
MEC-E8001 Finite Element Analysis, week 6/2019

1. The variational densities (correspond to virtual work densities of a displacement problem) of a
heat conduction problem in a bar are given by int ( / ) ( / )p d dx kA d dxχ χΙ Ις < ,  and

extp sχ χΙς <  in which Ι  is the temperature, A is the cross-sectional area, k  is the thermal con-
ductivity, and s  is the rate of heat production per unit length. Determine the element contribu-
tions intPχ   and extPχ  if the approximation to temperature is linear, length of the element is h,
and the given functions of the density expression are constants.
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2. Determine the stationary displacement 2Xu and
temperature 2Ι at node 2, when the temperature of
the left and right ends are Ι↓ and 2Ι↓ , respective-
ly. Use just one three node quadratic element.
Stress is  zero initially when the temperature in the
wall and bar is Ι↓ . Problem parameters E , A , k ,
and   are constants.
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3. Determine the static displacements 2 3Z Zu u< , of nodes
2 and 3 due to the temperature increase ΙΧ  at nodes 2
and 3 (actually in the wall). The material constants are E
and α. The cross-sectional area of bar 1 and 3 is A  and
that of bar 2 is 2A . The initial temperature is Ι↓ .
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4.  The truss shown consists of bars having the same cross-
sectional area A , Young’s modulus E , coefficient of
thermal expansion  , and thermal conductivity k .  The
truss  is  stress-free  when the  initial  temperature  of  all  the
joints is Ι↓ . Determine the stationary displacement 1Xu
of node 1, when the temperature of joint 2 is changed to
2Ι↓  and joints 1, 3 and 4 are in temperature Ι↓ .
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5.  A  thin  triangular  slab  (plane  stress  conditions)  is  allowed  to
move horizontally at node 1 and nodes 2 and 3 are fixed.
Stress is zero when temperature (assumed constant) is Ιν .
Determine the non-zero displacement component 1Xu , if the
temperature of slab is increased to 2Ιν .

Answer 1 (1 )Xu Lµ  Ι< , ∗ ↓

6. Nodes 1 and 3 of a thin rectangular slab (assume plane
stress conditions) shown are allowed to move horizon-
tally and nodes 2 and 4 are fixed. Stress is zero when
temperature is Ιν .  Determine  the  displacement  com-
ponents 1 3X Xu u< if the temperature of slab is in-
creased to 2Ιν . Determine also the strain and stress in
the slab. Material parameters and thickness are E , µ ,
 and t , respectively.
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7. Determine the stationary temperature distribution in a
thin slab shown. Edge 1-2 is at constant temperature Ιν

and heat flux through the other edges vanishes. Use a
two triangle mesh with 3Ι  and 4 3Ι Ι<  as the unknown
node temperatures and consider 1 2Ι Ι Ι< < ↓  as known.
Thickness t , thermal conductivity k , and heat produc-
tion rate per unit area s  are constants.
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8.  Determine the stationary temperature distribution in a
thin slab shown. Edge 1-2 is at constant temperature Ιν

and heat flux through the other edges vanishes. Use a rec-
tangle element with bilinear approximation and consider

1 2Ι Ι Ι< < ↓  as  known  and 4 3Ι Ι<  as the unknown
nodal temperatures. Thickness t , thermal conductivity k ,
and heat production rate per unit area s  are constants.
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9.  At the initial temperature Ι↓ and without external forces, the length of
the bar shown is L. Calculate the displacement of node 2 due to the
combined effect of gravity and change of temperature with the nodal
values 1 2Ι Ι< ↓  and 2Ι Ι< ↓ .  Cross  sectional  area A ,  coefficient  of
thermal expansion  , and density θ  are considered as constants. Use
linear interpolation to displacement and temperature and start with the
virtual work density expressions.
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10.  The simply supported plate shown is assembled at
constant temperature 3Ι↓ . Find the transverse disp-
lacement when the upper side temperature is 4Ι↓
and that of the lower side 2Ι↓ . Assume that tempera-
ture in plate is linear in z  and does not depend on x
or y . Use ( , ) a sin( / )sin( / )w x y x L y Lο ο<  as the
approximation.  Problem parameters E, µ , ρ,   and
t are constants. Integrals of sin and cos functions satisfy
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The variational densities (correspond to virtual work densities of a displacement problem) of a heat
conduction problem in a bar are given by int ( / ) ( / )p d dx kA d dxχ χΙ Ις < ,  and extp sχ χΙς <  in
which Ι  is the temperature, A is the cross-sectional area, k  is the thermal conductivity, and s  is
the rate of heat production per unit length. Determine the element contributions intPχ   and extPχ  if
the approximation to temperature is linear, length of the element is h, and the given functions of the
density expression are constants.

