
CS-E4530 Computational Complexity Theory

Lecture 9: Beyond NP

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

2/28

Agenda

Class coNP

Structure of P, NP and coNP

The Polynomial Time Hierarchy

Classes EXP and NEXP

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

3/28

Beyond NP

We have so far focused on NP-complete problems
I Most common and natural type of intractable problems
I NP-hardness is a strong argument for establishing that there is no

polynomial-time algorithm

There are also problems outside NP
I Useful to be able to recognise such problems
I Many algorithmic techniques for NP problems do not apply

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

4/28

Class coNP: Definition 1

coNP contains the complements of languages in NP

Essentially problems where no-instances are easy to verify

Recall: complement of language L is L = {x ∈ {0,1}∗ : x /∈ L}

Definition

coNP =
{

L⊆ {0,1}∗ : L ∈ NP
}

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

5/28

Class coNP: Definition 2

Definition
The class coNP is the class of all languages L⊆ {0,1}∗ for which
there exists a polynomial-time Turing machine M and a polynomial
function p : N→ N such that for all x ∈ {0,1}∗ we have x ∈ L if and
only if for all u ∈ {0,1}∗ with |u| ≤ p(|x|) it holds M(x,u) = 1.

For no-instances there is a certificate u such that M(x,u) = 0
(may assume M outputs 0/1)

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

6/28

coNP-completeness

Definition
We say that a language L is coNP-complete if L ∈ coNP and for any
language L′ ∈ coNP, we have L′ ≤p L.

Theorem

L is NP-complete if and only if L is coNP-complete.

Proof: The same reductions apply in both cases.

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

7/28

coNP-completeness: Example

TAUTOLOGY
Instance: A Boolean formula ϕ (not necessarily CNF).

Question: Is ϕ satisfied by all possible assignments to its
variables?

Tautology is coNP-complete:
I Let L ∈ coNP
I Apply the Cook–Levin reduction from L ∈ NP to CNF-SAT to map

instance x to a CNF ϕx
I Transform ϕx to ¬ϕx to get a TAUTOLOGY instance

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

8/28

coNP, NP and P

The following are open questions:
I P 6= NP?
I P 6= coNP?
I NP 6= coNP?
I P = NP∩ coNP?

Note the following relatioships:
I If P = NP, then P = coNP (exercise)
I NP = coNP does not imply P = NP

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

9/28

NP-intermediate problems

Theorem (R. Ladner 1975)

If P 6= NP, then there is a language L ∈ NP\P that is not NP-complete.

No natural problem known to be NP-intermediate

One candidate: graph isomorphism

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

10/28

Graph Isomorphism

Graph Isomorphism

Instance: Two graphs G1 = (V1,E1) and G2 = (V2,E2) with
|V1|= |V2|.
Question: Is there a bijection f : V1→ V2 such that

{u,v} ∈ E1 if and only if {f (u), f (v)} ∈ E2 ?

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

11/28

Possible Worlds

P

NP coNP

NP-cmpl. coNP-cmpl.

P
NP coNP

NP-cmpl. coNP-cmpl.

NP ∩ coNP

P = NP = coNP

P

NP = coNP

NP-cmpl.
=

coNP-cmpl

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

12/28

Varieties of the Independent Set Problem

Maximum independent set (MaxIS)

Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is there an independent set of size at least k in G?

Exact independent set (ExactIS)

Instance: Graph G = (V,E), an integer k ≥ 1.

Question: Is the size of the largest independent set in G exactly
k?

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

13/28

Varieties of the Independent Set Problem

Maximum independent set
I Does there exist an independent set I with |I| ≥ k?

Complement of maximum independent set
I Does it hold for all independent sets I that |I|< k?

Exact independent set
I Does there exist an independent set I such that for all

independent sets J we have |I| ≥ |J|?

Where are these located in our complexity universe?

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

14/28

Classes Σ
p
2 and Π

p
2

Definition

The class Σ
p
2 is the class of all languages L⊆ {0,1}∗ for which there

exists a polynomial-time Turing machine M and a polynomial function
p : N→ N such that for all x ∈ {0,1}∗,

x ∈ L⇔∃u ∈ {0,1}≤p(|x|)∀v ∈ {0,1}≤p(|x|)M(x,u,v) = 1 .

Definition

Π
p
2 = coΣ

p
2 =

{
L⊆ {0,1}∗ : L ∈ Σ

p
2

}

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

15/28

The Polynomial Time Hierarchy

Definition

The class Σ
p
k is the class of all languages L⊆ {0,1}∗ for which there

exists a polynomial-time Turing machine M and a polynomial function
p : N→ N such that for all x ∈ {0,1}∗,

x ∈ L⇔∃u1∀u2 · · ·QukM(x,u1,u2, . . . ,uk) = 1 ,

where each ui ranges over binary strings of length at most p(|x|) and
Q is either ∃ or ∀, depending on whether k is odd or even.

Definition

Π
p
k = coΣ

p
k =

{
L⊆ {0,1}∗ : L ∈ Σ

p
k

}

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

16/28

The Polynomial Time Hierarchy

Definition (The Polynomial Time Hierarchy)

PH =
⋃
k≥0

Σ
p
k

Some basic properties of the polynomial time hierarchy:

I Σ
p
0 = Π

p
0 = P

I Σ
p
1 = NP, Π

p
1 = coNP

I Σ
p
k ⊆Π

p
k+1 ⊆ Σ

p
k+2, for all k ≥ 0

I PH =
⋃

k≥0 Π
p
k

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

17/28

The Polynomial Time Hierarchy

Generally believed that:
I Σ

p
k 6= Σ

p
k+1 for all k ≥ 1 (“polynomial time hierarchy does not

collapse”)
I Σ

p
k 6= Π

p
k

Generalised versions of P 6= NP and NP 6= coNP

Theorem

For k ≥ 1, if Σ
p
k = Π

p
k , then PH = Σ

p
k (“hierarchy collapses to level

k”).

