
CS-E4530 Computational Complexity Theory

Lecture 10: Space and Alternation

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

2/31

Agenda

Space complexity

Classes PSPACE and NPSPACE

Logspace reductions

Class NL

Alternation

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

3/31

Time vs. Space

Computation is limited by:
I Time
I Memory

So far, our focus has been on time complexity

This lecture we will look at space complexity

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

4/31

Space Complexity

Definition (Space usage)
Let M be a Turing machine that halts on all inputs. We say that M uses
S(n) space if for all inputs x ∈ {0,1}∗, the machine M visits at most
S(|x|) cells on the non-input tapes of M.

Notes on time and space:
I TM using T(n) time can use at most T(n) space
I For space, sublinear complexities makes sense

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

5/31

Space Complexity

Definition (Class SPACE)

Let S : N→ N be a function. The class SPACE(S(n)) is the set of
languages L for which there exists a Turing machine M and a constant
c > 0 such that M decides L and uses c ·S(n) space.

DTIME(T(n))⊆ SPACE(T(n))

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

6/31

Nondeterministic Space Complexity

Definition (Class NSPACE)

Let T : N→ N be a function. The class NSPACE(S(n)) is the set of
languages L for which there exists a nondeterministic Turing machine
M and a constant c > 0 such that M decides L and uses at most
c ·S(n) tape locations in any execution on an input of length n.

SPACE(S(n))⊆ NSPACE(S(n))

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

7/31

Time vs. Space

Definition (Space-constructible function)
Let S : N→ N be a function. We say that S is space-constructible if
there is a TM M that computes the function x 7→ xS(|x|)y in space
O(S(n)), where xny denotes the binary representation of the number
n.

Theorem
For any space-constructible function S : N→ N, we have

NSPACE(S(n))⊆ DTIME(2O(S(n))) .

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

8/31

Configuration Graphs

Let M be a NDTM that uses S(n) space and let x ∈ L⊆ {0,1}∗

Define a directed configuration graph GM,x such that
I Vertices represent possible configurations of M on input x
I There is an directed edge from u to v if M can get from the

configuration corresponding to u to the configuration
corresponding to v in one step

Each configuration can be encoded in O(S(n)) bits

Thus, the configuration graph has at most 2O(S(n)) vertices

Each vertex has two outgoing edges

We can assume GM,x has only one accepting configuration by
modifying M

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

9/31

Time vs. Space

Theorem
For any space-constructible function S : N→ N, we have

NSPACE(S(n))⊆ DTIME(2O(S(n))) .

Proof:
I We can now decide a language L ∈ NSPACE(S(n)) in time

2O(S(n)) as follows
I Let M be NDTM witnessing L ∈ NSPACE(S(n))
I Construct the configuration graph GM,x in time 2O(S(n))

I Decide if we can reach the accepting configuration with a
linear-time algorithm

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

10/31

Space Complexity Classes

Definition
PSPACE =

⋃
c>0 SPACE(nc)

NPSPACE =
⋃

c>0 NSPACE(nc)

L = SPACE(logn)

NL = NSPACE(logn)

Relationships between time and space:
I L⊆ NL⊆ P
I NP⊆ PSPACE⊆ NPSPACE⊆ EXP

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

11/31

PSPACE-completeness

Definition
We say that a language L⊆ {0,1}∗ is PSPACE-hard if for any
L′ ∈ PSPACE we have L′ ≤p L.

We say that a language L⊆ {0,1}∗ is PSPACE-complete if L is
PSPACE-hard and L ∈ PSPACE.

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

12/31

PSPACE-completeness: Examples

Definition (SPACE-TMSAT)

Instance: A tuple (M,x,1n), where M is a Turing machine and
x ∈ {0,1}∗.
Question: Does M accept x in space n?

SPACE-TMSAT is PSPACE-complete
I Proof: Easy.

