A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory

Lecture 9: Beyond NP

Aalto University
School of Science
Department of Computer Science

Spring 2019

Agenda

@ Class coNP

@ Structure of P, NP and coNP

@ The Polynomial Time Hierarchy
@ Classes EXP and NEXP

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
School of Science Department of Computer Science
2/28

Beyond NP

@ We have so far focused on NP-complete problems

» Most common and natural type of intractable problems
» NP-hardness is a strong argument for establishing that there is no
polynomial-time algorithm

@ There are also problems ouiside NP

» Useful to be able to recognise such problems
» Many algorithmic techniques for NP problems do not apply

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
School of Science Department of Computer Science
3128

Class coNP: Definition 1

@ coNP contains the complements of languages in NP
@ Essentially problems where no-instances are easy to verify

@ Recall: complement of language Lis L= {x € {0,1}*: x ¢ L}

Definition
coNP = {L C{0,1}*: Le NP} J

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
4/28

Class coNP: Definition 2

Definition

The class coNP is the class of all languages L C {0, 1}* for which
there exists a polynomial-time Turing machine M and a polynomial
function p: N — N such that for all x € {0, 1}* we have x € L if and
only if for all u € {0, 1}* with |u| < p(|x|) it holds M (x,u) = 1.

@ For no-instances there is a certificate u such that M (x,u) =0
(may assume M outputs 0/1)

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
School of Science Department of Computer Science
5/28

coNP-completeness

Definition
We say that a language L is coNP-complete if L € coNP and for any
language L’ € coNP, we have L' <, L.

Theorem
L is NP-complete if and only if L is coNP-complete. J

@ Proof: The same reductions apply in both cases.

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
6/28

coNP-completeness: Example

TAUTOLOGY
@ Instance: A Boolean formula ¢ (not necessarily CNF).

@ Question: Is ¢ satisfied by all possible assignments to its
variables?

@ Tautology is coNP-complete:

» Let L € coNP

» Apply the Cook—Levin reduction from L € NP to CNF-SAT to map
instance x to a CNF @,

» Transform @, to -, to get a TAUTOLOGY instance

Aalto University CS-E4530 Computation: al Complexity Theory / Leclu re 9
School of Science Department of Computer Sci
7 23

coNP, NP and P

@ The following are open questions:
> P#NP?

P # coNP?

NP # coNP?

P = NP N coNP?

v VvYyy

@ Note the following relatioships:

> If P = NP, then P = coNP (exercise)
» NP = coNP does notimply P = NP

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science
8/28

NP-intermediate problems

Theorem (R. Ladner 1975)
If P £ NP, then there is a language L € NP \ P that is not NP-complete.J

@ No natural problem known to be NP-intermediate
@ One candidate: graph isomorphism

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
9/28

Graph Isomorphism

Graph Isomorphism

@ Instance: Two graphs G; = (V1,E}) and G, = (V,, E;) with
Vi =[Val.
@ Question: Is there a bijection f: V| — V, such that

{u,v} € E; ifand only if {f(u),f(v)} € E»?

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Cemple ity Theory / Leclu re 9
w 25

Possible Worlds

NP-cmpl.

coNP-cmpl

NP n coNP

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
11/28

Varieties of the Independent Set Problem

Maximum independent set (MaxIS)
@ Instance: Graph G = (V,E), an integer k > 1.
@ Question: Is there an independent set of size at least k in G?

Exact independent set (ExactlS)
@ Instance: Graph G = (V,E), an integer k > 1.

@ Question: Is the size of the largest independent set in G exactly
k?

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
12/28

Varieties of the Independent Set Problem

@ Maximum independent set
» Does there exist an independent set I with || > k?

@ Complement of maximum independent set
» Does it hold for allindependent sets I that |1| < k?

@ Exact independent set

» Does there exist an independent set I such that for all
independent sets J we have |I| > |/J|?

@ Where are these located in our complexity universe?

School of Science

A Aalto University CS-E4530 Computational Complexity Theory / Lecture 9

Department of Computer Science

13/28

Classes X5 and IT)

Definition
The class X is the class of all languages L C {0, 1}* for which there
exists a polynomial-time Turing machine M and a polynomial function

p: N — N such that for all x € {0, 1}",

xe L 3ue{0,1}=Myy e {0, 11D (x,u,v) = 1.

Definition

I, =coxf = {LC{0,1}": Lexs}

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

Aalto University
School of Science
14/28

The Polynomial Time Hierarchy

Definition

The class X} is the class of all languages L C {0, 1}* for which there
exists a polynomial-time Turing machine M and a polynomial function
p: N — N such that for all x € {0,1}*,

x6L@Elu1Vu2~--QukM(x,ul,uz,...,uk) =1,

where each u; ranges over binary strings of length at most p(|x|) and
Q is either 3 or V, depending on whether & is odd or even.