Solution
In a pure heat conduction problem, density expressions of the bar model are given by

int d dp kA
dx dx
χΙ Ιχ ς < ,  and extp sχ χΙς <

in which Ι  is the temperature, k  the thermal conductivity, and s  the rate of heat production (per
unit length). Although the physical meanings of the quantities differ from those of the displacement
problem,  finite  element  method  works  in  the  same  manner.  In  particularly,  the  element  contribu-
tions are derived in the same manner.

Assuming an element of size h and nodal values 1Ι  and 2Ι , the linear approximation to tempera-
ture, its variation, and their derivatives become
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When the approximations are substituted there, the variational density expressions take the forms
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Element contributions are obtained as integrals over the domain occupied by the element
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Determine the stationary displacement 2Xu and tem-
perature 2Ι at node 2, when the temperature of the left
and right ends are Ι↓ and 2Ι↓ , respectively. Use just
one three node quadratic element. Stress is zero initially
when the  temperature  in  the  wall  and  bar  is Ι↓ . Prob-
lem parameters E , A , k , and   are constants.

Solution
In a temperature dependent case, variational density expressions of the bar model are
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χ

χ ς < , , cpl d uw EA
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χ  Ις < Χ ,   and int d dp kA
dx dx
χΙ Ι
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In the second expression, Ι Ι ΙΧ < , ↓  is the temperature difference between the deformed and ini-
tial geometries (same material point). Variational expression is of the form W Pχ σχ∗  in which σ
is an arbitrary but dimensionally correct multiplier (expression should be dimensionally homogene-
ous). The coupling in the stationary thermo-mechanical problem is one-sided so that it is possible to
solve for the temperature first.

Approximation with the three-node element is quadratic. The shape functions can be deduced from
the figure 1 (1 )(1 2 )N ω ω< , , , 2 4(1 )N ω ω< ,  and 3 (2 1)N ω ω< ,  in which /x Lω < . The non-
zero nodal displacements and temperatures are 2 2x Xu u<  and 2Ι  (material and structural coordi-
nate systems coincide here). Therefore
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Temperature difference between the deformed and initial geometries is
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When the approximations are substituted here, density expressions cplintw w wχ χ χς ς ς< ∗  and
intp pχ χς ς<  simplify to
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Element contributions are integrals of the densities over the element domain
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Determine the static displacements 2 3Z Zu u< , of  nodes  2
and 3 due to the temperature increase ΙΧ  at nodes 2 and 3
(actually in the wall). The material constants are E and α. The
cross-sectional area of bar 1 and 3 is A  and that of bar 2 is

2A . The initial temperature is Ι↓ .

Solution
As temperature is known and the external distributed force vanishes, only the virtual work expres-
sions of the internal and coupling parts
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are needed in the calculations. Term Ι Ι ΙΧ < , ↓  is the difference between temperature at the de-
formed and initial geometries.

The nodal displacements and temperatures of bar 1 1 0xu < , 3 3 / 2x Zu u< , 1 0Ι Ι ΙΧ < ↓ , ↓ < ,
and 3Ι ΙΧ < Χ  give  (notice that the variation of a given function is always zero)

T
1

3 3

0 01 1 1 1 0
( )

1 1 1 122/ 2 / 2Z Z

EA EAW
Lu u

χ
Ιχ

   , , ,        < , ,        , Χ           
∨

1
3 3( )

2 2 2 2Z Z
EA EAW u u

L
χ χ Ι< , , Χ .

The nodal displacements and temperatures of bar 2 2 2 3x Z Zu u u< < , , 3 3x Zu u< , 2Ι ΙΧ < Χ , and
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Virtual work expression of the structure is the sum of element contributions
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The truss shown consists of bars having the same cross-
sectional area A , Young’s modulus E , coefficient of thermal
expansion  , and thermal conductivity k .  The truss is
stress-free when the initial temperature of all the joints is Ι↓ .
Determine the stationary displacement 1Xu of node 1, when
the temperature of joint 2 is changed to 2Ι↓  and  joints  1,  3
and 4 are in temperature Ι↓ .

