
4. Batch evaluation and interpolation
CS-E4500 Advanced Course on Algorithms

Spring 2019

Pe�eri Kaski
Department of Computer Science

Aalto University

Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers

2019 K A L E N T E R I 2019

Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu

1 Ti Uudenvuodenpäivä 1 Pe 1 Pe 1 Ma Vk 14 1 Ke Vappu 1 La

2 Ke 2 La 2 La 2 Ti 2 To 2 Su

3 To 3 Su 3 Su 3 Ke 3 Pe 3 Ma Vk 23

4 Pe 4 Ma Vk 06 4 Ma Vk 10 4 To 4 La 4 Ti

5 La 5 Ti 5 Ti Laskiainen 5 Pe 5 Su 5 Ke

6 Su Loppiainen 6 Ke 6 Ke 6 La 6 Ma Vk 19 6 To

7 Ma Vk 02 7 To 7 To 7 Su 7 Ti 7 Pe

8 Ti 8 Pe 8 Pe 8 Ma Vk 15 8 Ke 8 La

9 Ke 9 La 9 La 9 Ti 9 To 9 Su Helluntaipäivä

10 To 10 Su 10 Su 10 Ke 10 Pe 10 Ma Vk 24

11 Pe 11 Ma Vk 07 11 Ma Vk 11 11 To 11 La 11 Ti

12 La 12 Ti 12 Ti 12 Pe 12 Su Äitienpäivä 12 Ke

13 Su 13 Ke 13 Ke 13 La 13 Ma Vk 20 13 To

14 Ma Vk 03 14 To 14 To 14 Su Palmusunnuntai 14 Ti 14 Pe

15 Ti 15 Pe 15 Pe 15 Ma Vk 16 15 Ke 15 La

16 Ke 16 La 16 La 16 Ti 16 To 16 Su

17 To 17 Su 17 Su 17 Ke 17 Pe 17 Ma Vk 25

18 Pe 18 Ma Vk 08 18 Ma Vk 12 18 To 18 La 18 Ti

19 La 19 Ti 19 Ti 19 Pe Pitkäperjantai 19 Su Kaatuneiden muistopäivä 19 Ke

20 Su 20 Ke 20 Ke Kevätpäiväntasaus 20 La 20 Ma Vk 21 20 To

21 Ma Vk 04 21 To 21 To 21 Su Pääsiäispäivä 21 Ti 21 Pe Kesäpäivänseisaus

22 Ti 22 Pe 22 Pe 22 Ma 2. pääsiäispäivä 22 Ke 22 La Juhannus

23 Ke 23 La 23 La 23 Ti 23 To 23 Su

24 To 24 Su 24 Su 24 Ke 24 Pe 24 Ma Vk 26

25 Pe 25 Ma Vk 09 25 Ma Vk 13 25 To 25 La 25 Ti

26 La 26 Ti 26 Ti 26 Pe 26 Su 26 Ke

27 Su 27 Ke 27 Ke 27 La 27 Ma Vk 22 27 To

28 Ma Vk 05 28 To 28 To 28 Su 28 Ti 28 Pe

29 Ti 29 Pe 29 Ma Vk 18 29 Ke 29 La

30 Ke 30 La 30 Ti 30 To Helatorstai 30 Su

31 To 31 Su Kesäaika alkaa 31 Pe

Vuotuinen kalenteri Marcel Steinger, luotu 9.11.2018 calendar-yearly.com
Käy meillä -> www.calendar-yearly.com L = Lecture; hall T5, Tue 12–14

Q = Q & A session; hall T5, Thu 12–14
D = Problem set deadline; Sun 20:00
 T = Tutorial (model solutions); hall T6, Mon 16–18

Exam
week

L1

Q1

T1
D1

L2

Q2

D2
T2

L3

Q3

D3
T3

L4

Q4

D4
T4

L5

Q5

D5
T5

Break

L6

Q6

D6
T6

L7

Q7

D7
T7

L8

Q8

D8
T8

L9

Q9

D9

T9

 CS-E4500 Advanced Course in Algorithms (5 ECTS, III–IV, Spring 2019)

Recap of last week

I Division (quotient and remainder) for integers and polynomials

I Fast division by reduction to fast multiplication

I Integer division via approximation of the multiplicative inverse of the divisor

