Clicker lecture 2 of Topic 2:

Smith chart and impedance matching

31 Jan, 2019

Registration

Go with your mobile phone to presemo.aalto.fi/mwe1

Fill your full name into the text field for registration.

Q1a: The signal propagates to the positive z direction. $Z_{0} \neq Z_{\mathrm{L}}$. How much (\%) of the power is transmitted to the line whose impedance is Z_{L}

1. 11%
2. 33%
3. 66\%
4. 89%
5. None of above
6. I don't know

$$
\begin{aligned}
& Z_{L}=2.0 \Omega \\
& Z_{0}=1.0 \Omega
\end{aligned}
$$

Q1b: The signal propagates to the positive z direction. $Z_{0} \neq Z_{\mathrm{L}}$. How much (\%) of the power is transmitted to the line whose impedance is Z_{L}

$z=-l$
1.
1.
2.
3.
3. 66%
4. 89%
4.

5. None of above

If impedance plane: $z=0 \rightarrow$ short circuit If admittance plane: $\mathrm{y}=0 \rightarrow$ open circuit
direction towards generator

inductive reactance or capacitive susceptance

capacitive reactance or inductive susceptance

$r=1$
circle

Q2a: Which of the following transitions on the Smith chart (1-5) corresponds to adding a series inductor in the impedance plane?

5. None of them
6. I don't know

Q2b: Which of the following transitions on the Smith chart (1-5) corresponds to adding a series inductor in the impedance plane?

Q3a: Which of the following transitions on the Smith chart (1-5) corresponds to adding a parallel capacitor in the admittance plane?

5. None of them
6. I don't know

Q3b: Which of the following transitions on the Smith chart (1-5) corresponds to adding a parallel capacitor in the admittance plane?

5. None of them

Q4a: Which of the following transitions on the Smith chart (1-4) corresponds to adding a parallel capacitor in the impedance plane?

5. None of above
6. I don't know

Q4b: Which of the following transitions on the Smith chart (1-4) corresponds to adding a parallel capacitor in the impedance plane?

5. None of above

Q5: Which of the following lumped element L-section matching circuits (1-4) is/are suitable for matching Z_{L} ?

Choose one or more.

5. None of them
6. I don't know

Lumped-element L-section matching circuit topologies

Q6: Which of the following transitions on the Smith chart (1-4) can correspond to adding a transmission line?

Choose one or more.
5. None of them
6. I don't know

Q7a: The normalised admittance of a short-circuited

 stub is $\boldsymbol{y}=\mathrm{j} b=-\mathrm{j}$ (seen from the input). What is the length of the stub in λ ?1. 0.0624λ
2. 0.125λ
3. 0.25λ
4. 0.375λ
5. 0.50λ
6. I dont' know

Q7b: The normalised admittance of a short-circuited

 stub is $\boldsymbol{y}=\mathrm{j} \boldsymbol{b}=-\mathrm{j}$ (seen from the input). What is the length of the stub in λ ?| 1. | 0.0624λ |
| :--- | :--- |
| 2. | 0.125λ |
| 3. | 0.25λ |
| 4. | 0.375λ |
| 5. | 0.50λ |

Frequency response

Read: "Quantity" (in dB) is presented as a function of frequency. or
Read: The frequency response of "quantity" in the decibel scale

Band or Bandwidth?

- Band is a range of frequencies, for instance, $2.4 \ldots 2.5 \mathrm{GHz}$
- The corresponding bandwidth (= the width of the band): 100 MHz (= 2.5-2.4GHz)
"quantity" (dB)

"Quantity" (-)x-dB bandwidth
For instance, amplifier gain (-)3-dB bandwidth

Means the width of the frequency range where the attenuation of the gain is less than 3 dB .

Also called "half-power bandwidth".