Solution
Let us start with the virtual work density although also the virtual work expressions are available in
the formulae collection. As temperature is known and external distributed force vanishes, the virtual
work density simplifies to
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The nodal displacements and temperatures of bar 1 are 1 3 0x xu u< < ,  and 1 3 0Ι ΙΧ < Χ < . Using
linear approximations to the axial displacement and temperature
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1(1 ) X
xu u
L

< ,   and
x
L

Ι ΙΧ < ↓ ⇑ 1 1( ) ( )X Xu u xw EA
L L L

χχ  Ις < , , , , ↓ ⇑

2 1
10

( )
2

L X
X

u LW w dx u EA
L

χ χ χ  Ις< < , ∗ ↓〉 .

The nodal displacements and temperatures of bar 3 are 1 1 / 2x Xu u< , 4 0xu < , 1 0ΙΧ < , and

4 0ΙΧ <  . With the linear approximations to axial displacement and temperature
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Principle of virtual work 0Wχ < aχ!  and the fundamental lemma of variation calculus imply
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A thin triangular slab (plane stress conditions) is allowed to move
horizontally at node 1 and nodes 2 and 3 are fixed. Stress is zero
when temperature (assumed constant) is Ιν . Determine the non-
zero displacement component 1Xu , if  the  temperature  of  slab  is
increased to 2Ιν .

Solution
As temperature is known and the external distributed force vanishes, the virtual work densities
needed here are (formulae collection)
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in which Ι Ι ΙΧ < , ↓  is the difference between temperature at the deformed and initial and de-
formed geometries. At the initial geometry stress is assumed to vanish.

Approximation is the first thing to be considered. Linear shape functions can be deduced from the
figure
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Approximations to the displacement components and temperature difference are
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When the approximations are substituted there, virtual work densities take the forms
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Virtual work expression is the integral of the density over the domain occupied by the element.
Here, virtual work density is constant so that it is enough to multiply by the area:
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Principle of virtual work and the fundamental lemma of variation calculus give

12
1 1 0
2 2 11 X

Et Etu LΙ
µµ

∗ ↓ <
,,

∨ 1 (1 )Xu Lµ  Ι< , ∗ ↓ . 



Nodes 1 and 3 of a thin rectangular slab (assume plane
stress conditions) shown are allowed to move horizontally
and nodes 2 and 4 are fixed. Stress is zero when tempera-
ture is Ιν . Determine the displacement components

1 3X Xu u< if the temperature of slab is increased to 2Ιν .
Determine also the strain and stress in the slab. Material
parameters and thickness are E , µ ,  and t , respective-
ly.

Solution
As temperature is known and the external distributed force vanishes, virtual work densities needed
here are (formulae collection)

T

int
/ /
/ [ ] /

/ / / /

u x u x
w v y t E v y

u y v x u y v x
ρ

χ
χ χ

χ χ
ς

∝ ∝ ∝ ∝   
   < , ∝ ∝ ∝ ∝   
   ∝ ∝ ∗ ∝ ∝ ∝ ∝ ∗ ∝ ∝   

,
T

cpl / 1
/ 11

u x E tw
v x

χ χ Ι
χ µς

∝ ∝   
< Χ   ∝ ∝ ,   

in which Ι Ι ΙΧ < , ↓  is the difference between temperature at the deformed and initial geometries.

Approximations are the first thing to be considered. As the origin of the material xy , coordinate
system is placed at node 1 and the axes are aligned with the axes of the structural XY , coordinate
system

T
1

1
1

(1 )(1 )
(1 ) 0

(1 )
(1 )

0

X

X
X

u
xu u

u L

ω γ
ω γ

ω γ
ωγ

, ,   
   ,   < < ,   ,   
      

, 0v < ,  and Ι ΙΧ < ν  (constant).

When the approximations are substituted there, virtual work density simplifies to

T
T1 1

1
2

/ 1 0 /
/ 1

0 1 0 0
0 1110 0 0 (1 ) / 2 0

X X
X

u L u L
u LEt Etw

χ µ
χ

χ µ Ι
µµ µ

ς

, ,    
,       < , ∗ ↓         ,,       ,     

∨

1 1 1
2 11

X X Xu Et u u Etw
L L L

χ χχ Ι
µµ

ς < , , ↓
,,

.