I The radix-point representation and approximation of rational numbers

I Newton iteration

I Newton iteration for the multiplicative inverse of the divisor

I Convergence analysis for Newton iteration

I Polynomial division via reversal

I Newton iteration for the inverse of the reverse of the divisor

Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder)

I Batch evaluation (this week)

I Interpolation (this week)

I Extended Euclidean algorithm (gcd)

I Interpolation from partly erroneous data

Key content for Lecture 4

I Fast batch evaluation and interpolation of polynomials

I Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

I Secret sharing by randomization

Further motivation for this week

I The evaluation–interpolation duality for polynomials is the source of many algorithm
designs and applications

I An application we encounter today:
How to share a secret (Shamir [25])

I With further knowledge of algebra and algebraic structures (e.g. cf. Lang [18] and Cox,
Li�le, and O’Shea [6]), considerable generalizations are possible

Batch evaluation and interpolation

(von zur Gathen and Gerhard [11],
Sections 10.1–10.3 and 5.1–5.4)

Batch evaluation and interpolation
I To evaluate a polynomial (φ0,φ1, . . . ,φd) ∈ F d+1 at (“a batch of”) distinct points
ξ0, ξ1, . . . , ξd ∈ F , we multiply from the le� with the Vandermonde matrix:

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

φ0
φ1
...
φd

=

f (ξ0)
f (ξ1)
...

f (ξd)

I To interpolate the coe�icients of a polynomial with values
(f (ξ0), f (ξ1), . . . , f (ξd)) ∈ F d+1 at distinct ξ0, ξ1, . . . , ξd ∈ F , we multiply from the le�
with the inverse of the Vandermonde matrix:

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

−1

f (ξ0)
f (ξ1)
...

f (ξd)

=

φ0
φ1
...
φd

Fast batch evaluation and interpolation?

I Can we go faster than working with the Vandermonde matrix in explicit form?

I Yes, for example, in the case when the points ξ0, ξ1, . . . , ξd are powers of a primitive
root of unity of composite order d + 1 (recall fast Fourier transform from Lecture 2)

I But what about in general?
That is, when ξ0, ξ1, . . . , ξd are arbitrary distinct points in a ring R

I We now know how to multiply and divide fast, so maybe we could put these algorithms
into use ...

Polynomial division (quotient and remainder) recalled

I Let R be a ring (commutative and nontrivial, as usual)

I Let a =
∑

i αix i ∈ R[x] and b =
∑

i βix i ∈ R[x] be given as input with deg a = n,
deg b = m, and n ≥ m ≥ 0

I Let us also assume that βm = 1 (that is, b is monic)

I We want to compute q, r ∈ R[x] with a = qb + r and deg r < m

I That is, q = a quo b is the quotient and r = a rem b is the remainder in the
polynomial division with dividend a and divisor b

I We now have a fast algorithm that divides in O(M(n)) operations in R by reduction to
fast multiplication

I Let us now develop fast algorithms for batch evaluation and interpolation to by
reduction to fast division

Fast batch evaluation by recursive remaindering

I Suppose we have a polynomial f = φ0 + φ1x + φ2x2 + . . . + φdxd ∈ R[x] and we want
to compute the values f (ξ0), f (ξ1), . . . , f (ξe−1) at e given points ξ0, ξ1, . . . , ξe−1 ∈ R

I Goal: O(M(d) +M(e) log e) operations in R

I We reduce the multi-point (batch) evaluation task to recursive remaindering along a
subproduct tree enabled by the following to lemmas (proofs: in the problem set)

Lemma 6 (Evaluation at a point via remainder)

For all ξ ∈ R and f ∈ R[x] it holds that f (ξ) = f rem (x − ξ)

Lemma 7 (Recursive remaindering)

Let a, b, c ∈ R[x], with b and c monic, and suppose that c divides b. Then,
a rem c = (a rem b) rem c

Example: Batch evaluation

I The algorithm for fast batch evaluation is perhaps best illustrated by starting with an
example and then proceeding with the details

I Let us work over R = Z for simplicity

I Let f = x5 − x4 + 2x3 + 4x − 5 ∈ Z[x]

I Let ξ0 = 0, ξ1 = 1, ξ2 = 2, ξ3 = 3

Example: Batch evaluation (0/4)