Many logic problems are PSPACE-complete
Generalised versions of many games are PSPACE-complete

I What distinguishes PSPACE-complete and EXP-complete?

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

13/31

PSPACE-completeness: Examples

A quantified Boolean formula (QBF) is a formula of form

Q1x1Q2x2 . . . ,Qnxnϕ(x1,x2, . . . ,xn) ,

where each Qi is either ∃ or ∀ and ϕ is a Boolean formula over
variables x1,x2, . . . ,xn

Example: ∀x∃y(x∧ y)∨ (¬x∧¬y)

A QBF is always true or false

Definition (TQBF)
Instance: A QBF ψ.

Question: Does ψ evaluate to true?

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

14/31

PSPACE-completeness: Examples

TQBF is PSPACE-complete
Basic idea for reducing L ∈ PSPACE to TQBF:

I Let M be a TM deciding L in polynomial space S(n) and let x be
an instance of L

I Define a QBF formula encoding the edges of the configuration
graph GM,x

I Use that to define a QBF formula encoding the reachability
question from the starting state to the accepting state

I The final formula can be made to have size O(S(n)2) with some
work

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

15/31

PSPACE-completeness: Examples

Similar idea works for L ∈ NPSPACE

TQBF is NPSPACE-complete

It follows that PSPACE = NPSPACE!

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

16/31

Savitch’s Theorem

Theorem (W. Savitch 1970)

For any space-constructible function S : N→ N with S(n)> logn, we
have that

NSPACE(S(n))⊆ SPACE(S(n)2) .

Proof idea:
I Solve reachability problem in the configuration graph GM,x
I Can be done in space O(S(n)2) if the original NDTM uses space

O(S(n))

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

17/31

Working with Logarithmic Space

Next, we want to discuss the L vs. NL question
We are working in the very restricted setting of logarithmic
space

I O(logn) bits can be used to count up to nc

I O(logn) bits can be used to refer to a single object from a
collection with n objects

I In logarithmic space, we can store constant number of such
counters

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

18/31

Logspace Reductions

Polynomial-time reductions are much stronger than
logarithmic space

Logarithmic space is not even enough to write the output of
a polynomial reduction

Basic idea:
I Compute the reduction x 7→ f (x) implicitly with logarithmic

overhead
I Specifically, given x and i≤ |x|, we can compute the ith bit of f (x)

with logarithmic memory
I Memory used by the reduction can be re-used between

subsequent calls to the reduction

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

19/31

Logspace Reductions

Definition
A function f : {0,1}∗→{0,1}∗ is implicitly logspace computable if
there is c > 0 such that |f (x)| ≤ |x|c for all x ∈ {0,1}∗ and the
languages

Lf = {(x, i) : f (x)i = 1} , and

L′f = {(x, i) : |f (x)| ≤ i}

are in L.

Definition
A logspace reduction from L1 to L2 is an implicitly logspace
computable function R : {0,1}∗→{0,1}∗ such that x ∈ L1 if and only
if R(x) ∈ L2. Logspace reducibility is denoted by L1 ≤l L2.

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

20/31

Logspace Reductions

Lemma
If L1 ≤l L2 and L2 ≤l L3, then L1 ≤l L2.

If L1 ≤l L2 and L2 ∈ L, then L1 ∈ L.

Proof:
I If g and f are implicitly logspace computable, then h(x) = g(f (x))

is implicitly logspace computable
I This implies both of the claims

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

21/31

NL: Certificate Definition

Definition
A language L⊆ {0,1}∗ is in NL if there exists a deterministic Turing
machine M (called logspace verifier) with an additional special
read-once input tape, and a polynomial p : N→ N such that for all
x ∈ {0,1}∗ we have x ∈ L if and only if there is u ∈ {0,1}∗ with
|u| ≤ p(|x|) such that M(x,u) = 1, where

M(x,u) denotes the output of M when x is written on the input
tape and u is written on the special read-once input tape, and

M uses at most O(log |x|) space on its working tapes.