Virtual work expression is integral of the density over the domain occupied by the element. Here,
virtual work density is constant so that it is enough to multiply by the area:

2
1 1 12 11X X X

Et EtW w L u u u Lχ χ χ χ Ι
µµ

ς< < , , ↓
,,

.

Principle of virtual work and the fundamental lemma of variation calculus give
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Strain components can be obtained from derivatives of the displacement components u  and v

/ 1
/ (1 ) 0

/ / 0

xx

yy

xy

u x
v y

u y v x

δ
δ µ Ι

φ

  ∝ ∝         < ∝ ∝ < ∗ ↓     
     ∝ ∝ ∗ ∝ ∝     

. 

Cauchy stress components can be calculated from the stress-strain relationship of plane-stress case
of the thin slab model taking into account the temperature change (see the lecture notes)

2

1 0 1
( 1 0 (1 ) 1 )

1 0 0 (1 ) / 2 0

xx xx

yy yy

xy xy

E
ρ µ δ
ρ µ δ µ  Ι

µ µρ φ

               < , ∗ Χ      ,      ,         

∨

2 (1
1 0 1 1 0

( 1 0 0 (1 ) 1 ) 1
1 0 0 (1 ) / 2 0 0 0

)
xx

yy

xy

E EΙ µ Ι 
ρ µ
ρ µ µ Ι

µ µρ

∗

                  < , ∗ < ,        ,        ,         
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Determine the stationary temperature distribution in a thin
slab shown. Edge 1-2 is at constant temperature Ιν  and
heat flux through the other edges vanishes. Use a two tri-
angle mesh with 3Ι  and 4 3Ι Ι<  as the unknown node
temperatures and consider 1 2Ι Ι Ι< < ↓  as known. Thick-
ness t , thermal conductivity k ,  and  heat  production  rate
per unit area s  are constants.

Solution
The density expressions associated with the pure heat conduction problem in a thin slab are

T
int / /

/ /
x x

p tk
y y

χΙ Ι
χ

χΙ Ις
∝ ∝ ∝ ∝   

< ,    ∝ ∝ ∝ ∝   
 and extp sχ χΙς < .

in which Ι  is the temperature, k  the thermal conductivity, and s  the rate of heat production (per
unit area). For a thin-slab element, element contributions need to be calculated from scratch starting
with the densities and approximations.

The shape functions of element 1 (deduced from the figure) 1 1 /N y L< , , 4 /N x L< , and

3 1 41 ( ) /N N N y x L< , , < ,  give approximations

T
1

4 3 3

3 3

(1 )
N

y yN
L L

N

Ι
Ι Ι Ι Ι

Ι

↓   
   < < , ↓ ∗   
   
   

, 0
x
Ι∝

<
∝

, 3
y L

Ι ΙΙ , ↓∝
<

∝
  and

3
y
L

χΙ χΙ< , 0
x

χΙ∝
<

∝
, 3

y L
χΙχΙ∝

<
∝

 (variation of Ι↓  vanishes).

When the approximation is substituted there, density expression simplifies to

T
int ext 3 3

3
/ /
/ /

x x yp p p tk s tk s
y y L L L

χΙ Ι χΙ Ι Ι
χ χ χ χΙ χΙ

χΙ Ις ς ς
∝ ∝ ∝ ∝    , ↓

< ∗ < , ∗ < , ∗   ∝ ∝ ∝ ∝   
.

Element contribution is the integral of the density expression over the domain occupied by the ele-
ment:

2
1 3

3( )
2 3

LP tk sΙ Ιχ χΙ , ↓
< , , .

The shape functions of element 2 (deduced from the figure) 1 1 /N x L< , , 4 /N y L< , and

2 1 41 ( ) /N N N x y L< , , < ,  give approximations

T
1

2 3

4 3

(1 )
N

y yN
L L

N

Ι
Ι Ι Ι Ι

Ι

↓  
   < ↓ < , ↓ ∗   
      

, 0
x
Ι∝

<
∝

, 3
y L

Ι ΙΙ , ↓∝
<

∝
,    and
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3
y
L

χΙ χΙ< , 0
x

χΙ∝
<

∝
, 3

y L
χΙχΙ∝

<
∝

 (variation of Ι↓  vanishes).

