Decision making and problem solving Lecture 4

- Risk measures
- Multiattribute value theory
- Axioms for preference relations
- Elicitation of attribute-specific value functions

Motivation

\square Last time we learned how :

- To model the DM's preferences over risk by eliciting her utility function
- The shape (concave / linear / convex) of the utility function corresponds to the DM's risk attitude (risk averse / neutral / seeking)
- Decision recommendations may be implied by stochastic dominance even if the utility function is not (completely) specified:
- If the DM prefers more to less, she should not choose an FSD dominated alternative
- If the DM is also risk averse, she should not choose an SSD dominated alternative
\square This time (Part A):
- We take a look at risk measures and examine how they can be used to describe alternatives' risks

Risk measures

- Risk measure is a function that maps each decision alternative to a single number describing its risk
- E.g., variance $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]$
- The higher the variance, the higher the risk
- Risk measures are not based on EUT, but can be used together with expected values to produce decision recommendations
- Risk constraint: Among alternatives whose risk is below some threshold, select the one with the highest expected value
- Risk minimization: Among alternatives whose expected value is above some threshold, select the one with minimum risk
- Efficient frontier: Select one of those alternative compared to which no other alternative yields higher expected value and smaller risk

Risk measures: Value-at-Risk (VaR)

- Value-at-Risk $\left(\operatorname{VaR}_{\alpha}[X]\right)$ is the outcome such that the probability of a worse or equal outcome is α :

$$
\int_{-\infty}^{\operatorname{VaR}_{\alpha}[X]} f_{X}(t) d t=F_{X}\left(\operatorname{VaR}_{\alpha}[X]\right)=\alpha .
$$

- Higher VaR means smaller risk
- Unless applied to a loss distribution

Common values for α : 1\%, 5\%, and 10\%
] Problem: the length/shape of the tail is not taken into account

Mining example revisited

- Assess $\mathrm{VaR}_{5 \%}$ for strategies 1 and 25

Risk measures: Conditional Value-atRisk (CVaR)
 - Conditional Value-at-Risk $\left(\mathrm{CVaR}_{\alpha}[X]\right)$ is the expected outcome given that the outcome is at most $\operatorname{VaR}_{\alpha}$:
 $$
\operatorname{CVaR}[X]=E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]
$$
 [Higher CVaR means smaller risk (unless applied to losses)

- Computation of $\operatorname{CVaR}[X]$ to discrete and continuous X :
$E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]=\sum_{t \leq \operatorname{VaR}_{\alpha}[X]} t \frac{f_{X}(t)}{\alpha}, \quad E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]=\int_{-\infty}^{\operatorname{VaR}_{\alpha}[X]} t \frac{f_{X}(t)}{\alpha} d t$.
- Note: $\alpha=P\left(X \leq \operatorname{VaR}_{\alpha}[X]\right) ;$ PMF/PDF $f_{X}(t)$ is scaled such that it sums/integrates up to 1 .

Computation of VaR and CVaR

- If the inverse CDF of X is well-defined, VaR can be obtained from

$$
\operatorname{VaR}_{\alpha}[X]=F_{X}^{-1}(\alpha)
$$

- In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc
- In Matlab: norminv, logninv, betainv, binoinv etc
- CVaR can then be computed using the formulas on the previous slide
- \quad Sometimes an analytic solution can be obtained; if, e.g., $X \sim N\left(\mu, \sigma^{2}\right)$ and $\operatorname{VaR}_{\alpha}[X]=\beta$, then

$$
\mathrm{CVaR}_{\alpha}[X]=\mu-\sigma \frac{\phi\left(\frac{\beta-\mu}{\sigma}\right)}{\Phi\left(\frac{\beta-\mu}{\sigma}\right)^{\prime}}
$$

where ϕ and Φ are the standard normal PDF and CDF, respectively.

- Sometimes numerical integration is needed

Computation of VaR and CVaR

- With discrete random variables VaR and CVaR are not always well defined for small values of α
- Example:

t	-10	-5	1	10	20
$f_{x}(t)$	0.06	0.02	0.02	0.5	0.4

$-\operatorname{VaR}_{10 \%}[X]=1$
$-\operatorname{CVaR}_{10 \%}[X]=\frac{0.06(-10)+0.02(-5)+0.02(1)}{0.06+0.02+0.02}=-6.8$

- But what are $\operatorname{VaR}_{5 \%}[X], \operatorname{CVaR}_{5 \%}[X]$?

