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1 Last time we learned how :

— To model the DM’s preferences over risk by eliciting her utility function

— The shape (concave / linear / convex) of the utility function corresponds to
the DM’s risk attitude (risk averse / neutral / seeking)

— Decision recommendations may be implied by stochastic dominance even
if the utility function is not (completely) specified:

— If the DM prefers more to less, she should not choose an FSD dominated alternative
— Ifthe DM is also risk averse, she should not choose an SSD dominated alternative

O This time (Part A):

— We take a look at risk measures and examine how they can be used
to describe alternatives’ risks
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O Risk measure is a function that maps each decision alternative to a
single number describing its risk
— E.g.,variance Var[X] = E[(X — E[X])?]
—  The higher the variance, the higher the risk
O Risk measures are not based on EUT, but can be used together with
expected values to produce decision recommendations

— Risk constraint: Among alternatives whose risk is below some threshold, select the
one with the highest expected value

— Risk minimization: Among alternatives whose expected value is above some
threshold, select the one with minimum risk

— Efficient frontier: Select one of those alternative compared to which no other
alternative yields higher expected value and smaller risk
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Risk measures: Value-at-Risk (VaR)

U Value-at-Risk (VaR,[X]) is the outcome
such that the probability of a worse or
equal outcome is a:

VaR ,[x]
| e = Fvar XD =

— 00
O Higher VaR means smaller risk
— Unless applied to a loss distribution
L Common values for a: 1%, 5%, and 10%

U Problem: the length/shape of the tail is not
taken into account
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Mining example revisited

CDFs of Strategies
1.0 I I
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Risk measures: Conditional Value-at-
Risk (CVaR)

O Conditional Value-at-Risk (CVaR ,[X]) is the fx (©)
expected outcome given that the outcome is at most —
VaR,: 0.08}

CVaR[X] = E[X]|X < VaR,[X]] 0.06}

0.04

VaR ;g [X] = —1.85
VaR;go,[Y] = —0.97 |

CVaRygy[X] = —3.26
CVaRjgy[Y] = —4.23.

fr(®)

O Higher CVaR means smaller risk (unless applied to
losses)

0.02}
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O Computation of CVaR[X] to discrete and continuous X:

— t _ (VaR.[x], fx()
ElX|X < VaRa[X]] = ZtSVaRa[x]th( ); E[X|X < VaRa[X]] = f_oo tXTdt.

a

— Note: a = P(X < VaR,[X]); PMF/PDF fx(t) is scaled such that it sums/integrates up to 1.
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Computation of VaR and CVaR

O If the inverse CDF of X is well-defined, VaR can be obtained from
VaR,[X] = Fy ()
— In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc
— In Matlab: norminv, logninv, betainv, binoinv etc

0 CVaR can then be computed using the formulas on the previous slide
— Sometimes an analytic solution can be obtained; if, e.g., X~N(u, 02) and VaR,[X] = £, then

ol

a

o)

g

where ¢ and @ are the standard normal PDF and CDF, respectively.
— Sometimes numerical integration is needed

CVaR,[X]|=u—o
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Computation of VaR and CVaR

O With discrete random variables VaR and CVaR are not always well
defined for small values of a

— But what are VaRx,[X], CVaR o, [X]?

Example:
t -10 -5 1 10 20
f, () 0.06 0.02 0.02 0.5 0.4
VaR 190, [X]=1
CVaR gy [X] = 0.06(-10)+0.02(-5)+0.02(1) _ 6.8

0.06+0.02+0.02
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VaR and CVaR with Monte Carlo - Excel

A B

=AVERAGE(D12:D211)

C D ,f F

—/

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Col.mean Col.meapl CVaR-10%,

0.507501 1008.3@ VaR-10%
4105591/ =PERCENTILE.INC(C12:C211;0.1)