When the approximation is substituted there, density simplifies to

int ext 3 3
3

yp p p tk s
L L L

χΙ Ι Ι
χ χ χ χΙς ς ς

, ↓
< ∗ < , ∗ .

Element contribution is the integral of the density expression over the domain occupied by the ele-
ment, so

2
2 3

3( )
2 6

LP tk sΙ Ιχ χΙ , ↓
< , , .

Variation principle 1 2 0P P Pχ χ χ< ∗ < χ! a  and the fundamental lemma of variation calculus
imply that

2

3( ) 0
2
Ltk sΙ Ι, ↓ , < ∨

2

3 2
sL
tk

Ι Ι< ↓ ∗ . 



Determine the stationary temperature distribution in a thin
slab shown. Edge 1-2 is at constant temperature Ιν  and heat
flux through the other edges vanishes. Use a rectangle element
with bilinear approximation and consider 1 2Ι Ι Ι< < ↓  as
known and 4 3Ι Ι<  as the unknown nodal temperatures.
Thickness t , thermal conductivity k , and heat production rate
per unit area s  are constants.

Solution
The density expressions associated with the pure heat conduction problem in a thin slab are

T
int / /

/ /
x x

p tk
y y

χΙ Ι
χ

χΙ Ις
∝ ∝ ∝ ∝   

< ,    ∝ ∝ ∝ ∝   
 and extp sχ χΙς < .

in which Ι  is the temperature, k  the thermal conductivity, and s  the rate of heat production (per
unit area). For a thin-slab element, element contributions need to be calculated from scratch starting
with the densities and approximation.

The shape functions can be deduced from the figure. Approximation

T

3
3

3

(1 / )(1 / )
( / )(1 / )

(1 )
(1 / )( / )

( / )( / )

x L y L
x L y L y y

x L y L L L
x L y L

Ι
Ι

Ι Ι Ι
Ι
Ι

↓, ,   
   ↓,   < < , ↓ ∗   ,   

      

, 0
x
Ι∝

<
∝

, 3
y L

Ι ΙΙ , ↓∝
<

∝
  and

3
y
L

χΙ χΙ< , 0
x

χΙ∝
<

∝
, 3

y L
χΙχΙ∝

<
∝

 (variation of Ι↓  vanishes).

 When the approximation is substituted there, density simplifies to

int ext 3 3
3

yp p p tk s
L L L

χΙ Ι Ι
χ χ χ χΙς ς ς

, ↓
< ∗ < , ∗ .

Element contribution is the integral of the density expression over the domain occupied by the ele-
ment:

2
1

3 30 0
[ ( ) ]

2
L L LP p dxdy tk sχ χ χΙ Ι Ις< < , , ↓ ,〉 〉 .

Variation principle 0Pχ < χ! a  and the fundamental lemma of variation calculus imply that

2

3( ) 0
2
Ltk sΙ Ι, ↓ , < ∨

2
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At the initial temperature Ι↓ and without external forces, the length of
the bar shown is L. Calculate the displacement of node 2 due to the com-
bined effect of gravity and change of temperature with the nodal values

1 2Ι Ι< ↓  and 2Ι Ι< ↓ . Cross sectional area A , coefficient of thermal ex-
pansion  , and density θ  are considered as constants. Use linear inter-
polation to displacement and temperature and start with the virtual work
density expressions.

Solution
Here temperature is given and the aim is to find the deformation implied by the temperature change.
Virtual work density expressions of the bar model needed in the calculation are

int d u duw EA
dx dx
χ

χ ς < , , cpl d uw EA
dx
χ

χ  Ις < Χ   and ext
xw u fχ χς < .

in which ΙΧ  is the temperature change,   coefficient of thermal expansion, and xf  the distributed
force per unit length.

The given nodal temperatures are 1 2Ι Ι< ↓  and 2Ι Ι< ↓ . As the initial temperature is Ι↓ , the
changes of the nodal values are 1Ι ΙΧ < ↓  and 2 0ΙΧ < .  Linear interpolations to displacement and
temperature in terms of the nodal values are

T

2
2

01 /
/ X

X

x L xu u
ux L L

,   
< <   

   
, 2

1
X

du u
dx L

< ,  and 2
1

X
d u u
dx L
χ χ< ,

T1 /
(1 )

/ 0
x L x

x L L
Ι

Ι Ι
, ↓   

Χ < < , ↓   
   

.