VaR and CVaR with Monte Carlo - Excel

VaR and CVaR with Monte Carlo Matlab

```
S=10^5; %Sample size 10,000
mu=1000;
sigma=500;
Sample=normrnd (mu, sigma, S,1);
VaR=prctile(Sample,10)
TailIndices=find (Sample<=VaR);
CVaR=mean(Sample(TailIndices)) sComputes the arithmetic mean among those
selements in the sample belor or equal to VaR
```


Risk measures and stochastic dominance

Theorem: $X \geqslant_{\text {FSD }} Y$ if and only if $\operatorname{VaR}_{\alpha}[X] \geq \operatorname{VaR}_{\alpha}[Y] \forall \alpha \in[0,1]$

Theorem: $X \geqslant_{\text {SSD }} Y$ if and only if $\mathrm{CVaR}_{\alpha}[X] \geq \mathrm{CVaR}_{\alpha}[Y] \forall \alpha \in[0,1]$

31.1.2019

11

EUT vs. Risk measures

- EUT provides a more comprehensive way to capture the DM's preferences over uncertain outcomes
With risk measures, one must answer questions such as
- Which measure to use?
- Which α to use in VaR and CVaR?
- How to combine EV and the value of a risk measure into an overall performance measure?

Yet, if answers to such questions are exogenously imposed, the use of risk measures can be easy

- E.g., laws, regulations, industry standard etc.

Motivation

\square Consider yourself choosing

Bergland Design- und Wellnesshotel ****** $^{\text {B }}$

6 people are looking right now
Booked 3 times in the last 24 hours

- 94% of guest reviewers had their expectations of this property met or exceeded
accommodation for a (downhill) skiing vacation trip

Double Room -.
In high demand - only 2 rooms left!
$€ 3,290$
\square How do the accommodation alternatives differ from each other?

- What are the attributes that influence your decision?

Apartments A Casa Kristall $\star \star k \star$ 四 genius \%
Excellent
8.6

- Sölden-Show on map

02 km from center
2 people are looking right now
Booked 2 times in the last 24 hours
Grear Vatue today

Apartment $\mathbf{\bullet -}-30 \mathrm{~m}^{2}$
Price for 7 nights

See all 4 available apartments >

[^0]- Sölden - Show on map

Motivation

So far:

- We have considered decision-making situations in which the DM has one objective (e.g., maximize the expected value/ utility of a monetary payoff)
\square This time:
- We consider decision-making situations in which the DM has multiple objectives or, more precisely...
- Multiple attributes with regard to which the achievement of some fundamental objective is measured

Multiattribute value theory

- Ralph Keeney and Howard Raiffa (1976): Decisions with Multiple Objectives: Preferences and Value Tradeoffs
\square James Dyer and Rakesh Sarin (1979): Measurable multiattribute value functions, Operations Research Vol. 27, pp. 810-822
- Elements of MAVT
- A value tree consisting of objectives, attributes, and alternatives
- Preference relation over the alternatives' attribute-specific performances and differences thereof \& their representation with an attribute-specific value function
- Preference relation over the alternatives' overall performances and differences thereof \& their representation with a multiattribute value function

Value tree: objectives, attributes, and alternatives

- A value tree consists of
- A fundamental objective
- Possible lower-level objectives
- Attributes that measure the achievement of the objectives
- Alternatives whose attributespecific performances are being measured

Aalto University School of Science

Value tree: objectives, attributes and alternatives

- The attributes $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ have measurement scales $\mathrm{X}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$; e.g.,
- $\mathrm{X}_{1}=\{1000 € / \mathrm{month}, 6000 € / \mathrm{month}]$
- $\mathrm{X}_{2}=[2$ weeks/ year, 8 weeks/ year]
- $\mathrm{X}_{3}=[0$ days/ year, 200 days/ year]
- $\mathrm{X}_{4}=\{$ poor, fair, good, excellent $\}$
- Alternatives $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ are characterized by their performance w.r.t. the attributes; e.g.,

- Banker=(6000€/month, 5 weeks/year, 40 days/year, fair) $\in X_{1} \times X_{2} \times X_{3} \times X_{4}$.