Sample u
1 0.691314
2 0.603078
3 0.548331
4 0.058081
=] 0.442469
] 0.628886
7 0.157181
8 0.355657
9 0.545768
10 0.416183
11 0.879097
12 0.022042
13 0.000927
14 0.071391

X Below VaR
1249.789 above —
1120.659 above — =IF(C12<=%$F$10;C12;"above”)

1060.723  above
214.4534 214.4534
927.6436 above

1164.452 above

496.9445  above

B814.9539 above .
1057.455|_above Note! 200 samples is very
1585243 above little, because only 1/10=20
-6.5468 | -6.64468 are used to estimate CVaR

-556.359 -556.359
267.2461 267.2461
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VaR and CVaR with Monte Carlo -
Matlab

5=10"5;

mu=1000;

=2igma=500;
Sample=normrnd (ma, sigma,5,1):
VaB=prctile (Samnple, 10)
TailIndices=find (S5ample<=VaR) ;

CWVaBE=mean (Sample (TailTndices))

$S5amnple size 10,000

iGenerates 105 observations from N{mu,=igma)
iReturn=s the 10% percentile of the sample
iBeturn=s the indices of those elements

%3in the sample below or egqual to VaR
i#Computes the arithmetic mean among those
felements in the sample belor or egqual to VaR
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Risk measures and stochastic

dominance
O Theorem: X >ggp Y if and only if L
VaR,[X] = VaR,|Y] Va € [0,1] — R0
0.8F | —F, ()
Q Theorem: X >ggp Yifandonly if °°
CVaR,[X] = CVaR,|Y] Va € |0,1] 0.4
10 5 0 tejros'Elﬁo 15 20
$S
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O EUT provides a more comprehensive way to capture the DM’s
preferences over uncertain outcomes

O With risk measures, one must answer questions such as
— Which measure to use?
— Which a to use in VaR and CVaR?

How to combine EV and the value of a risk measure into an overall performance
measure?

O Yet, if answers to such questions are exogenously imposed, the use
of risk measures can be easy

— E.g., laws, regulations, industry standard etc.
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Motivation

O Consider yourself
choosing
accommodation for
a (downhill) skiing
vacation trip

O How do the
accommodation
alternatives differ
from each other?

U What are the
attributes that
influence your decision?
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Breakfast & dinner
included

Bergland Design- und Wellnesshotel Wg;‘i‘ig‘ﬁ 93

Q Séiden — Show on map Location 9.4
E550 m from center

& people are looking right now
Booked 3 times in the last 24 hours

e 94% of guest reviewers had their expectations of this property met or exceeded

Price for 7 nights

Double Room e € 3,290

In high demand - only 2 rooms left!

includes taxes and charges
Breakfast & dinner included

Select your room »

™ A Casa Kristall & % Excellent [£¥

: 142 reviews
¢ Sélden — Show on map
B2 km from center

2 people are looking right now
Booked 2 times in the last 24 hours

Great Value Today

Apartment aem — 30 m* € 830
In high demand - there's only 1 like it!

Price for 7 nights

includes taxes and charges

See all 4 available apartments >

= = Wonderful
Das Central — Alpine . Luxury . Life o

@ Sélden — Show on ma Location 9.4



O So far:

— We have considered decision-making situations in which the DM has one
objective (e.g., maximize the expected value/utility of a monetary payoff)

O This time:

— We consider decision-making situations in which the DM has
multiple objectives or, more precisely...

Multiple attributes with regard to which the achievement of some
fundamental objective is measured

A’, Aalto University



Multiattribute value theory

O Ralph Keeney and Howard Raiffa (1976): Decisions with Multiple Objectives:
Preferences and Value Tradeoffs

O James Dyer and Rakesh Sarin (1979): Measurable multiattribute value functions,
Operations Research Vol. 27, pp. 810-822

0 Elements of MAVT
— Avalue tree consisting of objectives, attributes, and alternatives

— Preference relation over the alternatives’ attribute-specific performances and differences thereof &
their representation with an attribute-specific value function