Example: Batch evaluation (1/4)

Example: Batch evaluation (2/4)

Example: Batch evaluation (3/4)

Example: Batch evaluation (4/4)

Nodes of a perfect binary tree and binary strings (1/2)

I Let us now present the algorithm in detail

I Without loss of generality we can assume that e = 2k for some k ∈ Z≥0

(for example, insert new points of evaluation until e is a power of 2)

I We will structure the recursion along a perfect binary tree with 2k leaves

I Let us write {0, 1}k for the set of all binary strings of length at most k, including the
empty string ϵ

I For u ∈ {0, 1}k let us write 0 ≤ |u| ≤ k for the length of u

I Example. For k = 3, we have

{0, 1}k = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111}

Nodes of a perfect binary tree and binary strings (2/2)

I The 2k+1 − 1 =
∑k

j=0 2j strings in {0, 1}k are in a
natural one-to-one correspondence with the nodes of
a perfect binary tree with 2k leaves, with the empty
string ϵ corresponding to the root and the strings of
length k corresponding to the leaves

I Indeed, to navigate from a non-root node to its parent
node, simply delete the last bit from the
corresponding string

I Dually, to navigate from a non-leaf node to one of its
two children, append either the bit 0 (to go the le�
child) or the bit 1 (to go the right child) to the string

A subproduct tree for batch evaluation

I Let us work with a perfect binary tree with 2k leaves and nodes indexed by the binary
strings in {0, 1}k

I Associate with each leaf v ∈ {0, 1}k the linear polynomial

sv = x − ξv (26)

I Associate with each internal node u ∈ {0, 1}k−1 the product of the children of u by

su = su0su1 (27)

I We observe that su is a monic polynomial of degree 2k−|u | for all u ∈ {0, 1}k

Fast batch evaluation using a subproduct tree

I To perform batch evaluation, first compute and store the polynomials su for all
u ∈ {0, 1}k using (26) and (27)

I Then, associate the remainder

rϵ = f rem sϵ (28)

with the root ϵ of the binary tree

I For each nonroot u ∈ {0, 1}k \ {ϵ }, associate with u the remainder

ru = rp rem su (29)

where p ∈ {0, 1}k−1 is the parent of u in the binary tree

I For each leaf v ∈ {0, 1}k , the remainder rv satisfies rv = f (ξv)

Analysis

I Recall that su is a monic polynomial of degree 2k−|u | for all u ∈ {0, 1}k

I From (26) and (27) we have that each su can be prepared in O(M(2k−|u |)) operations in
R using fast multiplication

I There are in total 2j binary strings u ∈ {0, 1}j , implying that the total cost of level
j = k, k − 1, . . . , 0 is O(2jM(2k−j)) operations in R, which is O(M(2k)) = O(M(e)) by
at-least-linear and at-most-polynomial growth of M

I The root remainder (28) takes O(M(d) +M(e)) operations in R using fast division

I Below the root, each level j = 0, 1, . . . , k similarly takes O(M(e)) operations in R using
(29) and fast division

I Since there are k = O(log e) levels, we obtain that that batch evaluation runs in total
O(M(d) +M(e) log e) operations in R

Interpolation

I Let R be a ring

I Let ξ0, ξ1, . . . , ξe−1 ∈ R and η0,η1, . . . ,ηe−1 ∈ R such that ξi − ξj is a unit in R for all
0 ≤ i < j ≤ e − 1

I We seek to compute the coe�icients of the Lagrange interpolation polynomial

` =

e−1∑
i=0

(
ηi

e−1∏
j=0
j,i

(ξi − ξj)
−1

) e−1∏
j=0
j,i

(x − ξj) ∈ R[x]

that satisfies `(ξi) = ηi for all i = 0, 1, . . . , e − 1

Fast interpolation with subproduct trees

I The form

` =

e−1∑
i=0

(
ηi

e−1∏
j=0
j,i

(ξi − ξj)
−1

) e−1∏
j=0
j,i

(x − ξj) ∈ R[x]

suggests that one should first seek to construct the coe�icients of the polynomial

` =

e−1∑
i=0

λi

e−1∏
j=0
j,i

(x − ξj) ∈ R[x]

from e given scalars λ0, λ1, . . . , λe−1 ∈ R

I A strategy based on subproduct-trees works also here and leads to an algorithm that
runs in O(M(e) log e) operations in R (exercise)

Application: How to share a secret

“In this paper we show how to divide data D into n pieces in such a way that D is
easily reconstructible from any k pieces, but even complete knowledge of k − 1 pieces
reveals absolutely no information about D. This technique enables the construction of
robust key management schemes for cryptographic systems that can function securely
and reliably even when misfortunes destroy half the pieces and security breaches
expose all but one of the remaining pieces.”