Preference relation: attribute-specific performance

\square Let \geqslant be preference relation among performance levels a and b on a given attribute

Preference $a \geqslant b$: a at least as preferable as b
Strict preference $a>b$ defined as $\neg(b \geqslant a)$
Indifference $a \sim b$ defined as $a \succcurlyeq b \wedge b \geqslant a$

Axioms for preference relation

- A1: \geqslant is complete
- For any $a, b \in X$, either $a \succcurlyeq b$ or $b \succcurlyeq a$ or both
- A2: \geqslant is transitive
- If $a \succcurlyeq b$ and $b \succcurlyeq c$, then $a \succcurlyeq c$

Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal value function $v_{i}(\cdot): X_{i} \rightarrow \mathbb{R}$ that represents preference relation \geqslant in the sense that

$$
v_{i}(a) \geq v_{i}(b) \Leftrightarrow a \geqslant b
$$

\square An ordinal value function does not describe strength of preference, i.e., it does not communicate much more an object is preferred to another

Ordinal value function

-Assume you have two mopeds A and B with top speeds of 30 and $35 \mathrm{~km} / \mathrm{h}$, respectively
\square You have two alternatives for upgrade

- Increase top speed of moped A to 40
- Increase top speed of moped B to 45
aYour prefer a higher top speed to a lower one
$\square 45>40>35>30$
$\square \mathrm{v}(45)=1, \mathrm{v}(40)=0.8, \mathrm{v}(35)=0.5, \mathrm{v}(30)=0.4$
$\square w(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4$
\square Both v and w are ordinal value functions representing your preferences but they do not describe your preferences between the two upgrade alternatives

$$
\square \mathrm{v}(45)-\mathrm{v}(35)=0.5>\mathrm{v}(40)-\mathrm{v}(30)=0.4, \text { but } \mathrm{w}(45)-\mathrm{w}(35)=0.3<\mathrm{w}(40)-\mathrm{w}(30)=0.4
$$

Ordinal value function

Theorem: Ordinal value functions $v_{i}(\cdot)$ and $w_{i}(\cdot)$ represent the same preference relation \geqslant if and only if there exists a strictly increasing function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that $w_{i}(a)=\phi\left[v_{i}(\cdot)\right] \forall a \in A$.

Example: Let consultant $>$ professor $>$ janitor be Jim's preferences over these jobs and v (consultant) $=10>v$ (professor) $=8>v($ janitor $)=7$. Then v^{\prime} and $v^{\prime \prime}$ both represent the same preferences as ordinal value function v

		consultant	professor	janitor
	v	10	8	7
$\boldsymbol{A} \boldsymbol{A} \boldsymbol{y}$ Aaltouschool	v^{\prime}	20	16	14

The goal is to compare multi-attribute alternatives, wherefore ordinal value functions are not enough

- Let \succcurlyeq_{d} be preference relation among differences in performance levels on a given attribute
- Preference $(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d)$: a change from b to a is at least as preferable as a change from d to c
- Strict preference $(a \leftarrow b) \succ_{d}(c \leftarrow d)$ defined as $\neg\left((c \leftarrow d) \succcurlyeq_{d}(a \leftarrow b)\right)$
- Indifference $(a \leftarrow b) \sim{ }_{d}(c \leftarrow d)$ defined as $(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) \wedge(c \leftarrow$ d) $\succcurlyeq_{d}(a \leftarrow b)$

Axioms for preference relation (cont'd)

\square A3: $\forall a, b, c \in X_{i}: a \succcurlyeq b \Leftrightarrow(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow c)$

- If a is preferred to b, then a change from b to a is preferred to no change
\square A4: $\forall a, b, c, d \in X_{i}:(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) \Leftrightarrow(d \leftarrow c) \succcurlyeq_{d}(b \leftarrow a)$
- E.g., if an increase in salary from $1500 €$ to $2000 €$ is preferred to an increase from $2000 €$ to $2500 €$, then a decrease from $2500 €$ to $2000 €$ is preferred to a decrease from $2000 €$ to $1500 €$
$\square \quad$ A5: $\forall a, b, c, d, e, f \in X_{i}:(a \leftarrow b) \succcurlyeq_{d}(d \leftarrow e) \wedge(b \leftarrow c) \succcurlyeq_{d}(e \leftarrow f) \Rightarrow(a \leftarrow c) \succcurlyeq_{d}(d \leftarrow f)$
- If two incremental changes are both preferred to some other two, then the overall change resulting from the finst two increments is also nreferred
- A6: $\forall b, c, d \in X_{i} \exists a \in X_{i}$ such that $(a \leftarrow b) \sim{ }_{d}(c \leftarrow d)$ and $\forall b, c \in X_{i} \exists a \in X_{i}$ such that $(b \leftarrow$ $a) \sim{ }_{d}(a \leftarrow c)$
- Equally preferred differences between attribute levels can always be constructed
- There is always an attribute level a between b and c such that a change from c to a is equally preferred to a change from a to b.
\square A7: The set (or sequence) $\left\{a_{n} \mid b>a_{n}\right.$ where $\left.\left(a_{n} \leftarrow a_{n-1}\right) \sim{ }_{d}\left(a_{1} \leftarrow a_{0}\right)\right\}$ is finite for any b in X_{i}
- The sequence of equally preferred differences over a fixed interval is finite
- "No b can be infinitely better than other performance levels"