— Preference relation over the alternatives’ overall performances and differences thereof & their
representation with a multiattribute value function

,, Aalto University
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Value tree: objectives, attributes, and

alternatives

1 A value tree consists of
— A fundamental objective

Ideal car

— Possible lower-level objectives

— Attributes that measure the
achievement of the objectives \

— Alternatives whose attribute-
specific performances are being

measured \

Economy

Driving

Price

Expenses Acceleration Top speed

=i

Audi A4

VW Passat Citroén C5
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Value tree: objectives, attributes and
alternatives

Q The attributes a,,..., a,have
measurement scales X, i=1,...,n; e.g., Job
—  X,=[1000€/month, 6000€/month] \
— X, =[2 weeks/year, 8 weeks/year]
— X3=[0 days/year, 200 days/year]
— X, ={poor, fair, good, excellent}

Fit with
interests

Business

Saldny travel

Vacation

O Alternatives x = (x4, x5, ... x,) are

characterized by their performance
w.r.t. the attributes; e.qg.,

Banker Researcher Ef‘g'”ee“ In Consultant
industry

— Banker=(6000€/month, 5 weeks/year, 40
days/year, fair) € X; x X, X X5 X X,.

,, Aalto University
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Preference relation: attribute-specific
performance

O Let > be preference relation among performance levels a and b on a given
attribute

Preference a > b: a at least as preferable as b
Strict preference a > b defined as —(b > a)
Indifference a~b definedasa>b Ab > a

,, Aalto University
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Axioms for preference relation

O Al: > is complete

— Foranya,b € X, eithera > b or b > a or both
O A2: > is transitive

— Ifa>=band b >=c,thena = c

,, Aalto University
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Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal
value function v;(+): X; — R that represents preference relation > in

the sense that
vi(a) 2vi(b) & a>b

O An ordinal value function does not describe strength of preference,
l.e., it does not communicate much more an object is preferred to

another

,, Aalto University
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LAssume you have two mopeds A and B with top speeds of 30 and
35km/h, respectively

dYou have two alternatives for upgrade

U Increase top speed of moped A to 40
U Increase top speed of moped B to 45

dYour prefer a higher top speed to a lower one
0 45>40>35>30
0 v(45)=1, v(40)=0.8, v(35)=0.5, v(30)=0.4
0 w(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4
dBoth v and w are ordinal value functions representing your
preferences but they do not describe your preferences between the two

upgrade alternatives
0 v(45)-v(35)=0.5 > v(40)-v(30)=0.4, but w(45)-w(35)=0.3 < w(40)-w(30) =0.4

A’, Aalto University



Ordinal value function

Theorem: Ordinal value functions v;(-) and w;(-) represent the same
preference relation > if and only if there exists a strictly increasing
function ¢: R — R such that w;(a) = ¢[v;(:)] Va € A.

Example: Let consultant > professor > janitor be Jim’s preferences over
these jobs and v(consultant) = 10 > v(professor) = 8 > v(janitor) = 7.

Then v' and v" both represent the same preferences as ordinal
value function v

. |consultant_|professor |janitor
v 10 8 4

- v 20 16 14
A” School o 20 16 8 31.1.2019
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The goal Is to compare multi-attribute
alternatives, wherefore ordinal value
functions are not enough

O Let >, be preference relation among differences in performance levels on a
given attribute

—  Preference (a < b) =, (c < d): achange from b to a is at least as preferable as
a change fromd toc

—  Strict preference (a < b) >; (c « d) defined as =((c « d) >4 (a < b))

— Indifference (a « b)~,4(c « d) definedas (a « b) >4 (c « d) A(c «
d) =4 (a < b)

Aalto Un
A” School fS 31.1.2019
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Axioms for preference relation (cont’d)

Q A3:VabceX;:: azbo (a<Db) >4 (c<c)
— Ifais preferred to b, then a change from b to a is preferred to no change
Q Ad:VvabcdeX;:.(aeb)>;(c—d)e(dec)>=5(b<a)

— E.g., ifanincrease in salary from 1500€ to 2000%€ is preferred to an increase from 2000€ to 2500€, then a
decrease from 2500€ to 2000€ is preferred to a decrease from 2000€ to 1500€

O A5:Va,b,cdefeX:(aeb)zgde—e)A(bec)zs(e<f)=>(a<c)=s(d<f)

a)~q4(a < c)

— Equally preferred differences between attribute levels can always be constructed
—  Thereis always an attribute level a between b and ¢ such that a change from c to a is equally preferred to a
change from atob.
Q A7Y: The set (or sequence) {a,|b > a, where(a,, < a,_1)~q(a;< ay)} is finite for any b in X;
—  Thesequence of equally preferred differences over a fixed interval is finite
—  “No b can be infinitely better than other performance levels”

A” gzggrs French (1988) incorrectly puts it; the idea here is that it is possible tor
onstruct equally preferred changes in order to represent preferences




0 Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal
value function v;(:): X; — R that represents preference relations >
and >, in the sense that

vi(a) 2 v;(b) = a>b
vi(a) —vi(b) =2 v;(c) —v;(d) & (a < b) 74 (c « d).

Note: A cardinal value function is unique up to positive affine
transformations, i.e., v;(x) and v, (x) = av;(x) + B, > 0 and
represent the same preferences

A’, Aalto University



Cardinal value function: positive affine
transformations

Example: Let consultant > professor > janitor and ( consultant «
professor) =4 (professor < janitor) be Jim’s preferences and
v(consultant) = 10 > v(professor) = 8 > v(janitor) = 7.

Then v' and v" both represent same preferences as cardinal value
function v

. |consultant | professor |janitor
v 10 8 4

v =2v 20 16 14
v''=v"—10 10 6 4

26

,, Aalto University
School of Science 31.1.2019



Attribute-specific value functions

O Avalue function maps the
attribute-specific measurement
scale onto a numerical scale in
accordance with the DM’s
preferences

O Value and utility:

— Value is a measure of preference
under certainty

OBJECTS ——————3% NATURAL SCALE ———— VALUI; SCALE ~——>>= UTILITY SCALE

LOCATIONS === DRIVING DISTANCE ———— RATINGS OF ——»= UTILITIES OF VALUES
OF APARTMENS (IN MILES) FROM RELATIVE VALUE OF DRIVING DISTANCE
OFFICE OF DRIVING

DISTANCES

by —————3 (L) ———3 (@) T u(v)

100, f
RS R k —
10 20
Distance 0

Utility 8

Value

0 100
.- . Distance Volue
— Utility is a measure of preference SET
under uncertai nty Figure 7.2. The four steps needed to construct value and utility functions.
,, Aalto University
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Elicitation of value functions

O Phases:
— Define the measurement scale X; = [a}, a;] (or |a}, a}])
— Ask a series of eliciation questions
— Check that the value function gives realistic results

,, Aalto University
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Elicitation of value functions:
Indifference methods

1 Bisection method:

— Ask the DM to assess level x, 5 € [a}, a;] such that she is indifferent
between change x, : « a® and change a* < x;s.
— Then, ask her to assess levels x; ,5 and x -5 such that she is indifferent

between
0 changes xq,s « a’ and x, 5 < x,5, and
0 changes xy -5 < xys and a* « xg 5.