When the approximation is substituted there, density expression cplint extw w w wχ χ χ χς ς ςς< ∗ ∗  sim-
plifies to

2 2 2 22 (1 )X X X X
EA EA x xw u u u u gA

L L LL


χ χ χ Ι χ θς < , ∗ , ↓, .

Virtual work expression is the integral of the density over the element domain

2 2 2 22 2X X X X
EA EA gALW u u u u
L

 θ
χ χ χ Ι χ< , ∗ ↓, .

Principle of virtual work 0Wχ < χ! a  and the fundamental lemma of variation calculus give

2 0
2 2X

EA EA gALu
L

 θΙ, ∗ ↓ , < ∨ 2
2 2 2X

gu L L
E

 θΙ< ↓ , . 
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The simply supported plate shown is assembled at
constant temperature 3Ι↓ . Find the transverse
displacement when the upper side temperature is 4Ι↓
and that of the lower side 2Ι↓ . Assume that temperature
in plate is linear in z  and does not depend on x  or y .
Use ( , ) a sin( / )sin( / )w x y x L y Lο ο<  as the approxima-
tion. Problem parameters E, µ , ρ,   and t are constants.
Integrals of sin and cos functions satisfy

2 2
0 0

sin ( ) cos ( )
2

L Lx x Ldx dx
L L

ο ο< <〉 〉   and
0

2sin( )
L x Ldx

L
ο

ο
<〉 .

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab
modes decouple, the plate model virtual work densities of internal force and coupling terms are giv-
en by

T2 2 2 2
3

int 2 2 2 2

2 2

/ /

/ [ ] /
12

2 / 2 /

w x w x
tw w y E w y

w x y w x y
ρ

χ

χ χ

χ
ς

   ∝ ∝ ∝ ∝
      < , ∝ ∝ ∝ ∝   
   

∝ ∝ ∝ ∝ ∝ ∝      

,
T2 2

cpl
2 2

/ 1
11/

w x Ew z dz
w y

χ 
χ Ι

µχ
ς

 ∝ ∝   < Χ   
,  ∝ ∝  

〉 .

The coupling term contains an integral of temperature over the thickness of the plate. Approxima-
tion to the transverse displacement and its derivatives are

( , ) a sin( )sin( )x yw x y
L L

ο ο< ⇑

2 2
2

2 2 a ( ) sin( )sin( )w w x y
L L Lx y
ο ο ο∝ ∝

< < ,
∝ ∝

,
2

2a ( ) cos( )cos( )w x y
x y L L L

ο
ο ο

∝
<

∝ ∝
.

Temperature difference and its weighted integral over the thickness (integral of the coupling term)

1 1( ) 3 ( )2 ( )4 3 2
2 2

z z zz
t t t

Ι Ι Ι Ι Ι Ι ΙΧ < , ↓ < , ↓ ∗ ∗ ↓ , ↓ < ↓ ⇑

/2 /2 2
/2 /2

12
6

t t
t t

zz dz z dz t
t

Ι Ι Ι
, ,

Χ < ↓ < ↓〉 〉 .

When the approximation to the transverse displacement is substituted there, virtual work densities
of the internal and the coupling parts simplify to

3
int 4 2 2 2 2

2a ( ) 2[sin ( )sin ( )(1+ ) (1 )cos ( )cos ( )]a
12(1 )

t E x y x yw
L L L L L
ο ο ο ο οχ χ µ µ
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,
,
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3 1

x y Ew t
L L L
ο χ χ ο ο Ι

µς < , ↓
,

.
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Virtual work expressions are integrals of the densities over the domain occupied by the
plate/element

3
int int 4 2

20 0
a4 ( ) ( ) a

212(1 )
L L t E LW w dxdy

L
οχ χ χ

µ
ς< < ,

,〉 〉 ,

2
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0 0
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3 1

L L EtW w dxdy 
χ χ χ Ι

µς< < , ↓
,〉 〉 .

Virtual work expression is the sum of the parts
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2 3 112(1 )
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.

Principle of virtual work 0Wχ < χ! a  and the fundamental lemma of variation calculus give
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