(Shamir [25])

Application: How to share a secret (1/5)

I Let us work over a finite field F (for example, F = Zp for p prime)

I Let f = φ0 + φ1x ∈ F [x] be a line (polynomial of degree at most 1)

I How much do we know about the constant φ0 of the line f if we know the value f (ξ)
for a nonzero ξ ∈ F ?

Application: How to share a secret (2/5)

I Let us work over a finite field F (for example, F = Zp for p prime)

I Let f = φ0 + φ1x + φ2x2 + . . . + φdxd ∈ F [x] be a polynomial of degree at most d

I How much do we know about the constant φ0 of the polynomial f if we know
(ξj, f (ξj)) for exactly d nonzero distinct values ξj ∈ F for j = 1, 2, . . . , d ?

Application: How to share a secret (3/5)

I Let f = φ0 + φ1x + φ2x2 + . . . + φdxd ∈ F [x] be a polynomial of degree at most d

I How much do we know about the constant φ0 of the polynomial f if we know
(ξj, f (ξj)) for exactly d nonzero distinct values ξj ∈ F for j = 0, 1, . . . , d ?

I We claim that this knowledge reveals no information about φ0;
indeed, let us set ξ0 = 0 and recall the interpolation identity

ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d

−1

f (ξ0)
f (ξ1)
...

f (ξd)

=

φ0
φ1
...
φd

I Since f (ξ0) = f (0) = φ0, we have that for each choice φ0 ∈ F the values

f (ξ1), f (ξ2), . . . , f (ξd) are consistent with exactly one choice (φ0,φ1, . . . ,φd) ∈ F d+1

I Thus, the values f (ξ1), f (ξ2), . . . , f (ξd) reveal no information about φ0

Application: How to share a secret (4/5)

I Let f = φ0 + φ1x + φ2x2 + . . . + φdxd ∈ F [x] be a polynomial of degree at most d

I How much do we know about the constant φ0 of the polynomial f if we know
(ξj, f (ξj)) for exactly e nonzero distinct values ξj ∈ F for j = 1, 2, . . . , e ?

I For e ≤ d , we obtain no information about φ0

I For e ≥ d + 1, we have full information about φ0 since we can interpolate all the
coe�icients of f from any d + 1 evaluations at distinct points

Application: How to share a secret (5/5)

I Suppose φ0 ∈ F is a secret that you want to split into s shares so that
I knowledge of any k shares enables recovery of the secret

I knowledge of any k − 1 or fewer shares reveals no information about the secret

1. Let ξ1, ξ2, . . . , ξs ∈ F be distinct and nonzero

2. Select elements φ1,φ2, . . . ,φk−1 ∈ F independently and uniformly at random

3. Let f = φ0 + φ1x + φ2x2 + . . . + φk−1xk−1 ∈ F [x]

4. For j = 1, 2, . . . , s, share j is the pair (ξj, f (ξj)) ∈ F 2

I Using fast batch evaluation and interpolation, preparing the shares takes O(M(s) log s)
operations in F , and recovering the secret takes O(M(k) log k) operations in F

Randomization and primal–dual

I The secret φ0 ∈ F resides in the primal (coe�icient representation)

I Selecting φ1,φ2, . . . ,φk−1 ∈ F independently and uniformly at random masks the
secret in the dual (evaluation representation) unless we know k shares

I This is our first example of the use of randomization during this course

I The evaluation–interpolation duality enables us to spread the information in the
coe�icient representation uniformly to evaluations in the evaluation representation

I The following lectures will explore both randomization as a tool in algorithm design
and the aforementioned “uniformity” further, the la�er in particular as regards
error-correcting codes and error-tolerant computation

Recap of Lecture 4

I Fast batch evaluation and interpolation of polynomials

I Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

I Secret sharing by randomization

Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic
online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms

Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability

