MEC-E8001 Finite Element Analysis, week 6/2019

1. The variational densities (correspond to virtual work densities of a displacement problem) of a
heat conduction problem in a bar are given by o pgt =—(do9/ dx)kA(d3/dx) and
o pElXt =09s in which 9 is the temperature, 4 is the cross-sectional area, & is the thermal con-
ductivity, and s is the rate of heat production per unit length. Determine the element contribu-
tions SP™ and SP if the approximation to temperature is linear, length of the element is 4,

and the given functions of the density expression are constants.

T T
Answer 5Pim:—{5‘91} k—A{l _1}{‘91}, 5PeXt:{5‘91} ﬂ{l}
59 -1 1]\ 59, 21

2. Determine the stationary displacement uy, and
temperature 9, at node 2, when the temperature of
the left and right ends are 3°and 29°, respective-

ly. Use just one three node quadratic element.

Stress is zero initially when the temperature in the

wall and bar is $°. Problem parameters £, 4, k,
and « are constants.

Answer uy, = —%La&l", % :%90

3. Determine the static displacements u,, =—u,3 of nodes
2 and 3 due to the temperature increase A3 at nodes 2
and 3 (actually in the wall). The material constants are £
and a. The cross-sectional area of bar 1 and 3 is 4 and
that of bar 2 is v/24. The initial temperature is 9°.

Answer uy, =—uy3 = —%LaAS

4. The truss shown consists of bars having the same cross-
sectional area A4, Young’s modulus E, coefficient of
thermal expansion «, and thermal conductivity 4. The
truss is stress-free when the initial temperature of all the
joints is 9°. Determine the stationary displacement u y,

of node 1, when the temperature of joint 2 is changed to

29° and joints 1, 3 and 4 are in temperature 9°.

Answer u | = —LLocS0

4+2



A thin triangular slab (plane stress conditions) is allowed to
move horizontally at node 1 and nodes 2 and 3 are fixed.
Stress is zero when temperature (assumed constant) is 9°.

Determine the non-zero displacement component uy, if the

temperature of slab is increased to 29°.

Answer uy; =—(1+v)aL3°

Nodes 1 and 3 of a thin rectangular slab (assume plane

stress conditions) shown are allowed to move horizon- i
tally and nodes 2 and 4 are fixed. Stress is zero when

temperature is 9°. Determine the displacement com-
p p

ponents uy =uy3 if the temperature of slab is in- L
creased to 29°. Determine also the strain and stress in
the slab. Material parameters and thickness are £, v, Y
o and ¢, respectively.
Exx 1 O ox 0
Answer uy| =—Lad°(1+v), (&, r=a9°(1+v){0¢, 0, r =—Ead°<1
0 o 0

Vxy xy

Determine the stationary temperature distribution in a
thin slab shown. Edge 1-2 is at constant temperature $°
and heat flux through the other edges vanishes. Use a
two triangle mesh with 9; and 9, = $; as the unknown
node temperatures and consider % =9, =9° as known.

Thickness ¢, thermal conductivity &, and heat produc-

tion rate per unit area s are constants. y

1L

Answer 95 =9°+ w

Determine the stationary temperature distribution in a
thin slab shown. Edge 1-2 is at constant temperature 9°
and heat flux through the other edges vanishes. Use a rec-
tangle element with bilinear approximation and consider L
9 =8 =9° as known and 9, =95 as the unknown
nodal temperatures. Thickness ¢, thermal conductivity &,

and heat production rate per unit area s are constants.

1L

Answer 9 =9°+ w



10.

At the initial temperature 9° and without external forces, the length of
the bar shown is L. Calculate the displacement of node 2 due to the
combined effect of gravity and change of temperature with the nodal
values 9§ =29° and % =9°. Cross sectional area 4, coefficient of
thermal expansion o, and density p are considered as constants. Use

linear interpolation to displacement and temperature and start with the

virtual work density expressions.

Answer uy, = %LS" —g—ng

The simply supported plate shown is assembled at
constant temperature 39°. Find the transverse disp-
lacement when the upper side temperature is 49°
and that of the lower side 2.9°. Assume that tempera-

ture in plate is linear in z and does not depend on x

or y. Use w(x,y)=asin(zx/L)sin(ry/L) as the
approximation. Problem parameters E, v, p, o and

t are constants. Integrals of sin and cos functions satisfy

L
.[OL Sil’lz(ﬂ %)dx = .[OL cos> (7 %)dx =§ and .[() sin(7 %)dx = 27L .

