A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory

Lecture 10: Space and Alternation

Aalto University
School of Science
Department of Computer Science

Spring 2019

Agenda

Space complexity

Classes PSPACE and NPSPACE
Logspace reductions

Class NL

Alternation

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
School of Science Department of Computer Science
2/31

Time vs. Space

@ Computation is limited by:
» Time
» Memory

@ So far, our focus has been on time complexity
@ This lecture we will look at space complexity

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
School of Science Department of Computer Science
3131

Space Complexity

Definition (Space usage)

Let M be a Turing machine that halts on all inputs. We say that M uses
S(n) space if for all inputs x € {0,1}*, the machine M visits at most
S(|x|) cells on the non-input tapes of M.

@ Notes on time and space:

» TMusing T'(n) time can use at most 7'(n) space
» For space, sublinear complexities makes sense

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
a3

Space Complexity

Definition (Class SPACE)

Let S: N — N be a function. The class SPACE(S(n)) is the set of
languages L for which there exists a Turing machine M and a constant
¢ > 0 such that M decides L and uses c-S(n) space.

o DTIME(T(n)) C SPACE(T(n))

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
531

Nondeterministic Space Complexity

Definition (Class NSPACE)

Let T: N — N be a function. The class NSPACE(S(n)) is the set of
languages L for which there exists a nondeterministic Turing machine
M and a constant ¢ > 0 such that M decides L and uses at most

c¢- S(n) tape locations in any execution on an input of length .

® SPACE(S(n)) C NSPACE(S(n))

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
School of Science Department of Computer Science
6/31

Time vs. Space

Definition (Space-constructible function)

Let S: N — N be a function. We say that S is space-constructible if
there is a TM M that computes the function x — LS(|x|)_ in space
O(S(n)), where Ln_ denotes the binary representation of the number

n.

Theorem

For any space-constructible function S: N — N, we have

NSPACE(S(n)) C DTIME(205)).

A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science
73

Configuration Graphs

Let M be a NDTM that uses S(n) space and let x € L C {0,1}*
Define a directed configuration graph Gy, such that
» Vertices represent possible configurations of M on input x
» There is an directed edge from u to v if M can get from the
configuration corresponding to u to the configuration
corresponding to v in one step

Each configuration can be encoded in O(S(n)) bits
s

°
@ Thus, the configuration graph has at most 2°5() vertices
@ Each vertex has two outgoing edges

o

We can assume Gy, has only one accepting configuration by
modifying M

School of Science Department of Col

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ureﬂ)
zz 31

Time vs. Space

Theorem
For any space-constructible function S: N — N, we have

NSPACE(S(n)) C DTIME(205)).

@ Proof:
» We can now decide a language L € NSPACE(S(n)) in time
20(5(1) as follows
» Let M be NDTM witnessing L € NSPACE(S(n))
» Construct the configuration graph Gy in time 20(5()
» Decide if we can reach the accepting configuration with a
linear-time algorithm

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
School of Science Department of Computer Science

9131

Space Complexity Classes

Definition
@ PSPACE = |, SPACE(n°)
@ NPSPACE = J,.,NSPACE (n®)
@ L = SPACE(logn)
@ NL = NSPACE(logn)

@ Relationships between time and space:

» LCNLCP
» NP C PSPACE C NPSPACE C EXP

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 10
Department of Computer Science
10/31

PSPACE-completeness

Definition
@ We say that a language L C {0,1}* is PSPACE-hard if for any
L' € PSPACE we have L' <, L.

@ We say that a language L C {0,1}* is PSPACE-complete if L is
PSPACE-hard and L € PSPACE.

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
11/31

PSPACE-completeness: Examples

Definition (SPACE-TMSAT)

@ Instance: A tuple (M,x,1"), where M is a Turing machine and
xe{0,1}*.
@ Question: Does M accept x in space n?

@ SPACE-TMSAT is PSPACE-complete
> Proof: Easy.

