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Motivation
q Last time we learned how :

– To model the DM’s preferences over risk by eliciting her utility function
– The shape (concave / linear / convex) of the utility function corresponds to

the DM’s risk attitude (risk averse / neutral / seeking)
– Decision recommendations may be implied by stochastic dominance even

if the utility function is not (completely) specified:
– If the DM prefers more to less, she should not choose an FSD dominated alternative
– If the DM is also risk averse, she should not choose an SSD dominated alternative

q This time (Part A):
– We take a look at risk measures and examine how they can be used

to describe alternatives’ risks
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Risk measures

q Risk measure is a function that maps each decision alternative to a
single number describing its risk

– E.g., variance = [( − [ ]) ]
– The higher the variance, the higher the risk

q Risk measures are not based on EUT, but can be used together with
expected values to produce decision recommendations

– Risk constraint: Among alternatives whose risk is below some threshold, select the
one with the highest expected value

– Risk minimization: Among alternatives whose expected value is above some
threshold, select the one with minimum risk

– Efficient frontier: Select one of those alternative compared to which no other
alternative yields higher expected value and smaller risk
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Risk measures: Value-at-Risk (VaR)

q Value-at-Risk (VaR [ ]) is the outcome
such that the probability of a worse or
equal outcome is :

= VaR [ ] =
VaR [ ]

.

q Higher VaR means smaller risk
– Unless applied to a loss distribution

q Common values for : 1%, 5%, and 10%
q Problem: the length/shape of the tail is not

taken into account
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VaR % = 0.6€
VaR % = −1.4€



Mining example revisited

q Assess VaR % for
strategies 1 and 25
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Risk measures: Conditional Value-at-
Risk (CVaR)

q Computation of CVaR to discrete and continuous X:

≤ VaR = ∑ ( ) 
VaR , ≤ VaR = ∫ ( )VaR .

– Note: = ≤ VaR ; PMF/PDF ( ) is scaled such that it sums/integrates up to 1.
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q Conditional Value-at-Risk (CVaR [ ]) is the
expected outcome given that the outcome is at most
VaR :

CVaR = [ | ≤ VaR ]

q Higher CVaR means smaller risk (unless applied to
losses)

( )

( )

VaR % = −1.85
VaR % = −0.97

CVaR % = −3.26
CVaR % = −4.23



Computation of VaR and CVaR

q If the inverse CDF of X is well-defined, VaR can be obtained from
VaR = ( )

– In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc
– In Matlab: norminv, logninv, betainv, binoinv etc

q CVaR can then be computed using the formulas on the previous slide
– Sometimes an analytic solution can be obtained; if, e.g., ~ , and VaR = , then

CVaR = − ,

where and Φ are the standard normal PDF and CDF, respectively.
– Sometimes numerical integration is needed
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Computation of VaR and CVaR

q With discrete random variables VaR and CVaR are not always well
defined for small values of

– Example:

– VaR % =1

– CVaR % = 0.06(−10)+0.02(−5)+0.02(1)
0.06+0.02+0.02 =-6.8

– But what are VaR % , CVaR % ?
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VaR and CVaR with Monte Carlo - Excel
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=PERCENTILE.INC(C12:C211;0.1)

=IF(C12<=$F$10;C12;”above”)

=AVERAGE(D12:D211)

Note! 200 samples is very
little, because only 1/10=20
are used to estimate CVaR



VaR and CVaR with Monte Carlo -
Matlab
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Risk measures and stochastic
dominance
q Theorem: X ≽FSD Y if and only if

VaR ≥ VaR  ∀ ∈ 0,1

q Theorem: X ≽SSD Y if and only if
CVaR ≥ CVaR  ∀ ∈ 0,1
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EUT vs. Risk measures

q EUT provides a more comprehensive way to capture the DM’s
preferences over uncertain outcomes

q With risk measures, one must answer questions such as
– Which measure to use?
– Which to use in VaR and CVaR?
– How to combine EV and the value of a risk measure into an overall performance

measure?

q Yet, if answers to such questions are exogenously imposed, the use
of risk measures can be easy

– E.g., laws, regulations, industry standard etc.
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Motivation
q Consider yourself

choosing
accommodation for
a (downhill) skiing
vacation trip

q How do the
accommodation
alternatives differ
from each other?
q What are the

attributes that
influence your decision?
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Motivation
q So far:

– We have considered decision-making situations in which the DM has one
objective (e.g., maximize the expected value/utility of a monetary payoff)

q This time:
– We consider decision-making situations in which the DM has

multiple objectives or, more precisely…
– Multiple attributes with regard to which the achievement of some

fundamental objective is measured
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Multiattribute value theory

q Ralph Keeney and Howard Raiffa (1976):  Decisions with Multiple Objectives:
Preferences and Value Tradeoffs

q James Dyer and Rakesh Sarin (1979): Measurable multiattribute value functions,
Operations Research Vol. 27, pp. 810-822

q Elements of MAVT
– A value tree consisting of objectives, attributes, and alternatives
– Preference relation over the alternatives’ attribute-specific performances and differences thereof &

their representation with an attribute-specific value function
– Preference relation over the alternatives’ overall performances and differences thereof & their

representation with a multiattribute value function
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Value tree: objectives, attributes, and
alternatives
q A value tree consists of

– A fundamental objective
– Possible lower-level objectives
– Attributes that measure the

achievement of the objectives
– Alternatives whose attribute-

specific performances are being
measured
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Value tree: objectives, attributes and
alternatives
q The attributes a1,…, an have

measurement scales Xi, i=1,…,n; e.g.,
– X1=[1000€/month, 6000€/month]
– X2 =[2 weeks/year, 8 weeks/year]
– X3 =[0 days/year, 200 days/year]
– X4 ={poor, fair, good, excellent}

q Alternatives = ( , , … ) are
characterized by their performance
w.r.t. the attributes; e.g.,

– Banker=(6000€/month, 5 weeks/year, 40
days/year, fair) ∈ × × × .
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Preference relation: attribute-specific
performance
q Let ≽ be preference relation among performance levels a and b on a given

attribute

Preference ≽ : at least as preferable as
Strict preference ≻ defined as ¬( ≽ )
Indifference ~ defined as ≽  ∧ ≽
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Axioms for preference relation

q A1: ≽ is complete
– For any ,  ∈ , either ≽ or ≽ or both

q A2: ≽ is transitive
– If ≽ and ≽ , then ≽
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Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal
value function : → ℝ that represents preference relation ≽ in
the sense that

≥ ⟺ ≽

q An ordinal value function does not describe strength of preference,
i.e., it does not communicate much more an object is preferred to
another
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Ordinal value function
qAssume you have two mopeds A and B with top speeds of 30 and

35km/h, respectively
qYou have two alternatives for upgrade

q Increase top speed of moped A to 40
q Increase top speed of moped B to 45

qYour prefer a higher top speed to a lower one
q 45>40>35>30
q v(45)=1, v(40)=0.8, v(35)=0.5, v(30)=0.4
qw(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4

qBoth v and w are ordinal value functions representing your
preferences but they do not describe your preferences between the two
upgrade alternatives

q v(45)-v(35)=0.5 > v(40)-v(30)=0.4, but w(45)-w(35)=0.3 < w(40)-w(30) =0.4
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Ordinal value function
Theorem: Ordinal value functions and represent the same
preference relation ≽ if and only if there exists a strictly increasing
function :ℝ → ℝ such that =   ∀ ∈ .

Example: Let consultant ≻ professor ≻ janitor be Jim’s preferences over
these jobs and (consultant) = 10 > (professor) = 8 > (janitor) = 7.
Then and ′′ both represent the same preferences as ordinal
value function

31.1.2019
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consultant professor janitor
10 8 7
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The goal is to compare multi-attribute
alternatives, wherefore ordinal value
functions are not enough
q Let ≽ be preference relation among differences in performance levels on a

given attribute

– Preference ( ← ) ≽ ( ← ): a change from to is at least as preferable as
a change from to

– Strict preference ( ← ) ≻  ( ← ) defined as ¬(( ← ) ≽ ( ← ))

– Indifference ← ~ ( ← ) defined as ( ← ) ≽ ( ← ) ∧ ( ←
) ≽ ( ← )
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Axioms for preference relation (cont’d)
q A3: ∀ , , ∈ : ≽ ⇔ ( ← ) ≽ ( ← )

– If a is preferred to b, then a change from b to a is preferred to no change

q A4: ∀ , , , ∈ :  ( ← ) ≽ ( ← ) ⇔ ( ← ) ≽ ( ← )
– E.g., if an increase in salary from 1500€ to 2000€ is preferred to an increase from 2000€ to 2500€, then a

decrease from 2500€ to 2000€ is preferred to a decrease from 2000€ to 1500€

q A5: ∀ , , , , , ∈ :  ( ← ) ≽ ( ← ) ∧ ( ← ) ≽ ( ← ) ⇒ ( ← ) ≽ ( ← )
– If two incremental changes are both preferred to some other two, then the overall change resulting from the

first two increments is also preferred.

q A6: ∀ , , ∈  ∃ ∈  such that ← ~ ←  and ∀ , ∈  ∃ ∈  such that ( ←
)~ ←

– Equally preferred differences between attribute levels can always be constructed
– There is always an attribute level a between b and c such that a change from c to a is equally preferred to a

change from a to b.

q A7: The set (or sequence) | ≻ ℎ ← ~ ( ← ) is finite for any b in Xi
– The sequence of equally preferred differences over a fixed interval is finite
– “No b can be infinitely better than other performance levels”
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As French (1988) incorrectly puts it; the idea here is that it is possible to
construct equally preferred changes in order to represent preferences



Cardinal value function

q Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal
value function : → ℝ that represents preference relations ≽
and ≽ in the sense that

≥ ⟺ ≽
− ≥ − ⟺ ← ≽ ← .

