
Exercise problems of topic 3: Analysis of microwave 
circuits 
 

Write your answers clearly, so that the answer proceeds logically and includes necessary 

intermediate steps and sufficient explanations. Your answer should be understandable without 

oral explanations, too. See further instructions for systematic problems solving in MyCourses. 

The exercise problem answers are to be returned during the contact sessions to the course 

teachers either handwritten (on paper) or typescripted (shown on screen). For other return 

methods, contact the teachers.  

Return your answers one by one when a teacher is free. You may also ask help and instruction.  

Be prepared to explain and justify your answer to the teacher. The purpose of this returning 

method is to enhance your learning through two-way communication and constructive feedback 

given by the teacher. The teacher will grade your answer in the scale of 0-3 points.  

Note that at least two (2) of the problems must be returned latest on Thu 14 February and two (2) 

more latest on Thu 21 February. If you cannot meet this, you lose a chance to earn those points. 

However, if you have a good reason not to meet the DL, contact the teachers well in advance. The 

optimal return speed is about three (3) returned problems per week  

 

Exercise problem 3.1. In this problem you will learn the electrical resonator theory. Solve and 

answer the following small problems.  

 

The figure shows a lumped-element series 

RLC resonator circuit, which is the simplest 

form of an electrical resonator. Hence, it is 

perfect for learning the basics of electrical 

resonators.  

a. Let us define U = 1 V. Plot (e.g., with 

Matlab or GNU Octave) the 

magnitude of the electrical current I 

= U/Zin as a function of angular 

frequency ω = 0.5 … 1.5 rad/s in 

three different cases: 

1) L = 1 H, C = 1 F, R = 2 Ω 

2) L = 10 H, C = 1/10 F, R = 1 Ω 

3) L = 100 H, C = 1/100 F, R = 0.5 Ω. 

 

The problem continues on the next page! 



b. Based on the three current curves of part a., what particular you notice that happens at the 

angular frequency ω = 1? How is this frequency is called (let us mark it ω0)? Derive the 

expression of ω0 as a function of L and C. 

c. Read from the literature of your choice, what the (unloaded) quality factor  
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means. Starting from the above definition of the quality factor, show that the unloaded 

quality factor of the series RCL circuit can calculated from the expression 
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d. Calculate the unloaded quality factor Q0 in each case 1)-3) of part b. Based on the 

observations of the curves of a., describe how the numeric value of the unloaded quality 

factor affects the bandwidth of the curves.  

 

 

Exercise problem 3.2. Let us study, how one can define scattering parameters also with a 

pencil and a paper.  

a. Derive a general (2 x 2) scattering parameter matrix of a series impedance Z (see Figure 
a.) when both ports are terminated with the reference impedance Z0. Let us assume that Z 
consists of reciprocal and lumped components.  

b. The impedance Z is a series LC circuit (Figure b.), the frequency variable is the angular 
frequency ω. Write the S-parameter matrix with the help of a.   

c. At which angular frequency ω0 the circuit of b. is fully matched (|S11| = 0) to the reference 
impedance Z0? Roughly sketch the shape of the frequency responses of |S11| and |S21|. You 
can, for example, consider |S11| and |S21| at the angular frequencies ω = 0, ω0  and ∞.  

 

 

 

  



Exercise problem 3.3. Solve and answer the following problems. 

The impedance behavior of a real surface-mounted lumped capacitor is modelled as a series RLC 
equivalent circuit, see the figure below. The datasheet of a capacitor gives the following 
information: 

 The nominal capacitance of the capacitor is C = 3.0 pF,  

 The resistor R models the resistive losses,  

 The inductor L is the parasitic inductance,  

 The self-resonant frequency of the capacitor is fr = 2.46 GHz (in AWR series-resonant FR)  

 The unloaded quality factor Q0 (defined at the resonant frequency fr) is 43.  

 

a. Solve the component values L and R of the equivalent circuit of the capacitor. 

b. At which frequencies is the capacitor capacitive? When it is inductive? What do you learn 
from this problem? 

c. The capacitor is used as a filter to block a strong Wi-Fi signal at 2.4-2.5 GHz, see figure c. 
Hence, the capacitor is soldered between the lines of a transmission line (Z0=50 Ω). At 
which frequency does the capacitor attenuate the most and what is the attenuation in 
decibels?  

Hint: consider first, under which conditions this circuit might work as a band-stop filter. 

d. As an alternative approach, the band-stop filter might be implemented with an open single 
parallel stub (see figure d.). What would be the length l (in λ) of the open stub? 

Hint: see also Problem 2.1 where the impedance of an open transmission line was derived. 

e. Simulate the filter of part c. with AWR. Use the component called “CHIPCAP” in AWR and 
give the parameters C, fr and Q0 as defined in this problem. Do you get the same result as 
in c. part? If not, try to explain why. 

 



Exercise problem 3.4. Solve and answer the following problems. 

a. Let us make a circuit simulator for the band-pass filter shown below. Plot |S11| and |S21| [dB] 

as a function of frequency in the frequency range of 80 - 120 MHz to the same Cartesian 

coordinate system. 

Hint: Use the ABCD matrices, see Pozar book Chapter 4.4. Calculate the total ABCD matrix 

of the whole filter and it to the S-parameter matrix. The frequency response is triple-

resonant. 

b. Calculate the resonant frequency of each resonator blocks 1-3. Compare them with the 

resonant frequencies of the frequency response of |S11| plotted in a. part. What interesting (also 

surprising?) findings you can make? 

c. Optional part: if you like/want, you can simulate the filter with AWR and compare with the a. 

part result.  

 

 

Exercise problem 3.5. The output power of a matched generator is 5 dBm. That power is split 
into two ports with a resistive power splitter whose S-parameter (Z0 = 50 Ω) matrix (see Pozar 
Chapter 7.2) is  
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a. Both output ports of the power splitter are terminated with identical dipole antennas, whose 

radiation efficiency is 0.79 and input impedance ZL = 70 Ω. Assume that the isolation between 

the antennas is very high. Calculate the power radiated (dBm) by one antenna? How about the 

whole system (dBm)?  

Hint: a. part can be solved with the help of the matrix equation: [bn] = [S]∙[an], in which the 

antenna reflection coefficient ρL is written in terms of a2 and b2.) 

b. Model and simulate the circuit system with AWR. Find the circuit schematic of the power 
splitter in Pozar Chapter 7.2. The antenna impedance (resistance) can be modelled as the loss 
Rloss and radiation resistance Rrad in series. 

  



Exercise problem 3.6. Solve and answer the following problem.  

An amplifier consists of two 90 degrees hybrids and two transistors. The hybrids are modelled 

with the S-parameter matrix shown below. For the transistors, S11a and S11b denote the input 

reflection coefficient and S21a and S21b the voltage transmission (amplification). All the S-

parameters are defined with respect to Z0 = 50 Ω. Assume that the transistors are unilateral. 

a. Define the expressions for the input reflection coefficient ρin (function of S11a and S11b) and the 
power gain G (function of S21a and S21b) of the amplifier.  
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b. How do the expressions for ρin and G change if the transistors are identical – i.e., the transistor 
S-parameters satisfy S11a = S11b and S21a = S21b?   
   

 


