

Decision making and problem solving – Lecture 4

- Risk measures
- Multiattribute value theory
- Axioms for preference relations
- Elicitation of attribute-specific value functions

Liesiö, Punkka, Salo, Vilkkumaa

Motivation

□ Last time we learned how :

- To model the DM's preferences over risk by eliciting her utility function
- The shape (concave / linear / convex) of the utility function corresponds to the DM's risk attitude (risk averse / neutral / seeking)
- Decision recommendations may be implied by stochastic dominance even if the utility function is not (completely) specified:
 - If the DM prefers more to less, she should not choose an FSD dominated alternative
 - If the DM is also risk averse, she should not choose an SSD dominated alternative

□ This time (Part A):

 We take a look at risk measures and examine how they can be used to describe alternatives' risks

Risk measures

Risk measure is a function that maps each decision alternative to a single number describing its risk

- E.g., variance $Var[X] = E[(X E[X])^2]$
 - The higher the variance, the higher the risk
- Risk measures are not based on EUT, but can be used together with expected values to produce decision recommendations
 - Risk constraint: Among alternatives whose risk is below some threshold, select the one with the highest expected value
 - Risk minimization: Among alternatives whose expected value is above some threshold, select the one with minimum risk
 - Efficient frontier: Select one of those alternative compared to which no other alternative yields higher expected value and smaller risk

Risk measures: Value-at-Risk (VaR)

□ Value-at-Risk (VaR $_{\alpha}[X]$) is the outcome such that the probability of a worse or equal outcome is α :

$$\int_{-\infty}^{\operatorname{VaR}_{\alpha}[X]} f_X(t) dt = F_X(\operatorname{VaR}_{\alpha}[X]) = \alpha.$$

- □ Higher VaR means smaller risk
 - Unless applied to a loss distribution
- **Common values for** α : 1%, 5%, and 10%
- Problem: the length/shape of the tail is not taken into account

Mining example revisited

Assess VaR_{5%} for strategies 1 and 25

Aalto University

School of Science

Risk measures: Conditional Value-at-Risk (CVaR) 0.14

Conditional Value-at-Risk ($CVaR_{\alpha}[X]$) is the expected outcome given that the outcome is at most VaR_{α} :

 $CVaR[X] = E[X|X \le VaR_{\alpha}[X]]$

Higher CVaR means smaller risk (unless applied to losses)

Computation of CVaR[X] to discrete and continuous X:

 $E[X|X \le \operatorname{VaR}_{\alpha}[X]] = \sum_{t \le \operatorname{VaR}_{\alpha}[X]} t \frac{f_X(t)}{\alpha}, \qquad E[X|X \le \operatorname{VaR}_{\alpha}[X]] = \int_{-\infty}^{\operatorname{VaR}_{\alpha}[X]} t \frac{f_X(t)}{\alpha} dt.$

Note: $\alpha = P(X \leq \text{VaR}_{\alpha}[X])$; PMF/PDF $f_X(t)$ is scaled such that it sums/integrates up to 1.

Computation of VaR and CVaR

□ If the inverse CDF of X is well-defined, VaR can be obtained from $VaR_{\alpha}[X] = F_X^{-1}(\alpha)$

- In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc
- In Matlab: norminv, logninv, betainv, binoinv etc

CVaR can then be computed using the formulas on the previous slide

- Sometimes an analytic solution can be obtained; if, e.g., $X \sim N(\mu, \sigma^2)$ and $\text{VaR}_{\alpha}[X] = \beta$, then

$$\text{CVaR}_{\alpha}[X] = \mu - \sigma \frac{\phi(\frac{\beta-\mu}{\sigma})}{\Phi(\frac{\beta-\mu}{\sigma})}$$

where ϕ and Φ are the standard normal PDF and CDF, respectively.

– Sometimes numerical integration is needed

Computation of VaR and CVaR

- □ With discrete random variables VaR and CVaR are not always well defined for small values of α
 - Example:

t	-10	-5	1	10	20
f _X (t)	0.06	0.02	0.02	0.5	0.4

- $VaR_{10\%}[X]=1$

-
$$\text{CVaR}_{10\%}[X] = \frac{0.06(-10) + 0.02(-5) + 0.02(1)}{0.06 + 0.02 + 0.02} = -6.8$$

- But what are $VaR_{5\%}[X]$, $CVaR_{5\%}[X]$?

