Exercise 4: Lasers III, SOAs and modulators

1. Let's study a heterojunction laser for optical telecommunication. The laser threshold current is 100 mA and the electron lifetime is 6 ns . a) What is the response time of the laser if the injection current is raised abruptly from 0 to 1.3 A ? b) If the length of a pulse should be at least 0.4 ns , what is the maximum frequency at which the laser can be pulsed if the laser is unbiased (minimum injection current $=0 \mathrm{~A}$) and the maximum injection current is 1.3 A ? Assume that the pause time between pulses is also 0.4 ns . c) What is the maximum frequency, if the laser is biased with a current of 80 mA ?
2. A GaAs laser has a resonance frequency of $f_{r}=3 \mathrm{GHz}$. The other relevant parameters of the laser are $\tau_{p}=2 \mathrm{ps}, \Gamma=0.9$ and $\bar{\varphi}=10^{18} \mathrm{~cm}^{-3}$. The photon lifetime in the cavity is $\tau_{p}=$ 2 ps . Let us also assume that the thickness of the active layer is $d=0.1 \mu \mathrm{~m}$. a) Calculate the differential gain in the laser. b) Calculate the angular frequency $\left(\omega=\omega_{\max }\right)$ at which the transfer function $H(\omega)$ attains the maximum. c) Calculate the ratio of the transfer function $H\left(\omega_{\max }\right)$ to its direct current value $H(O)$.
3. A Fabry-Perot semiconductor laser (spatially single-mode) can be turned into a semiconductor optical amplifier (SOA) by preventing the feedback by coating the facets with antireflection (AR) coatings (sketched below). Estimate the carrier density needed for an overall optical gain of $\mathrm{G}=20 \mathrm{~dB}$, using the SOA parameters: an active region length of $400 \mu \mathrm{~m}$, carrier density at transparency $n_{t r}=1 \times 10^{18} \mathrm{~cm}^{-3}$, and optical confinement factor 0.3 . Assume small signal conditions with no output power or gain saturation. Gain coefficient is given by $g=a\left(n-n_{t r}\right)$ with a gain constant of $a=2.5 \times 10^{-16} \mathrm{~cm}^{2}$. Losses in the cavity are mainly caused by free carrier absorption in the doped cladding regions; use the absorption coefficient of $\alpha_{\text {clad }}=50 \mathrm{~cm}^{-1}$ for the cladding layers.

(continues on the next page)
4. a) Calculate the change in refractive index in GaAs for an applied electric field of $2 \times 10^{5} \mathrm{~V} / \mathrm{cm}$. b) Calculate the value of V_{π} for a transverse GaAs modulator (see updated lecture slides for the difference in longitudinal/transverse EOMs) when the wavelength of incoming light is $1.1 \mu \mathrm{~m}$ (use electro-optic coefficient of $1.6 \times 10^{-12} \mathrm{~m} / \mathrm{V}$). The waveguide is $1 \mu \mathrm{~m}$ thick and 1.5 mm long. c) A phase shift of π is needed to produce in a longitudinal electro-optical modulator having a length of $150 \mu \mathrm{~m}$. Calculate the linear electro-optical coefficient the active material has to have in order to achieve the required phase shift with a bias voltage of 10 V . The refractive index of the material is about 3.5 , the thickness of the active layer is $1 \mu \mathrm{~m}$ and the operation wavelength is $1.55 \mu \mathrm{~m}$.
5. The absorption coefficient due to excitonic absorption in a quantum well is given by

$$
\alpha_{e x}(\omega) \cong \frac{2.9 \times 10^{3}}{\Delta \varepsilon L_{z}} \exp \left[-\frac{\left(\varepsilon^{e x}-\omega\right)^{2}}{\sqrt{q}(\Delta \varepsilon)^{2}}\right]
$$

where $\Delta \varepsilon$ is the linewidth of the absorption peak and the well width L_{z} is in \AA. Calculate the on-off ratio of a $100 \AA \mathrm{GaAs} / \mathrm{Al}_{0.2} \mathrm{Ga}_{0.8} \mathrm{As}$ QCSE modulator under an applied field of $100 \mathrm{kV} / \mathrm{cm}$. The active region consists of 100 periods of the MQW. The heavy-hole exciton resonance has a linewidth of 2.5 meV and the incident photon energy coincides with the exciton energy at zero bias.