16 a9°I?
Answer w(x,y)= ——i e
T

L XY
(1+v)sin(x i )sin(r 7 )



The variational densities (correspond to virtual work densities of a displacement problem) of a heat
conduction problem in a bar are given by &pit =—(d59/ dx)kA(d9/dx) and SpSt=59s in
which 9 is the temperature, A is the cross-sectional area, £ is the thermal conductivity, and s is
the rate of heat production per unit length. Determine the element contributions P™ and §P™ if
the approximation to temperature is linear, length of the element is 4, and the given functions of the

density expression are constants.

Solution

In a pure heat conduction problem, density expressions of the bar model are given by

S pint =—%kA% and Spo = 69s

in which 9 is the temperature, £ the thermal conductivity, and s the rate of heat production (per
unit length). Although the physical meanings of the quantities differ from those of the displacement
problem, finite element method works in the same manner. In particularly, the element contribu-

tions are derived in the same manner.

Assuming an element of size 4 and nodal values § and $,, the linear approximation to tempera-

ture, its variation, and their derivatives become
T T
= -1
19=l h—x 4 = d—lg:l 4 and
h| x ) de h|1 %
sg_ L[A=x|"[8%) _[oa) 1 [h-x| _ ass_1[-1]" [o5]_[s8] 1[1
k| ox 5% | 169 h| x dc  h| 1] 6% 6% n|1]"

When the approximations are substituted there, the variational density expressions take the forms

m (80 (1, (-0 () (e ka[ 1 -1](&
e I P M il I PR
ext ) Tl h—x
ora ‘{asz} z{ x }S'

Element contributions are obtained as integrals over the domain occupied by the element

int h int ; 5‘91 Tk_A I ‘91
o[y antt=—{Gab 51 ) <

T
h o 1
5P = [ 5p&tdy = A sl e
0 5% 211



Determine the stationary displacement uy, and tem-

perature &, at node 2, when the temperature of the left

and right ends are 9°and 29°, respectively. Use just

one three node quadratic element. Stress is zero initially
when the temperature in the wall and bar is $°. Prob-

lem parameters £, A, k,and o are constants.

Solution
In a temperature dependent case, variational density expressions of the bar model are
it dou , du cpl _ dou it do9 . d§

switt =~ L2 Ea= | 5w =L EdaA9, and SpiNt = —Z ka2
de - dx dx de - dx

In the second expression, A3 =9 —9° is the temperature difference between the deformed and ini-
tial geometries (same material point). Variational expression is of the form oW +70P in which 7
is an arbitrary but dimensionally correct multiplier (expression should be dimensionally homogene-
ous). The coupling in the stationary thermo-mechanical problem is one-sided so that it is possible to
solve for the temperature first.

Approximation with the three-node element is quadratic. The shape functions can be deduced from
the figure Ny =(1-&)(1-2&), Ny =4(1-&)¢ and N3 =&(2&—1) in which £ =x/L. The non-
zero nodal displacements and temperatures are u,, =uy, and 9, (material and structural coordi-

nate systems coincide here). Therefore

(1-&)1-28))" [0

1

w=1 4005 i (40D 0y = oata-2Duy,
cee-n ) | o
(1-&)1-28))" [9° o o

9= 41-9¢ 1% =[-5 46" +4-(1-D% =
cee-n | 200

dg 1 X agoialq A%

o= TS24 (1220

Temperature difference between the deformed and initial geometries is
X, X X X
AI=9-9°=—(6—-59%+4—(1-—)%.
76779 TAA
int cpl

When the approximations are substituted here, density expressions owg =owg +0wg and

opg =90 pgt simplify to

EA

EA X 2 by X, X X X
SWey = —Siyy o [4(1- 2% +4(1-256uy, Z2 e (62 -5+ 42 (1-H9 1,
Wo =—0Uy) L2[ ( L)] uxy +4( L) Ux2 =, a[L( 7 ) L( L)92]



__ 1 X
5po = ~0%kAl4—(1-2 )] %

Element contributions are integrals of the densities over the element domain

L
oW = .[O 5WQd)C = —5MX2(%A—Z;EMX2 +§AEO&90),

16 Ak

L Ak
SP= jo 8 pods =68y (=9, -8~ 9.

Variation principle and the fundamental lemma of variation calculus give the equations

Eﬂu)(2+zzélEou9°=0 and EA—kélz—gA—kg(’:O
3 L 3 3 L L

uxzz—%LaSO and 192=%19°. €



Determine the static displacements u;, =—uz3 of nodes 2
and 3 due to the temperature increase A9 at nodes 2 and 3

(actually in the wall). The material constants are £ and a. The

cross-sectional area of bar 1 and 3 is 4 and that of bar 2 is
24 The initial temperature is 9°.

Solution
As temperature is known and the external distributed force vanishes, only the virtual work expres-

sions of the internal and coupling parts

T T
5Wint - _ 5uxl E_A 1 -1 Uyl and 5ch1 _ 5ux1 akA -1 -1 Avgl
5I/lx2 h | -1 1 [23%) 5Mx1 2 1 1 A%
are needed in the calculations. Term A9 =9 —9° is the difference between temperature at the de-

formed and initial geometries.

The nodal displacements and temperatures of bar 1 u,; =0, u,3=uy; N2, A9 =9°-9°=0,

and A% =A3 give (notice that the variation of a given function is always zero)

S T - R VS I

EA aFA
Wl = —6u Uyy ———=AJ).
SN TGN T

The nodal displacements and temperatures of bar 2 u,, =uyy =—uy3, U3 =y3, A3 =AY, and
AG3=A8 give

el e ke ) o

51123 L -1 1 I/lz3 2 1 1 Axg
SW? = —5u23(4ﬁ%‘4uz3 —4J§“—§AA,9).

The nodal displacements and temperatures of bar 3 wu 4 =0, u,=-uy,/ V2= Uy / V2,
AG =8-9°=0,and A3 =A9 give

S I L i VP ) W
o= {5%/& Gl uz3/N2) 2 |11 asf)

EA aEA
SW3 = —Su Uy — A9).
Z3(2ﬁL 23 )




Virtual work expression of the structure is the sum of element contributions

EA aEA EA aEA
SW =—Su,2 Uyr — AS) = Su (42220, — 42222 ANG
73 (2\/§L B35 ) 73( 7 Y73 2 )

EA aEA
OW =—-6u,7(9 Uy —5——AI).
Z3( \/EL Z3 \/5 )

Principle of virtual work and the fundamental lemma of variation calculus imply

9 5 5
. Fdu,s-——FAaA9 =0 < upq=—alAd . €
Ny At 2379



The truss shown consists of bars having the same cross-
sectional area 4, Young’s modulus E, coefficient of thermal
expansion «, and thermal conductivity k. The truss is
stress-free when the initial temperature of all the joints is 9°.
Determine the stationary displacement u ,, of node 1, when
the temperature of joint 2 is changed to 29° and joints 1, 3

and 4 are in temperature 9° .

Solution

Let us start with the virtual work density although also the virtual work expressions are available in

the formulae collection. As temperature is known and external distributed force vanishes, the virtual

work density simplifies to

Swo =Wt +68 fzpl——%EA(——aAS)
X

The nodal displacements and temperatures of bar 1 are u,; =u,3 =0, and A% =AY =0. Using

linear approximations to the axial displacement and temperature

u=0and A3=0 = 5WQ=—%EA(—— aAF)=0 =

zj()L owadx =0.

The nodal displacements and temperatures of bar 2 are wu,=uy;, u,=0, A =0,

A, =28°—9°=9° . With the linear approximations to axial displacement and temperature

X X ou u X
u=(1-Suy; and AY==-9° = Swg=—(—"2LEA(-XL-g=9°) =
( L) X1 7 wo =—( 7 VEA( ey )

L u L
= |7 Swodx = —Su v EA(FXL + o = 9°).
Jy Swads=-suy EAC +a 2 9°)

The nodal displacements and temperatures of bar 3 are u,| =uy/ V2, u, =0, Ag =0, and
A9, =0 . With the linear approximations to axial displacement and temperature

“:(l—i)m and A3=0 = owg=—(— 5”)(1) EA(- ”Xl) —

LL 2 2L 2L

V2L EA
Owpdx = —0u Uy,
I Q X1 2\/§L X1

SW3 =

Virtual work expression of a structure is the sum of element contributions

Uy ol
\/7) +a9° 2].