VaR and CVaR with Monte Carlo - Excel

	=AVERAGE(D12:D211)							
	А	В	С	D	E	F		
1					/			
8		Col.mean	Col.mear	CVaR-10%				
9		0.507501	1008.35	147.4443) (VaR-10%		
10						410.5591	=PERCENTILE.INC(C12:C211;0.1)	
11	Sample	u	х	Below VaR				
12	1	0.691314	1249.789	above				
13	2	0.603076	1130.659	above			=IF(C12<=\$F\$10;C12;"above")	
14	3	0.548331	1060.723	above				
15	4	0.058081	214.4534	214.4534				
16	5	0.442469	927.6436	above				
17	6	0.628886	1164.452	above				
18	7	0.157181	496.9445	above				
19	8	0.355657	814.9539	above				
20	9	0.545768	1057.488	above			Note! 200 samples is verv	
21	10	0.416183	894.1666	above				
22	11	0.879097	1585.243	above			little, because only 1/10=20	
23	12	0.022042	-6.64468	-6.64468			are used to estimate CV/2P	
24	13	0.000927	-556.359	-556.359			are used to estimate C van	
25	14	0.071391	267.2461	267.2461				

VaR and CVaR with Monte Carlo -Matlab

S=10^5;	<pre>%Sample size 10,000</pre>
mu=1000;	
sigma=500;	
<pre>Sample=normrnd(mu,sigma,S,1);</pre>	%Generates 10^5 observations from N(mu,sigma)
VaR <mark>=</mark> prctile(Sample,10)	<pre>%Returns the 10% percentile of the sample</pre>
<pre>TailIndices=find(Sample<=VaR);</pre>	%Returns the indices of those elements
	%in the sample below or equal to VaR
CVaR <mark>=</mark> mean(Sample(TailIndices))	<pre>%Computes the arithmetic mean among those</pre>
	%elements in the sample belor or equal to VaR

Risk measures and stochastic dominance

□ **Theorem:** $X \ge_{FSD} Y$ if and only if VaR_{α}[X] ≥ VaR_{α}[Y] $\forall \alpha \in [0,1]$

□ **Theorem:** $X \ge_{\text{SSD}} Y$ if and only if $\text{CVaR}_{\alpha}[X] \ge \text{CVaR}_{\alpha}[Y] \forall \alpha \in [0,1]$

EUT vs. Risk measures

- EUT provides a more comprehensive way to capture the DM's preferences over uncertain outcomes
- □ With risk measures, one must answer questions such as
 - Which measure to use?
 - Which α to use in VaR and CVaR?
 - How to combine EV and the value of a risk measure into an overall performance measure?
- Yet, if answers to such questions are exogenously imposed, the use of risk measures can be easy
 - E.g., laws, regulations, industry standard etc.

Motivation

 Consider yourself choosing accommodation for a (downhill) skiing vacation trip

How do the accommodation alternatives differ from each other?

What are the attributes that influence your decision?

Motivation

□ So far:

 We have considered decision-making situations in which the DM has one objective (e.g., maximize the expected value/utility of a monetary payoff)

□ This time:

- We consider decision-making situations in which the DM has multiple objectives or, more precisely...
- <u>Multiple attributes</u> with regard to which the achievement of some fundamental objective is measured

Multiattribute value theory

- Ralph Keeney and Howard Raiffa (1976): Decisions with Multiple Objectives: Preferences and Value Tradeoffs
- □ James Dyer and Rakesh Sarin (1979): Measurable multiattribute value functions, *Operations Research* Vol. 27, pp. 810-822

Elements of MAVT

- A value tree consisting of objectives, attributes, and alternatives
- Preference relation over the alternatives' attribute-specific performances and differences thereof & their representation with an <u>attribute-specific value function</u>
- Preference relation over the alternatives' overall performances and differences thereof & their representation with a <u>multiattribute value function</u>

Value tree: objectives, attributes, and alternatives

Value tree: objectives, attributes and alternatives

- The attributes a₁,..., a_n have measurement scales X_i, i=1,...,n; e.g.,
 - X₁=[1000€/month, 6000€/month]
 - X₂ = [2 weeks/year, 8 weeks/year]
 - X₃ = [0 days/year, 200 days/year]
 - $X_4 = \{poor, fair, good, excellent\}$
- □ Alternatives $x = (x_1, x_2, ..., x_n)$ are characterized by their performance w.r.t. the attributes; e.g.,
 - Banker=(6000€/month, 5 weeks/year, 40 days/year, fair) $\in X_1 \times X_2 \times X_3 \times X_4$.