Definition

I, =coxf = {LC{0,1}": LeX}}

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
School of Science Department of Computer Science
15/28

The Polynomial Time Hierarchy

Definition (The Polynomial Time Hierarchy)

PH=[JX}
k>0

@ Some basic properties of the polynomial time hierarchy:
> }:8 = Hg =P
» X7 = NP, IT] = coNP
» X CIN,, CX, . forallk>0
> PH = UkZO Hk

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
School of Science Department of Computer Science

16/28

The Polynomial Time Hierarchy

@ Generally believed that:

> X # X}, forall k> 1 (“polynomial time hierarchy does not

collapse”)
> 21]: =+ HIIZ
@ Generalised versions of P # NP and NP # coNP

Theorem
® Fork>1,if¥} =II, then PH =X (“hierarchy collapses to level
k).
@ I/fP = NP, then P = PH (“hierarchy collapses to P”).

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
17/28

Complete Problems in PH

e Completeness for X, IT; and PH is defined in terms of
polynomial-time many-one reductions

e Complete problem for X: ¥, SAT
» Satisfiability for Boolean formulas of form

JuiVua - - Qup(uy,uz,. .. ux),

where @ is a Boolean formula (not necessarily CNF), each u; is a
tuple of variables and Q is either 3 or V/, depending on whether k
is odd or even.

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
18/28

Complete Problems in PH

@ For PH, complete problems are believed nof to exist

Theorem

If there is a PH-complete problem, then there exists k such that
PH=2X’.
k

@ Proof sketch:

» Suppose L is PH-complete

Since L € PH, we have L € X for some k
Let L' € PH. Since L' <, L, we have L' € ¥}.
Hence PH C X7

v Vvyy

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
School of Science Department of Computer Science
19/28

PH: Characterisation via Oracle TM’s

@ For any given language L, we define the relativised complexity

classes:
PL = {L': L = M" for some (deterministic) polynomial-time
oracle Turing machine M}
NPL = {L': L' = M for some nondeterministic polynomial-time

oracle Turing machine M}.

@ Furthermore, for any family of languages C, we define the
relativised classes:

PC=JP" NP®=|JNP.
LeC LeC

Theorem J

Foreveryk >0, X, , = NP and I, = coNP,

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
20/28

PH: Characterisation via Oracle TM’s (Cont'd)

@ It is also customary to define the following “deterministic” classes
in the polynomial-time hierarchy:

AP =P, A, =P%, fork>0.

@ One easily obtains the following relations among these classes:
o) =P% =P° =P

2” NP™ = NPP = NP

H’l’ = coNP% = coNP
o A =P¥ =p\P

2” NP~ = NP\P

H’Z’ = coNPX! = coNPNP

o AU C z CAN ZZ“ CAN forall k>0
v 1 S ., 20 = 0.

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Cemple ity Theory / Leclu re 9
21 25

The Class EXP

Definition (EXP)
EXP = U5, DTIME(2"")

@ Problems solvable in exponential time
@ PCNPCPHCEXP

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science
22/28

Problems in EXP

@ Contains problems such as determining who wins in
generalised versions of games

@ Canonical problems: time-bounded halting

Time-bounded halting problem
@ Instance: A Turing machine M, an integer ¢ (encoded in binary)
@ Question: Does M halt on empty input in at most ¢ steps?

@ Can be solved by simulating M for ¢ steps
@ Note: ¢ < 2W

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
23/28

The class NEXP

Definition (NEXP)
The class NEXP is the class of all languages L C {0, 1}* for which
there exists a Turing machine M and polynomial functions
p,q: N — N such that
@ M halts on any input (x,u) in time O(2¢(K),
o forall x € {0,1}* we have x € L if and only if there is u € {0,1}*
with [u| < 2P(H) such that M (x,u) = 1.

@ Equivalent definition: problems solvable in exponential time
with nondeterministic Turing machines

@ Unknown if EXP = NEXP

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
School of Science Department of Computer Science
2428

EXP-completeness and NEXP-completeness

@ Completeness for EXP and NEXP is defined in terms of
polynomial-time many-one reductions

@ Typical complete problems: succinct versions of P-complete
and NP-complete problems
» Succinct means that the input is a representation of an
exponential-sized instance, e.g. as a circuit
» EXP-complete problems include generalised versions of some
games

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
25/28

Polynomial vs. Exponential Time

Theorem
It holds that P C EXP and NP C NEXP. J

@ Follows from the time hierarchy theorems (next lecture)

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
26/28

Padding and ‘Scaling Up’

Theorem
If P = NP, then EXP = NEXP. J

@ Proof sketch:

» Assume P = NP and let L € NEXP be a language that can be
verified in time O(2")

> Define Lyag = {(x, 12"): x e L}

» Lyag € NP: any certificate for x (as an instance of L) has length at
most 21", which is polynomial in | (x, 12")4l

» Since P = NP, we have Lp,q € P, implying there is a
polynomial-time Turing machine M deciding Lpag

» L € EXP: on input x, pad x and solve with M

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
A School of Science Department of Computer Science
27/28

Lecture 9: Summary

@ Complexity classes beyond P and NP
@ coNP

o X, T}, A} and PH

e EXP and NEXP

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 9
28/28