SW =W + W2+ 6W3 = —Su y EA[(1+

and



Principle of virtual work 6W =0 Véa and the fundamental lemma of variation calculus imply

1 1
(1+m)%+0&90§:0 = UXIZ—O{LSO

4427



A thin triangular slab (plane stress conditions) is allowed to move
horizontally at node 1 and nodes 2 and 3 are fixed. Stress is zero

when temperature (assumed constant) is 9°. Determine the non-

zero displacement component uy, if the temperature of slab is

increased to 29°.

Solution
As temperature is known and the external distributed force vanishes, the virtual work densities

needed here are (formulae collection)

T

oou/ o ou/o
in v e ot [00ulex)" Ear |1
Owg =— 0ov /oy HE], ov/ oy , Owgy = 550/ 2 1—A8 :
v/iox| 1-v
oou /0y +0ov/ox Ou/0y+0v/ox

in which A9=9-9° is the difference between temperature at the deformed and initial and de-

formed geometries. At the initial geometry stress is assumed to vanish.

Approximation is the first thing to be considered. Linear shape functions can be deduced from the

figure

X Y xX=y
Ny=1-—, N;==, and N, =1-N,—N; = .
! L 3TL 2 ! 3 L

Approximations to the displacement components and temperature difference are

u=(1—%)uX1, y=0, and Ag=39°.

When the approximations are substituted there, virtual work densities take the forms

~Suy, /L)’ 1 v 0 Jf-uy/L
S int _ 0 Et 1 0 0 =-5 L_Et
wo = 1— P v - Uy 21_ qul’
0 '1o 0 1-v)/2 0 v
T
~Suyi /L 1 1 E
sl =) oL B go) L5, LB g N
0 1-v 1 Ll-v

int o ocpl __Ouy) Et uy, OSuy, Et

Owg =0wg +owg L 12 L 7 l_vaSO.

Virtual work expression is the integral of the density over the domain occupied by the element.

Here, virtual work density is constant so that it is enough to multiply by the area:

I? 1 Et 1 Et
OW =0wy— =—Ouy(— Uy +————La8°).
Q7 X1(21_V2 Xt T )




Principle of virtual work and the fundamental lemma of variation calculus give

1 Et 1 Et
— Uy +———La8°=0 < uy=—(1+v)aly®. €
22T, x1=—(0+v)




Nodes 1 and 3 of a thin rectangular slab (assume plane

stress conditions) shown are allowed to move horizontally 4
and nodes 2 and 4 are fixed. Stress is zero when tempera-
ture is 3°. Determine the displacement components I
Uy = uys if the temperature of slab is increased to 29°.

Determine also the strain and stress in the slab. Material

parameters and thickness are £, v, o and ¢, respective-

ly.

Solution
As temperature is known and the external distributed force vanishes, virtual work densities needed

here are (formulae collection)

T
05U/ Bu/d
in v e ot [00ulex)" Ear |1
Owg =— 0ov /oy HE], ov/ oy , Owgy = 550/ 2 1—A8 :
B6u | Oy +6v ] ox Bu | By + v/ ox veen ATy

in which A9 =3 —-9° is the difference between temperature at the deformed and initial geometries.

Approximations are the first thing to be considered. As the origin of the material xy —coordinate
system is placed at node 1 and the axes are aligned with the axes of the structural XY — coordinate

system

A=&Y1-m)" (ux

yo) cd-m 0 =(1-Duyys v=0, and A9=9° (constant).
(=Sm Uy L
én 0

When the approximations are substituted there, virtual work density simplifies to

T
—SI/IXI/L 1 v 0 _qu/L T
—Ouy /L 1
Swa=-{ 0 L, 1 o S P B Ch il GRELEPRED Ll QPN
1-v? 0 1-v 1
0 0 0 (1-v)/2 0
5WQ:_5MX1 Et qu_équ Et a9°,

L 1-v2 L L 1-v

Virtual work expression is integral of the density over the domain occupied by the element. Here,
virtual work density is constant so that it is enough to multiply by the area:

Et E
oW = 5WQL2 = —5MX1 —= Uy~ 51/1X1 —tLOtSO .