Preference relation: attribute-specific performance

□ Let \geq be preference relation among performance levels *a* and *b* on a given attribute

Preference $a \ge b$: *a* at least as preferable as *b* Strict preference a > b defined as $\neg(b \ge a)$ Indifference $a \sim b$ defined as $a \ge b \land b \ge a$

Axioms for preference relation

A1: \geq is complete

- For any $a, b \in X$, either $a \ge b$ or $b \ge a$ or both

$\Box A2: \geq is transitive$

- If $a \ge b$ and $b \ge c$, then $a \ge c$

Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an <u>ordinal</u> value function $v_i(\cdot)$: $X_i \to \mathbb{R}$ that represents preference relation \geq in the sense that

 $v_i(a) \ge v_i(b) \Leftrightarrow a \ge b$

An ordinal value function does not describe strength of preference, i.e., it does not communicate much more an object is preferred to another

Ordinal value function

□Assume you have two mopeds A and B with top speeds of 30 and 35km/h, respectively

□You have two alternatives for upgrade

□ Increase top speed of moped A to 40

□ Increase top speed of moped B to 45

□Your prefer a higher top speed to a lower one

□ 45>40>35>30

□ v(45)=1, v(40)=0.8, v(35)=0.5, v(30)=0.4

 \Box w(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4

Both v and w are ordinal value functions representing your preferences but they do not describe your preferences between the two upgrade alternatives

 \Box v(45)-v(35)=0.5 > v(40)-v(30)=0.4, but w(45)-w(35)=0.3 < w(40)-w(30) = 0.4

Ordinal value function

Theorem: Ordinal value functions $v_i(\cdot)$ and $w_i(\cdot)$ represent the same preference relation \geq **if and only if** there exists a strictly increasing function $\phi \colon \mathbb{R} \to \mathbb{R}$ such that $w_i(a) = \phi[v_i(\cdot)] \quad \forall a \in A$.

Example: Let *consultant* > *professor* > *janitor* be Jim's preferences over these jobs and v(consultant) = 10 > v(professor) = 8 > v(janitor) = 7. Then v' and v'' both represent the same preferences as ordinal value function v

		consultant	professor	janitor
	v	10	8	7
Aalto U	v'	20	16	14
School	$v^{\prime\prime}$	20	16	8

The goal is to compare <u>multi-attribute</u> alternatives, wherefore ordinal value functions are not enough

- □ Let \geq_d be preference relation among <u>differences</u> in performance levels on a given attribute
 - Preference $(a \leftarrow b) \ge_d (c \leftarrow d)$: a change from b to a is at least as preferable as a change from d to c
 - Strict preference $(a \leftarrow b) \succ_d (c \leftarrow d)$ defined as $\neg((c \leftarrow d) \ge_d (a \leftarrow b))$
 - $\begin{array}{ll} & \text{Indifference } (a \leftarrow b) \sim_d (c \leftarrow d) \text{ defined as } (a \leftarrow b) \succcurlyeq_d (c \leftarrow d) \land (c \leftarrow d) \succcurlyeq_d (a \leftarrow b) \end{array}$

Axioms for preference relation (cont'd)