Cardinal value function

Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal value function $v_{i}(\cdot): X_{i} \rightarrow \mathbb{R}$ that represents preference relations \geqslant and \succcurlyeq_{d} in the sense that

$$
\begin{gathered}
v_{i}(a) \geq v_{i}(b) \Leftrightarrow a \succcurlyeq b \\
v_{i}(a)-v_{i}(b) \geq v_{i}(c)-v_{i}(d) \stackrel{\Leftrightarrow}{ }(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) .
\end{gathered}
$$

Note: A cardinal value function is unique up to positive affine transformations, i.e., $v_{i}(x)$ and $v_{i}^{\prime}(x)=\alpha v_{i}(x)+\beta, \alpha>0$ and represent the same preferences

Cardinal value function: positive affine transformations

Example: Let consultant $>$ professor $>$ janitor and (consultant \leftarrow professor) \succcurlyeq_{d} (professor \leftarrow janitor) be Jim's preferences and $v($ consultant $)=10>v$ (professor) $=8>v$ (janitor) $=7$.
Then v^{\prime} and $v^{\prime \prime}$ both represent same preferences as cardinal value function v

	consultant	professor	janitor
v	10	8	7
$v^{\prime}=2 v$	20	16	14
$v^{\prime \prime}=v^{\prime}-10$	10	6	4

Attribute-specific value functions

- A value function maps the attribute-specific measurement scale onto a numerical scale in accordance with the DM's preferences
- Value and utility:
- Value is a measure of preference under certainty
- Utility is a measure of preference under uncertainty

Aalto University School of Science

Elicitation of value functions

\square Phases:

- Define the measurement scale $X_{i}=\left[a_{i}^{0}, a_{i}^{*}\right]\left(\right.$ or $\left.\left[a_{i}^{*}, a_{i}^{0}\right]\right)$
- Ask a series of eliciation questions
- Check that the value function gives realistic results

Elicitation of value functions: Indifference methods

\square Bisection method:

- Ask the DM to assess level $x_{0.5} \in\left[a_{i}^{0}, a_{i}^{*}\right]$ such that she is indifferent between change $x_{0.5} \leftarrow a^{0}$ and change $a^{*} \leftarrow x_{0.5}$.
- Then, ask her to assess levels $x_{0.25}$ and $x_{0.75}$ such that she is indifferent between
- changes $x_{0.25} \leftarrow a^{0}$ and $x_{0.5} \leftarrow x_{0.25}$, and
- changes $x_{0.75} \leftarrow x_{0.5}$ and $a^{*} \leftarrow x_{0.75}$.
- Continue until sufficiently many points have been obtained
- Use, e.g, linear interpolation between elicited points if needed
- The value function can be obtained by fixing $v_{i}\left(a_{i}^{0}\right)$ and $v_{i}\left(a_{i}^{*}\right)$ at, e.g., 0 and 1

Elicitation of value functions: Indifference methods

- Example of the bisection method

- Attribute a_{3} : Traveling days per year
- Measurement scale $\left[a_{3}^{*}, a_{3}^{0}\right]$, where $a_{3}^{*}=0$ and $a_{3}^{0}=200$; fix $v_{3}\left(a_{3}^{0}\right)=0$ and $v_{3}\left(a_{3}^{*}\right)=1$
- "What would be the number $x_{0.5}$ of traveling days such that you would be indifferent between a decrease from 200 to $x_{0.5}$ days a year and a decrease from $x_{0.5}$ to zero days a year?" (Answer e.g., "130")
- "What would be the number $x_{0.25}$ of traveling days such that you would be indifferent between a decreasefrom 200 to $x_{0.25}$ days a year and a decrease from $x_{0.25}$ to 130 days a year?" (Answer e.g., "170")
- "What would be the number $x_{0.75}$ of traveling days such that you would be indifferent between a decrease from 130 to $x_{0.75}$ days a year and a decrease from $x_{0.75}$ to zero days a year?" (Answer e.g., "80")

$$
\begin{gathered}
v_{3}(170)-v_{3}(200)=v_{3}(130)-v_{3}(170) \Rightarrow \\
v_{3}(170)=\frac{v_{3}(130)+v_{3}(200)}{2}=0.25
\end{gathered}
$$

$$
\begin{gathered}
v_{3}(80)-v_{3}(130)=v_{3}(0)-v_{3}(80) \Rightarrow \\
v_{3}(80)=\frac{v_{3}(0)+v_{3}(130)}{2}=0.75
\end{gathered}
$$