@ Many Jogic problems are PSPACE-complete
@ Generalised versions of many games are PSPACE-complete
» What distinguishes PSPACE-complete and EXP-complete?

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
12/31

PSPACE-completeness: Examples

@ A quantified Boolean formula (QBF) is a formula of form

Q]Xl Q2X2 ceey ann(p(xl 3 X2y ,xn) s
where each Q; is either 3 or V and ¢ is a Boolean formula over
variables x1,x3,...,x,
e Example: VxJy(x Ay)V (—x A —y)
@ A QBF is always true or false

Definition (TQBF)
@ Instance: A QBF .

@ Question: Does Y evaluate to true?

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
School of Science

Department of Computer Science
13/31

PSPACE-completeness: Examples

@ TQBF is PSPACE-complete
@ Basic idea for reducing L. € PSPACE to TQBF:
» Let M be a TM deciding L in polynomial space S(r) and let x be

an instance of L

» Define a QBF formula encoding the edges of the configuration
graph Gy x

» Use that to define a QBF formula encoding the reachability
question from the starting state to the accepting state

» The final formula can be made to have size O(S(n)?) with some
work

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
School of Science Department of Computer Science
14/31

PSPACE-completeness: Examples

@ Similar idea works for L € NPSPACE
o TQBF is NPSPACE-complete

o It follows that PSPACE = NPSPACE!

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
15/31

Savitch’s Theorem

Theorem (W. Savitch 1970)

For any space-constructible function S: N — N with S(n) > logn, we
have that
NSPACE(S(1)) C SPACE(S(n)?).

@ Proof idea:
» Solve reachability problem in the configuration graph G »
» Can be done in space O(S(n)?) if the original NDTM uses space
0(S(n))

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
16/31

Working with Logarithmic Space

@ Next, we want to discuss the L vs. NL question

@ We are working in the very restricted setting of logarithmic
space
» O(logn) bits can be used to count up to n*
» O(logn) bits can be used to refer to a single object from a
collection with n objects
> In logarithmic space, we can store constant number of such
counters

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
17/31

Logspace Reductions

@ Polynomial-time reductions are much stronger than
logarithmic space

@ Logarithmic space is not even enough to write the output of
a polynomial reduction

@ Basic idea:
» Compute the reduction x — f(x) implicitly with logarithmic
overhead
» Specifically, given x and i < |x|, we can compute the ith bit of f(x)
with logarithmic memory
» Memory used by the reduction can be re-used between
subsequent calls to the reduction

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
18/31

Logspace Reductions

Definition
A function f: {0,1}* — {0,1}* is implicitly logspace computable if
there is ¢ > 0 such that |f(x)| < |x| for all x € {0,1}* and the

languages

Ly ={(x,i): f(x)i =1}, and

Ly ={(x,0): [f(x)| < i}
arein L. |
Definition

A logspace reduction from Ly to L, is an implicitly logspace
computable function R: {0,1}* — {0,1}* such that x € L, if and only
if R(x) € L,. Logspace reducibility is denoted by L; <; L.

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
19/31

Logspace Reductions

Lemma
o IfL <;L,and L, <;Ls, thenL; <;L,.
@ IfLy <;lr,andl, €L, thenL; € L.

@ Proof:
» If g and " are implicitly logspace computable, then A(x) = g(f(x))
is implicitly logspace computable
» This implies both of the claims

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
2031

NL: Certificate Definition

Definition
Alanguage L C {0, 1}* is in NL if there exists a deterministic Turing
machine M (called logspace verifier) with an additional special
read-once input tape, and a polynomial p: N — N such that for all
x € {0,1}* we have x € L if and only if there is u € {0,1}* with
|u| < p(|x]) such that M(x,u) =1, where

@ M(x,u) denotes the output of M when x is written on the input

tape and u is written on the special read-once input tape, and

@ M uses at most O(log|x|) space on its working tapes.

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
2131

NL-completeness

Definition
@ We say that a language L C {0, 1}* is NL-hard if for any L' € NL
we have L' <; L.