- **A3:** $\forall a_i b_i c \in X_i$: $a \ge b \Leftrightarrow (a \leftarrow b) \ge_d (c \leftarrow c)$
 - If a is preferred to b, then a change from b to a is preferred to no change
- **A4:** $\forall a_i b_i c_i d \in X_i$: $(a \leftarrow b) \geq_d (c \leftarrow d) \Leftrightarrow (d \leftarrow c) \geq_d (b \leftarrow a)$
 - E.g., if an increase in salary from 1500€ to 2000€ is preferred to an increase from 2000€ to 2500€, then a decrease from 2500€ to 2000€ is preferred to a decrease from 2000€ to 1500€
- **A5:** $\forall a_i b_i c_i d_i e_i f \in X_i$: $(a \leftarrow b) \geq_d (d \leftarrow e) \land (b \leftarrow c) \geq_d (e \leftarrow f) \Rightarrow (a \leftarrow c) \geq_d (d \leftarrow f)$
 - If two incremental changes are both preferred to some other two, then the overall change resulting from the first two increments is also preferred
- **A6:** $\forall b, c, d \in X_i \exists a \in X_i$ such that $(a \leftarrow b) \sim_d (c \leftarrow d)$ and $\forall b, c \in X_i \exists a \in X_i$ such that $(b \leftarrow d) \in X_i$ $a) \sim_d (a \leftarrow c)$
 - Equally preferred differences between attribute levels can always be constructed
 - There is always an attribute level a between b and c such that a change from c to a is equally preferred to a change from a to b.

A7: The set (or sequence) $\{a_n | b > a_n \text{ where } (a_n \leftarrow a_{n-1}) \sim d(a_1 \leftarrow a_0)\}$ is finite for any b in X_i

The sequence of equally preferred differences over a fixed interval is finite

"No b can be infinitely better than other performance levels"

Aalto As French (1988) incorrectly puts it; the idea here is that it is possible to construct equally preferred changes in order to represent preferences 2019

24

Cardinal value function

□ **Theorem:** Let axioms A1-A7 hold. Then, there exists a <u>cardinal</u> value function $v_i(\cdot)$: $X_i \rightarrow \mathbb{R}$ that represents preference relations \geq and \geq_d in the sense that

$$v_i(a) \ge v_i(b) \Leftrightarrow a \ge b$$
$$v_i(a) - v_i(b) \ge v_i(c) - v_i(d) \Leftrightarrow (a \leftarrow b) \ge_d (c \leftarrow d).$$

Note: A cardinal value function is unique up to positive affine transformations, i.e., $v_i(x)$ and $v'_i(x) = \alpha v_i(x) + \beta, \alpha > 0$ and represent the same preferences

Cardinal value function: positive affine transformations

Example: Let consultant > professor > janitor and (consultant \leftarrow $professor) \geq_d (professor \leftarrow janitor)$ be Jim's preferences and v(consultant) = 10 > v(professor) = 8 > v(janitor) = 7.

Then v' and v'' both represent same preferences as cardinal value function v

	consultant	professor	janitor
ν	10	8	7
v' = 2v	20	16	14
$v^{\prime\prime} = v^{\prime} - 10$	10	6	4

Aalto University **School of Science**

Attribute-specific value functions

- A value function maps the attribute-specific measurement scale onto a numerical scale in accordance with the DM's preferences
- □ Value and utility:
 - Value is a measure of preference under certainty
 - Utility is a measure of preference under uncertainty

Elicitation of value functions

Phases:

- Define the measurement scale $X_i = [a_i^0, a_i^*]$ (or $[a_i^*, a_i^0]$)
- Ask a series of eliciation questions
- Check that the value function gives realistic results

□ Bisection method:

- Ask the DM to assess level $x_{0.5} \in [a_i^0, a_i^*]$ such that she is indifferent between change $x_{0.5} \leftarrow a^0$ and change $a^* \leftarrow x_{0.5}$.
- Then, ask her to assess levels $x_{0.25}$ and $x_{0.75}$ such that she is indifferent between
 - o changes $x_{0.25} \leftarrow a^0$ and $x_{0.5} \leftarrow x_{0.25}$, and
 - changes $x_{0.75} \leftarrow x_{0.5}$ and $a^* \leftarrow x_{0.75}$.
- Continue until sufficiently many points have been obtained
 - o Use, e.g, linear interpolation between elicited points if needed
- The value function can be obtained by fixing $v_i(a_i^0)$ and $v_i(a_i^*)$ at, e.g., 0 and 1