1-v? l-v

Principle of virtual work and the fundamental lemma of variation calculus give



Et
l—v2

uX1+1Et La%=0 & uy =—(1+v)als. €
%

Strain components can be obtained from derivatives of the displacement components u and v

Exx Ou / Ox 1
Epy (= ov/ oy =(1+v)a3°:0;. €
Yy ou/oy+0ov/ox 0

Cauchy stress components can be calculated from the stress-strain relationship of plane-stress case

of the thin slab model taking into account the temperature change (see the lecture notes)

O xx e I v 0 Exx 1
Ty =1—v2( v 1 0 Eyy —(1+v)aA8s1;) <
Oy 10 0 (I-v)/2] Yy 0
O 1 v 0 1 1 0
E o) (e} o
Oy (= 2( v 1 0 a3 (1+v):0r—(1+v)ad 1) =—FEad {1;. €
on| VL0 0 a-vr2] 0 0 0



Determine the stationary temperature distribution in a thin
slab shown. Edge 1-2 is at constant temperature $° and
heat flux through the other edges vanishes. Use a two tri-
angle mesh with 3 and 9, =9; as the unknown node [,
temperatures and consider 9 =% =9° as known. Thick-

ness ¢, thermal conductivity &, and heat production rate

per unit area s are constants.

L
| < > |
Solution

The density expressions associated with the pure heat conduction problem in a thin slab are

o [059/ox)"  [09/éx oxt
Opn =-— tk and Opy =09s.
069 / oy 09/ dy

in which 4 is the temperature, £ the thermal conductivity, and s the rate of heat production (per
unit area). For a thin-slab element, element contributions need to be calculated from scratch starting

with the densities and approximations.

The shape functions of element 1 (deduced from the figure) N;=1-y/L, Ny=x/L, and
N3y =1-N;—-N,=(y—x)/L give approximations

T

N 9°
y y 09 08 HK-9°
9=1N =(1-2)%+=%, —=0, —= and
IR I AR o L
N3| (9
59:15,93, 009 =0, 009 _ 0% (variation of 9° vanishes).
L ox oy L

When the approximation is substituted there, density expression simplifies to

T
. 059/ox)T  (09/6x 59 99 y
Spo =6pat +8pSt = - tk +089s = —— th-=— +=5%s.
Pa=0Pa +0P0 =7 oq o1 K159/, [ TON T KT T 0%

Element contribution is the integral of the density expression over the domain occupied by the ele-
ment:
L2

1 H-9° L
e

The shape functions of element 2 (deduced from the figure) N, =1-x/L, N,=y/L, and
N, =1-N;-N4=(x-y)/L give approximations

IARES
y y 09
9={N,t {$t=(1-2)9°+=8, 0
2 ( L) L93 ox

NyJ |

28 _8-9°
" oy L

, and



59 = %593, 009 _ 0, 009 _ 5? (variation of 9° vanishes).

ox oy

When the approximation is substituted there, density simplifies to
i o -9°
5pQ=5@¥+5pgﬂ=—§?¢§%;—+%5%&

Element contribution is the integral of the density expression over the domain occupied by the ele-

ment, SO

-9 L

SP? = —59(tk . ?;g.

Variation principle 6P = SP'+5P? =0 V&a and the fundamental lemma of variation calculus
imply that
r s

th(%—9°)——s5=0 =9+—. €
(-9)-"5=0 < &% yn



Determine the stationary temperature distribution in a thin
slab shown. Edge 1-2 is at constant temperature $° and heat )
flux through the other edges vanishes. Use a rectangle element

with bilinear approximation and consider 9 =9, =9° as |

known and 9, =9; as the unknown nodal temperatures.

Thickness ¢, thermal conductivity k, and heat production rate !

per unit area s are constants.

I <

Solution
The density expressions associated with the pure heat conduction problem in a thin slab are

o [059/ox)"  [09/éx
Spg =- t

d 5p&t=69s.
059/ dy 89/8}/} e oba mo

in which 9 is the temperature, £ the thermal conductivity, and s the rate of heat production (per
unit area). For a thin-slab element, element contributions need to be calculated from scratch starting

with the densities and approximation.

The shape functions can be deduced from the figure. Approximation

(1-x/L)Y1-y/L)|" [9°
R 0 N N L B A S
9= (1-x/L)(y/L) % SU=E TS 0

(x/L)(y/L) %

09 9y-9°

- and
oy L

59 = %593 , 008 _ 0, 009 _ 553 (variation of 9° vanishes).

ox oy

When the approximation is substituted there, density simplifies to

Spo =0pit+5pet = —%tk%+%593s.