@ We say that a language L C {0, 1}* is NL-complete if L is
NL-hard and L € NL.

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
22/31

PATH

PATH
@ Instance: Directed graph G = (V,E), two vertices s and t.
@ Question: Is there a path from sto t in G?

@ PATH is clearly in NL
@ Corresponding problem for undirected graphs is in L
» Very complicated proof

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
23/31

PATH is NL-complete

Theorem
PATH is NL-complete. J

@ Proof sketch:
» Let L € NL be a language decided by a logspace NDTM M
» Reduction from L to PATH: map x to the path problem on
configuration graph Gy x
» Vertices of Gy« can be described with O(log |x|) bits; each bit of
the adjacency matrix of Gy, can be computed in logarithmic
space

Aalto University CS-E4530 Computational Complexi tyTheo y/Lec(ure10
School of Science Department of Computer Sci
24 31

coNL
Definition
coNL={L C{0,1}*: LeNL} J

@ Complete languages for coNL are the complements of
NL-complete languages

Theorem
PATH is NL-complete. J

@ Non-existence of a path can be verified in logarithmic space
@ NL =coNL

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
25/31

Complementary Space Classes

Theorem (N. Immerman, R. Szelepcsényi 1987)
For any space-constructible S: N — N with S(n) > logn, we have that

NSPACE(S(n)) = coNSPACE(S(n)).

@ Proof idea:
» For a no-instance of L € NSPACE(S(n)), prove that there is no
path from starting configuration to accepting configuration in the

configuration graph
» Almost the same proof as for NL-completeness of PATH

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
School of Science Department of Computer Science
26/31

Alternating Turing Machines

@ Alternation is an important generalisation of nondeterminism.

@ In a nondeterministic computation each configuration is an
implicit OR of its successor configurations: i.e.
a configuration “leads to acceptance” iff at least one of its
successors does.

@ The idea is to allow both OR and AND configurations in a tree of
configurations generated by a NTM N computing on input x.

School of Science epartment of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
D
27131

Definition
An alternating Turing machine N is a nondeterministic Turing machine
where the set of states K is partitioned into two sets K = Kanp U Kor.

Given the tree of configurations of N on input x, the eventually
accepting configurations of N are defined recursively:
1. Any leaf configuration with state “yes” is eventually accepting.

2. A configuration with state in Kanp is eventually accepting iff all its
sSuccessors are.

3. A configuration with state in Kor is eventually accepting iff at
least one of its successors is.

I=>° N accepts x iff its initial configuration is eventually accepting.

School of Science uter Scienct

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
Department of Comput e
28/31

Alternation-Based Complexity Classes

Definition
An alternating Turing machine N decides a language L iff N accepts
all strings x € L and rejects all strings x & L.

@ ltis straightforward to define ATIME(f (n)) and ASPACE(f (n));
and using them, e.g. AP = ATIME (r*), AL = ASPACE(logn)
etc.

@ Roughly speaking, alternating time classes correspond to
deterministic space and alternating space classes correspond to
deterministic time but one exponential higher.

Theorem
AL =P, AP = PSPACE, APSPACE = EXP, ... J

Aalto University CS-E4530 Computational Complexity Theory / Lectut re10
School of Science Department of Computer Sci
29 31

Alternation and The Polynomial Time Hierarchy

Denote by X;P (resp. IL;P), i > 1, the family of languages decided by
polynomially time-bounded alternating Turing machines whose every
computation satisfies the following conditions:

@ The initial state belongs to Kor (resp. Kanp)-

@ The computation alternates from a state in Kog to a state in
KanD or vice versa at most i — 1 times.

By definition, set also XoP = I1yP = P.

Theorem
Foreveryi >0, L,P =X and IL,P =TT J

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
3031

Lecture 10: Summary

@ Space complexity
e Configuration graphs

e PSPACE and PSPACE-completeness
e PSPACE = NPSPACE

e Land NL

e Logspace reductions

e NL = coNL

e Alternation

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 10
31/31