— Continue until sufficiently many points have been obtained
0 Use, e.qg, linear interpolation between elicited points if needed
— The value function can be obtained by fixing v;(a?) and v;(a}) at, e.g., 0
and 1

,, Aalto University
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Elicitation of value functions:
Indifference methods i

0.8

O Example of the bisection method -
— Attribute a5 : Traveling days per year > 0.4
0.2

— Measurement scale [a}, ad], where a3 = 0 and
a3 = 200; fix v3(ad) =0 and v5(a}) =1 % 50 100 150 200
0 "What would be the number x, 5 of traveling days such that -

you would be indifferent between a decrease from 200 to x s v3(130) —v3(200) = v3(0) — v3(130) =

days ayear and a decrease from x, s to zero days a year?” v3(130) = v3(0) + v;(200) =05
(Answer e.g., "130”) 2

0 "What would be the number x, ,5 of traveling days such that _ _ _
you would be indifferent between a decrease from 200 t0 x5~ ° (170) = v3(200) = v5(130) ~ v3(170) =

130) + v3(200
days a year and a decrease from x, ,s to 130 days a year?” v3(170) = v3(130) > v3(200) =0.25
(Answer e.g., "170”)
0 "What would be the number x 5 of traveling days such that _
g : — v3(130) = —
you would be indifferent between a decrease from 130 to x /s v3(80) v3gj 3;3% N 53 8%0) v3(80) =
days ayear and a decrease from x, ;5 to zero days a year?” v3(80) = > > > =0.75
(Answere.g., ’80")

31.1.2019
30
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Elicitation of value functions:
Indifference methods

1
O Sequence of equally preferred
differences:

T 0
0.8}
Set x, € (al, a}) 0.6
Ask the DM to assess level x; € (x,a;] such that he is <
indifferent between changes x, < af and x; < x, 0.4+
0 v;(x) —vi(al) = vi(x1) — vi(x0) = v; (x1)=2v;(x0)
Then, ask him to assess level x, € (x1,a;] such that he is 0.2y
indifferent between change x; < xy, and x, < x;
0 vi(x1) — vilxo) = v;(x2) — vi (1) = v;(x2)=3v; (o) %00 2000 3000 4000 5000 6000
—  Continue until xy=a; and solve the system of linear equations Salary x€/month
_ vilxn) _ _ 2
o) v; (XO) = —vNiII =Nt = V; (Xl)—m etc. Example
If xy>a; (see the exercises!)
o] Change a; to xy and interpolate, or
(0]

[ a?,a}] = [1000,6000], x,= 1500
x1= 2500, x, = 4000, x; = 6000 = a; =
Interpolate to get v;(a;) — v;(a?) v,(1500) = %’ v,(2500) = %’ v,(4000) = %.
A’, Aalto University

School of Science
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Elicitation of value functions:
Indifference methods

4 Indifference methods are likely to result in a cardinal value function
that captures the DM’s preferences

O Therefore, they should be used whenever possible

O Yet: indifference methods cannot be used when the measurement
scale is discrete
— E.g., Fitwith interest: X, ={poor, fair, good, excellent}
— Cf. Axiom A6

,, Aalto University
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Elicitation of value functions: direct
methods

O Direct rating
— Ask the DM to directly attach a value to each attribute level

— E.g. ”Assume that the value of poor fit with interests is O and the value of excellent fit with
interests is 1. What is the value of fair fit with interests? How about good fit?”

O Class rating

— Divide the measurement scale into classes and ask the DM to attach a value to these classes

L Ratio evaluation
— Take one attribute level as a reference point and ask the DM to compare the other levels to this
— E.g., ’How many times more valuable is 1000€ than 900€?”

U Direct methods should be avoided whenever possible
— Usually do not result in a cardinal value function

,, Aalto University
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Next time: Aggregation of values

O Problem: How to measure the overall value of alternative x =

(x11x21 xn)?
V(xy,xp,...x,) =2

O Question: Could the overall value be obtained by aggregating
attribute-specific values?

V(e 2z 2) = F(0(), o, 0(0))?

O Answer: Yes, if the attributes are
— Mutually preferentially independent and
— Difference independent

,, Aalto University
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O Under certain axioms, the DM’s preferences over changes on a
measurement scale can be captured by a cardinal (measurable)
value function

O “I prefer a change from O euros to 10 euros to a change from 10
euros to 22 euros”

O Elicitation of the attribute-specific value functions
— Use indifference methods if possible
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