5 Aalto University School of Science

Elicitation of value functions: Indifference methods

- Sequence of equally preferred differences:
- \quad Set $x_{0} \in\left(a_{i}^{0}, a_{i}^{*}\right)$
- Ask the DM to assess level $x_{1} \in\left(x_{0}, a_{i}^{*}\right]$ such that he is indifferent between changes $x_{0} \leftarrow a_{i}^{0}$ and $x_{1} \leftarrow x_{0}$
- $\quad v_{i}\left(x_{0}\right)-v_{i}\left(a_{i}^{0}\right)=v_{i}\left(x_{1}\right)-v_{i}\left(x_{0}\right) \Rightarrow v_{i}\left(x_{1}\right)=2 v_{i}\left(x_{0}\right)$
- Then, ask him to assess level $x_{2} \in\left(x_{1}, a_{i}^{*}\right]$ such that he is indifferent between change $x_{1} \leftarrow x_{0}$ and $x_{2} \leftarrow x_{1}$
- $v_{i}\left(x_{1}\right)-v_{i}\left(x_{0}\right)=v_{i}\left(x_{2}\right)-v_{i}\left(x_{1}\right) \Rightarrow v_{i}\left(x_{2}\right)=3 v_{i}\left(x_{0}\right)$
- Continue until $x_{N}=a_{i}^{*}$ and solve the system of linear equations
- $v_{i}\left(x_{0}\right)=\frac{v_{i}\left(x_{N}\right)}{N+1}=\frac{1}{N+1} \Rightarrow v_{i}\left(x_{1}\right)=\frac{2}{N+1}$ etc.
- If $x_{N}>a_{i}^{*}$ (see the exercises!)
- Change a_{i}^{*} to x_{N} and interpolate, or
- Interpolate to get $v_{i}\left(a_{i}^{*}\right)-v_{i}\left(a_{i}^{0}\right)$

Example:
$\left[a_{i}^{0}, a_{i}^{*}\right]=[1000,6000], x_{0}=1500$
$x_{1}=2500, x_{2}=4000, x_{3}=6000=a_{i}^{*} \Rightarrow$
$v_{i}(1500)=\frac{1}{4}, v_{i}(2500)=\frac{1}{2}, v_{i}(4000)=\frac{3}{4}$.

Elicitation of value functions: Indifference methods

Indifference methods are likely to result in a cardinal value function that captures the DM's preferences

- Therefore, they should be used whenever possible

Yet: indifference methods cannot be used when the measurement scale is discrete

- E.g., Fit with interest: $\mathrm{X}_{4}=\{$ poor, fair, good, excellent $\}$
- Cf. Axiom A6

Elicitation of value functions: direct methods

- Direct rating
- Ask the DM to directly attach a value to each attribute level
- E.g. "Assume that the value of poor fit with interests is 0 and the value of excellent fit with interests is 1 . What is the value of fair fit with interests? How about good fit?"
- Class rating
- Divide the measurement scale into classes and ask the DM to attach a value to these classes
- Ratio evaluation
- Take one attribute level as a reference point and ask the DM to compare the other levels to this
- E.g., "How many times more valuable is $1000 €$ than $900 €$?"
- Direct methods should be avoided whenever possible
- Usually do not result in a cardinal value function

Next time: Aggregation of values

- Problem: How to measure the overall value of alternative $x=$ $\left(x_{1}, x_{2}, \ldots x_{n}\right) ?$

$$
V\left(x_{1}, x_{2}, \ldots x_{n}\right)=?
$$

Question: Could the overall value be obtained by aggregating attribute-specific values?

$$
V\left(x_{1}, x_{2}, \ldots x_{n}\right)=f\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) ?
$$

- Answer: Yes, if the attributes are
- Mutually preferentially independent and
- Difference independent

Summary

- Under certain axioms, the DM's preferences over changes on a measurement scale can be captured by a cardinal (measurable) value function
- "I prefer a change from 0 euros to 10 euros to a change from 10 euros to 22 euros"
- Elicitation of the attribute-specific value functions
- Use indifference methods if possible

[^0]: Das Central - Alpine . Luxury . Life $\begin{aligned} & \text { ***** }\end{aligned}$