If P = NP, then P = PH (“hierarchy collapses to P”).

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

18/28

Complete Problems in PH

Completeness for Σ
p
k , Π

p
k and PH is defined in terms of

polynomial-time many-one reductions

Complete problem for Σ
p
k: ΣkSAT

I Satisfiability for Boolean formulas of form

∃u1∀u2 · · ·Qukϕ(u1,u2, . . . ,uk) ,

where ϕ is a Boolean formula (not necessarily CNF), each ui is a
tuple of variables and Q is either ∃ or ∀, depending on whether k
is odd or even.

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

19/28

Complete Problems in PH

For PH, complete problems are believed not to exist

Theorem
If there is a PH-complete problem, then there exists k such that
PH = Σ

p
k .

Proof sketch:
I Suppose L is PH-complete
I Since L ∈ PH, we have L ∈ Σ

p
k for some k

I Let L′ ∈ PH. Since L′ ≤p L, we have L′ ∈ Σ
p
k .

I Hence PH⊆ Σ
p
k .

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

20/28

PH: Characterisation via Oracle TM’s

For any given language L, we define the relativised complexity
classes:

PL = {L′ : L′ = ML for some (deterministic) polynomial-time
oracle Turing machine M}

NPL = {L′ : L′ = ML for some nondeterministic polynomial-time
oracle Turing machine M}.

Furthermore, for any family of languages C , we define the
relativised classes:

PC =
⋃

L∈C
PL NPC =

⋃
L∈C

NPL.

Theorem

For every k ≥ 0, Σ
p
k+1 = NPΣ

p
k and Π

p
k+1 = coNPΣ

p
k .

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

21/28

PH: Characterisation via Oracle TM’s (Cont’d)
It is also customary to define the following “deterministic” classes
in the polynomial-time hierarchy:

∆
p
0 = P, ∆

p
k+1 = PΣ

p
k , for k ≥ 0.

One easily obtains the following relations among these classes:
∆

p
1 = PΣ

p
0 = PP = P

Σ
p
1 = NPΣ

p
0 = NPP = NP

Π
p
1 = coNPΣ

p
0 = coNP

∆
p
2 = PΣ

p
1 = PNP

Σ
p
2 = NPΣ

p
1 = NPNP

Π
p
2 = coNPΣ

p
1 = coNPNP

∆
p
k ⊆

Σ
p
k

Π
p
k
⊆ ∆

p
k+1 ⊆

Σ
p
k+1

Π
p
k+1
⊆ ∆

p
k+2, for all k ≥ 0.

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

22/28

The Class EXP

Definition (EXP)

EXP =
⋃

∞
d=1 DTIME(2nd

)

Problems solvable in exponential time

P⊆ NP⊆ PH⊆ EXP

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

23/28

Problems in EXP

Contains problems such as determining who wins in
generalised versions of games

Canonical problems: time-bounded halting

Time-bounded halting problem
Instance: A Turing machine M, an integer t (encoded in binary)

Question: Does M halt on empty input in at most t steps?

Can be solved by simulating M for t steps

Note: t ≤ 2|x|

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

24/28

The class NEXP

Definition (NEXP)

The class NEXP is the class of all languages L⊆ {0,1}∗ for which
there exists a Turing machine M and polynomial functions
p,q : N→ N such that

M halts on any input (x,u) in time O(2q(|x|)),

for all x ∈ {0,1}∗ we have x ∈ L if and only if there is u ∈ {0,1}∗
with |u| ≤ 2p(|x|) such that M(x,u) = 1.

Equivalent definition: problems solvable in exponential time
with nondeterministic Turing machines

Unknown if EXP = NEXP

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

25/28

EXP-completeness and NEXP-completeness

Completeness for EXP and NEXP is defined in terms of
polynomial-time many-one reductions

Typical complete problems: succinct versions of P-complete
and NP-complete problems

I Succinct means that the input is a representation of an
exponential-sized instance, e.g. as a circuit

I EXP-complete problems include generalised versions of some
games

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

26/28

Polynomial vs. Exponential Time

Theorem
It holds that P (EXP and NP (NEXP.

Follows from the time hierarchy theorems (next lecture)

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

27/28

Padding and ‘Scaling Up’

Theorem
If P = NP, then EXP = NEXP.

Proof sketch:
I Assume P = NP and let L ∈ NEXP be a language that can be

verified in time O(2nc
)

I Define Lpad = {(x,12|x|
c
) : x ∈ L}

I Lpad ∈ NP: any certificate for x (as an instance of L) has length at

most 2|x|
c
, which is polynomial in

∣∣x(x,12|x|
c
)y
∣∣.

I Since P = NP, we have Lpad ∈ P, implying there is a
polynomial-time Turing machine M deciding Lpad

I L ∈ EXP: on input x, pad x and solve with M

CS-E4530 Computational Complexity Theory / Lecture 9
Department of Computer Science

28/28

Lecture 9: Summary

Complexity classes beyond P and NP

coNP

Σ
p
k , Π

p
k , ∆

p
k and PH

EXP and NEXP