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

22/31

NL-completeness

Definition
We say that a language L⊆ {0,1}∗ is NL-hard if for any L′ ∈ NL
we have L′ ≤l L.

We say that a language L⊆ {0,1}∗ is NL-complete if L is
NL-hard and L ∈ NL.

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

23/31

PATH

PATH
Instance: Directed graph G = (V,E), two vertices s and t.

Question: Is there a path from s to t in G?

PATH is clearly in NL
Corresponding problem for undirected graphs is in L

I Very complicated proof

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

24/31

PATH is NL-complete

Theorem
PATH is NL-complete.

Proof sketch:
I Let L ∈ NL be a language decided by a logspace NDTM M
I Reduction from L to PATH: map x to the path problem on

configuration graph GM,x
I Vertices of GM,x can be described with O(log |x|) bits; each bit of

the adjacency matrix of GM,x can be computed in logarithmic
space

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

25/31

coNL

Definition

coNL =
{

L⊆ {0,1}∗ : L ∈ NL
}

Complete languages for coNL are the complements of
NL-complete languages

Theorem

PATH is NL-complete.

Non-existence of a path can be verified in logarithmic space

NL = coNL

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

26/31

Complementary Space Classes

Theorem (N. Immerman, R. Szelepcsényi 1987)

For any space-constructible S : N→ N with S(n)> logn, we have that

NSPACE(S(n)) = coNSPACE(S(n)) .

Proof idea:
I For a no-instance of L ∈ NSPACE(S(n)), prove that there is no

path from starting configuration to accepting configuration in the
configuration graph

I Almost the same proof as for NL-completeness of PATH

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

27/31

Alternating Turing Machines

Alternation is an important generalisation of nondeterminism.

In a nondeterministic computation each configuration is an
implicit OR of its successor configurations: i.e.
a configuration “leads to acceptance” iff at least one of its
successors does.

The idea is to allow both OR and AND configurations in a tree of
configurations generated by a NTM N computing on input x.

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

28/31

Definition
An alternating Turing machine N is a nondeterministic Turing machine
where the set of states K is partitioned into two sets K = KAND∪KOR.

Given the tree of configurations of N on input x, the eventually
accepting configurations of N are defined recursively:

1. Any leaf configuration with state “yes” is eventually accepting.

2. A configuration with state in KAND is eventually accepting iff all its
successors are.

3. A configuration with state in KOR is eventually accepting iff at
least one of its successors is.

+ N accepts x iff its initial configuration is eventually accepting.

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

29/31

Alternation-Based Complexity Classes

Definition
An alternating Turing machine N decides a language L iff N accepts
all strings x ∈ L and rejects all strings x 6∈ L.

It is straightforward to define ATIME(f (n)) and ASPACE(f (n));
and using them, e.g. AP = ATIME(nk), AL = ASPACE(logn)
etc.

Roughly speaking, alternating time classes correspond to
deterministic space and alternating space classes correspond to
deterministic time but one exponential higher.

Theorem
AL = P, AP = PSPACE, APSPACE = EXP, . . .

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

30/31

Alternation and The Polynomial Time Hierarchy

Denote by ΣiP (resp. ΠiP), i≥ 1, the family of languages decided by
polynomially time-bounded alternating Turing machines whose every
computation satisfies the following conditions:

The initial state belongs to KOR (resp. KAND).

The computation alternates from a state in KOR to a state in
KAND or vice versa at most i−1 times.

By definition, set also Σ0P = Π0P = P.

Theorem

For every i≥ 0, ΣiP = Σ
p
i and ΠiP = Π

p
i .

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science

31/31

Lecture 10: Summary

Space complexity

Configuration graphs

PSPACE and PSPACE-completeness

PSPACE = NPSPACE

L and NL

Logspace reductions

NL = coNL

Alternation