Element contribution is the integral of the density expression over the domain occupied by the ele-

ment:

L L oL 12
SP' = jo jo 8 podidy = ~585[tk(85 — 8°) =],

Variation principle 6P =0 Vda and the fundamental lemma of variation calculus imply that

12 sI?
th(% —9°)———5=0 9+ €
(& —9°) S < & it



X x

At the initial temperature 3° and without external forces, the length of
the bar shown is L. Calculate the displacement of node 2 due to the com- 2 1
bined effect of gravity and change of temperature with the nodal values
8 =29° and &, =9°. Cross sectional area 4, coefficient of thermal ex-

pansion «, and density p are considered as constants. Use linear inter-

polation to displacement and temperature and start with the virtual work

density expressions.

Solution
Here temperature is given and the aim is to find the deformation implied by the temperature change.
Virtual work density expressions of the bar model needed in the calculation are

it dou _, du cpl _ dou ext

5WQ __EEAE’ 5WQ —EEAGAS and 5WQ :5fo.

in which A9 is the temperature change, a coefficient of thermal expansion, and f, the distributed

force per unit length.

The given nodal temperatures are § =29° and 3, =9°. As the initial temperature is $°, the
changes of the nodal values are A9, =9° and A3, =0. Linear interpolations to displacement and

temperature in terms of the nodal values are

U= I_X/LT 0 —iu @—lu and@—l&z
| x/L Uyo L% ax L% dc L %

1-x/L)" [9° x
AS: :(l__)lgo.
x/L 0 L
int ext

When the approximation is substituted there, density expression Swg =Swgy +6wg : +owg  sim-

plifies to

EA FAa X X
5WQ = —51/!)(2 —2qu +5MX2—(1——)190—5UX2—pgA .
[ L L L

Virtual work expression is the integral of the density over the element domain

EA EA AL
5W:—5UXZTUX2 +5quTa9°—5uX2 pE

Principle of virtual work 6W =0 Vda and the fundamental lemma of variation calculus give

B A g pEAL %o PER
L 2 2 2 2E




The simply supported plate shown is assembled at
constant temperature 39°. Find the transverse
displacement when the upper side temperature is 49°
and that of the lower side 29°. Assume that temperature

in plate is linear in z and does not depend on x or y.

Use w(x,y)=asin(zx/L)sin(ry/L) as the approxima-
tion. Problem parameters E, v, p, o and ¢ are constants.

Integrals of sin and cos functions satisfy

L
.[OL Sil’lz(ﬂ %)dx = .[OL cos> (7 %)dx =§ and .[() sin(7 %)dx = 27L .

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab

modes decouple, the plate model virtual work densities of internal force and coupling terms are giv-

en by
2 2T 2 2
0“ow/ ox ; o“w/ox ) AT
~ o“ow/o 1
Switt == %owioy? | (E),y dPwiayt b owd =1 T L[ zagd: ak { }
) 12 ) 825w/8y2 I-v |1
20°6w/ Ox0Oy 20“w/ Oxoy

The coupling term contains an integral of temperature over the thickness of the plate. Approxima-

tion to the transverse displacement and its derivatives are

. X, . v
w(x,y)=asin(r—)sin(r~) =
(x,) ( L) ( L)

o*w  *w y 0°w T2 x y
6x_2=6y_2 —a(L)sm(;rL)sm(ﬂ ), %za(z) COS(ﬂz)COS(ﬂz).

Temperature difference and its weighted integral over the thickness (integral of the coupling term)
AG=9(z)-3%° = (- E)290+ (L4 Zyago—3g0=Z0g0 —
2t 2t t

/2 /2
jt zA9dz =jt 2Z29°ds =L gor?.
/2 ) 6

—t —t ¢

When the approximation to the transverse displacement is substituted there, virtual work densities
of the internal and the coupling parts simplify to

l‘3

5w8t =—0a——F(— ) 2[s1n ( )sm ( y)(1+v)+(1 v)cos ( )cos (—y)]a
12(1-v ) L

5w8°1— 5a( )2sin(r = )sm(ny) 9o laE
%



Virtual work expressions are integrals of the densities over the domain occupied by the
plate/element

swint = j j Swiltdxdy = —5a4

12 )(L) £y

aEt

-V

SWePl = j j Swldxdy = —5a 390

Virtual work expression is the sum of the parts

3 2
SW =Wt 4 s = _sapa—E (% )( P+t go Ll
120-v?) L 1-v

].

Principle of virtual work SW =0 Va and the fundamental lemma of variation calculus give

3
oW =-da[4——— ()()
120-v?) L

aEt

=

2 or2
4 E Zyk ) PRSI L N a:—l—i“'“ (1+v). €
12(0-v?) L 1-v Tt ot




