Statistically Linearized Filter: Example [1/2]

Recall the discretized pendulum model(
x1

k
x2

k

)
=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1) ∆t

)
︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )︸ ︷︷ ︸

h(xk)

+rk ,

If x ∼ N(m,P), by brute-force calculation we get

E[f(x)] =

(
m1 + m2 ∆t

m2 − g sin(m1) exp(−P11/2) ∆t

)
E[h(x)] = sin(m1) exp(−P11/2)
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Statistically Linearized Filter: Example [2/2]

The required cross-correlation for prediction step is

E[f(x) (x−m)T] =

(
c11 c12
c21 c22

)
,

where

c11 = P11 + ∆t P12

c12 = P12 + ∆t P22

c21 = P12 − g ∆t cos(m1) P11 exp(−P11/2)

c22 = P22 − g ∆t cos(m1) P12 exp(−P11/2)

The required term for update step is

E[h(x) (x−m)T] =

(
cos(m1) P11 exp(−P11/2)
cos(m1) P12 exp(−P11/2)

)
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Advantages of SLF

Global approximation, linearization is based on a range of
function values.
Often more accurate and more robust than EKF.
No differentiability or continuity requirements for
measurement and dynamic models.
Jacobian matrices do not need to be computed.
Often computationally efficient.
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Limitations of SLF

Works only with Gaussian noise terms.
Expected values of the non-linear functions have to be
computed in closed form.
Computation of expected values is hard and error prone.
BUT – sigma-point filters such as UKF can be seen as
modified numerical-integration versions of SLF, we come
back to this later.
If the expected values cannot be computed in closed form,
there is not much we can do.
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Summary

EKF, SLF and FHKF can be applied to filtering models of
the form

xk = f(xk−1) + qk−1

yk = h(xk ) + rk ,

EKF is based on Taylor series expansions of f and h.

Advantages: Simple, intuitive, computationally efficient
Disadvantages: Local approximation, differentiability
requirements, only for Gaussian noises.

SLF is based on statistical linearization:
Advantages: Global approximation, no differentiability
requirements, computationally efficient
Disadvantages: Closed form computation of expectations,
only for Gaussian noises.
But, there is a connection to sigma-point filters (e.g., UKF).
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