Example of the bisection method

- Attribute a_3 : Traveling days per year
- Measurement scale $[a_3^*, a_3^0]$, where $a_3^* = 0$ and $a_3^0 = 200$; fix $v_3(a_3^0) = 0$ and $v_3(a_3^*) = 1$
 - "What would be the number $x_{0.5}$ of traveling days such that you would be indifferent between a decrease from 200 to $x_{0.5}$ days a year and a decrease from $x_{0.5}$ to zero days a year?" (Answer e.g., "130")
 - "What would be the number $x_{0.25}$ of traveling days such that you would be indifferent between a decrease from 200 to $x_{0.25}$ days a year and a decrease from $x_{0.25}$ to 130 days a year?" (Answer e.g., "170")
 - "What would be the number $x_{0.75}$ of traveling days such that you would be indifferent between a decrease from 130 to $x_{0.75}$ days a year and a decrease from $x_{0.75}$ to zero days a year?" (Answer e.g., "80")

Sequence of equally preferred differences:

- $\quad \text{Set } x_0 \in (a_i^0, a_i^*)$
- Ask the DM to assess level $x_1 \in (x_0, a_i^*]$ such that he is indifferent between changes $x_0 \leftarrow a_i^0$ and $x_1 \leftarrow x_0$

 $\circ \qquad v_i(x_0) - v_i(a_i^0) = v_i(x_1) - v_i(x_0) \Rightarrow v_i(x_1) = 2v_i(x_0)$

- Then, ask him to assess level $x_2 \in (x_1, a_i^*]$ such that he is indifferent between change $x_1 \leftarrow x_0$ and $x_2 \leftarrow x_1$

$$\circ \qquad v_i(x_1) - v_i(x_0) = v_i(x_2) - v_i(x_1) \Rightarrow v_i(x_2) = 3v_i(x_0)$$

- Continue until $x_N = a_i^*$ and solve the system of linear equations

$$\circ v_i(x_0) = \frac{v_i(x_N)}{N+1} = \frac{1}{N+1} \Rightarrow v_i(x_1) = \frac{2}{N+1}$$
etc

- If $x_N > a_i^*$ (see the exercises!)
 - Change a_i^* to x_N and interpolate, or
 - Interpolate to get $v_i(a_i^*) v_i(a_i^0)$

Example:

$$\begin{bmatrix} a_i^0, a_i^* \end{bmatrix} = \begin{bmatrix} 1000, 6000 \end{bmatrix}, x_0 = 1500$$

$$x_1 = 2500, x_2 = 4000, x_3 = 6000 = a_i^* \Rightarrow$$

$$v_i(1500) = \frac{1}{4}, v_i(2500) = \frac{1}{2}, v_i(4000) = \frac{3}{4}.$$

- Indifference methods are likely to result in a cardinal value function that captures the DM's preferences
- □ Therefore, they should be used whenever possible
- Yet: indifference methods cannot be used when the measurement scale is discrete
 - E.g., Fit with interest: $X_4 = \{poor, fair, good, excellent\}$
 - Cf. Axiom A6

Direct rating

- Ask the DM to directly attach a value to each attribute level
- E.g. "Assume that the value of poor fit with interests is 0 and the value of excellent fit with interests is 1. What is the value of fair fit with interests? How about good fit?"

Class rating

- Divide the measurement scale into classes and ask the DM to attach a value to these classes

Ratio evaluation

- Take one attribute level as a reference point and ask the DM to compare the other levels to this
- E.g., "How many times more valuable is 1000€ than 900€?"

Direct methods should be avoided whenever possible

– Usually do not result in a cardinal value function

Next time: Aggregation of values

Problem: How to measure the overall value of alternative $x = (x_1, x_2, ..., x_n)$?

$$V(x_1, x_2, \dots x_n) = ?$$

Question: Could the overall value be obtained by aggregating attribute-specific values?

$$V(x_1, x_2, ..., x_n) = f(v(x_1), ..., v(x_n))?$$

□ Answer: Yes, if the attributes are

- Mutually preferentially independent and
- Difference independent

Summary

- Under certain axioms, the DM's preferences over changes on a measurement scale can be captured by a cardinal (measurable) value function
 - "I prefer a change from 0 euros to 10 euros to a change from 10 euros to 22 euros"

Elicitation of the attribute-specific value functions

- Use indifference methods if possible