Note: A cardinal value function is unique up to positive affine
transformations, i.e., ( ) and = ( ) + , > 0 and
represent the same preferences
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Cardinal value function: positive affine
transformations
Example: Let consultant ≻ professor ≻ janitor and ( ←

) ≽ ← be Jim’s preferences and
(consultant) = 10 > (professor) = 8 > (janitor) = 7.

Then and ′′ both represent same preferences as cardinal value
function

31.1.2019
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consultant professor janitor
10 8 7

= 2 20 16 14
= − 10 10 6 4



Attribute-specific value functions

q A value function maps the
attribute-specific measurement
scale onto a numerical scale in
accordance with the DM’s
preferences

q Value and utility:
– Value is a measure of preference

under certainty
– Utility is a measure of preference

under uncertainty
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Elicitation of value functions

q Phases:
– Define the measurement scale = [ , ∗] (or ∗, )
– Ask a series of eliciation questions
– Check that the value function gives realistic results
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Elicitation of value functions:
Indifference methods
q Bisection method:

– Ask the DM to assess level . ∈ [ , ∗] such that she is indifferent
between change . ← and change ∗ ← . .

– Then, ask her to assess levels . and . such that she is indifferent
between

o changes . ← and . ← . , and
o changes . ← . and ∗ ← . .

– Continue until sufficiently many points have been obtained
o Use, e.g, linear interpolation between elicited points if needed

– The value function can be obtained by fixing ( ) and ( ∗) at, e.g., 0
and 1
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Elicitation of value functions:
Indifference methods
q Example of the bisection method

– Attribute : Traveling days per year
– Measurement scale ∗ , , where ∗ = 0 and

= 200; fix =0 and ( ∗) =1
o ”What would be the number . of traveling days such that

you would be indifferent between a decrease from 200 to .
days a year and a decrease from . to zero days a year?”
(Answer e.g., ”130”)

o ”What would be the number . of traveling days such that
you would be indifferent between a decrease from 200 to .
days a year and a decrease from . to 130 days a year?”
(Answer e.g., ”170”)

o ”What would be the number . of traveling days such that
you would be indifferent between a decrease from 130 to .
days a year and a decrease from . to zero days a year?”
(Answer e.g., ”80”)

31.1.2019
30

130 − 200 = 0 − 130 ⇒
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Elicitation of value functions:
Indifference methods
q Sequence of equally preferred

differences:
– Set ∈ ( , ∗)
– Ask the DM to assess level ∈ ( , ∗] such that he is

indifferent between changes ← and ←
o − = − ⇒ =2

– Then, ask him to assess level ∈ ( , ∗] such that he is
indifferent between change ← and ←

o − = − ⇒ =3
– Continue until = ∗ and solve the system of linear equations

o = = ⇒ = etc.

– If > ∗ (see the exercises!)
o Change ∗ to and interpolate, or
o Interpolate to get ∗ −
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Example:
[ , ∗] = 1000, 6000 , = 1500

= 2500, = 4000, = 6000 = ∗ ⇒
1500 = , 2500 = , 4000 = .



Elicitation of value functions:
Indifference methods
q Indifference methods are likely to result in a cardinal value function

that captures the DM’s preferences
q Therefore, they should be used whenever possible

q Yet: indifference methods cannot be used when the measurement
scale is discrete

– E.g.,  Fit with interest: X4 ={poor, fair, good, excellent}
– Cf. Axiom A6
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Elicitation of value functions: direct
methods
q Direct rating

– Ask the DM to directly attach a value to each attribute level
– E.g. ”Assume that the value of poor fit with interests is 0 and the value of excellent fit with

interests is 1. What is the value of fair fit with interests? How about good fit?”

q Class rating
– Divide the measurement scale into classes and ask the DM to attach a value to these classes

q Ratio evaluation
– Take one attribute level as a reference point and ask the DM to compare the other levels to this
– E.g., ”How many times more valuable is 1000€ than 900€?”

q Direct methods should be avoided whenever possible
– Usually do not result in a cardinal value function
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Next time: Aggregation of values

q Problem: How to measure the overall value of alternative =
, , … ?

, , … =?
q Question: Could the overall value be obtained by aggregating

attribute-specific values?
, , … = , … , ?

q Answer: Yes, if the attributes are
– Mutually preferentially independent and
– Difference independent
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Summary

q Under certain axioms, the DM’s preferences over changes on a
measurement scale can be captured by a cardinal (measurable)
value function
q “I prefer a change from 0 euros to 10 euros to a change from 10

euros to 22 euros”

q Elicitation of the attribute-specific value functions
– Use indifference methods if possible
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