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Summary of the Last Lecture

@ EKF and SLF can be applied to filtering models of the form

Xk = f(Xk—1) + Ak—1
Yk = h(xg) +r,

@ EKF is based on Taylor series expansions of f and h.

e Advantages: Simple, intuitive, computationally efficient
e Disadvantages: Local approximation, differentiability
requirements, only for Gaussian noises.

@ SLF is based on statistical linearization:

e Advantages: Global approximation, no differentiability
requirements, computationally efficient

e Disadvantages: Closed form computation of expectations,
only for Gaussian noises.

e But, there is a connection to sigma-point filters (e.g., UKF).
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Linearization Based Gaussian Approximation

@ Problem: Determine the mean and covariance of y:

X ~ N(:U’v 02)
y = sin(x)

@ Linearization based approximation:

y=sin(u) + 5 4.

which gives

Ely] = E[sin(u) + cos()(x — p)] = sin(x)
Cov[y] ~ E[(sin(u) + cos() (X — 1) — sin(p))?] = cos?(p) o°.
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Principle of Unscented Transform [1/3]

@ Form 3 sigma points as follows:

X(O):u
XU) :,Uz"i‘U
x® =pu—o.

@ Let's select some weights W(©) W W®) such that the
original mean and variance can be recovered by

w=3" W x0
i

ol = Z WO (x() — )2,
i
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Principle of Unscented Transform [2/3]

@ We use the same formula for approximating the moments
of y = sin(x) as follows:

Hy = Z WO sin(x )
Z WO (sin(x D) — p)2.

@ For vectors x ~ N(m, P) the generalization of standard
deviation ¢ is the Cholesky factor L = +/P:

P=LL".

@ The sigma points can be formed using columns of L (here
c is a suitable positive constant):

X(O) = m
x0) =m+cL;
x(+) —m —cL;
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Principle of Unscented Transform [3/3]

@ For transformation y = g(x) the approximation is:
— Z w® g(x
i
ry = WO (gx?) - p,) (@(x?) - )"

i
@ It is convenient to define transformed sigma points:
y(f) _ g()((i))
@ Joint moments of x and y = g(x) + q are then
approximated as

= (a0 o)] ~ 2 (G0) = (7)
cov [(9(X)+q>}

(:) i _ T (i) (/) T
~ (i) m) (X —m) (XY —m) (VY — )
2 W <(y 0 ) (20 —m)T (@0 - )00 - )+ 0)
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Unscented Transform [1/3]

The unscented transform approximation to the joint distribution
of xand y = g(x) + q where x ~ N(m,P) and q ~ N(0,Q) is

)~ ((5) (& <)

where the sub-matrices are formed as follows:
@ Form the sigma points as

X0 =m
X0 _m s VTR [VF]
XU+ =m—vVn+ A [ﬁ}, i=1,...,n

I

i
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Unscented Transform [2/3]

Unscented transform (cont.)

@ Propagate the sigma points through g(-):
YD =gx®), i=o0,...,2n

© The sub-matrices are then given as:
2n ‘
b= Wm0
i=0
2n ; _
Su =3 WD~ py) (V0 - )" +Q

2n
Cu =D W (2D —m) (D — py)".
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Unscented Transform [3/3]

Unscented transform (cont.)

@ \is a scaling parameter defined as A = o? (n + k) — n.
@ « and « determine the spread of the sigma points.
o Weights W™ and W'® are given as follows:

W™ = X/(n+ A)

W = M/(n+A)+(1—a?+§)
W™ = 1/{2(n+\)}, i=1,...,2n
W = 1/{2(n+A)}, i=1,....2n,

@ [ can be used for incorporating prior information on the
(non-Gaussian) distribution of x.
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Linearization/UT Example

0 — 0
-2 A
4 - ! 2l — - -
(?) N <(8) | ( 22 _32>) ddl; =exp(—y1), y1(0) = X
2 i Yo B nO)=x
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Linearization Approximation

4 2
2 1
0 0
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UT Approximation

2 ¢ 1 00
0 o 0 o
o o
- -1
2 °
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Unscented Kalman Filter (UKF): Derivation [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian

P(Xk—1 | Y1:k—1) = N(Xk—1 [ My_1,Px_1)

@ The joint distribution of x,_1 and xx = f(Xx_1) + qx_1 can
be approximated with UT as Gaussian

Xk—1 m’1) ( Pl P/12>)
x - ,x K— %N b) b)
P(Xk—1, Xk | Y1:k-1) ([ X ] ‘ <m’2 P)T P,

as follows.
@ Form the sigma points X() of X,_1 ~ N(mk_1,Px_1) and
compute the transformed sigma points as X() = f(x()),
@ The expected values can now be expressed as:

mj = my_q
m’2 _ Z W/(m) g0
i
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Unscented Kalman Filter (UKF): Derivation [2/4]

@ The blocks of covariance can be expressed as:

Pl = Pk
T2 = Z W(C) —my_4) (A0 —my)T
22 = Z WO (RO —mp) (R0 — my)T + Q4

@ The prediction mean and covariance of xx are then m;, and
P,,, and thus we get

mk_ZW ) 20

Py = 3" W0 - m,) (80 m, ) 0
i
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Unscented Kalman Filter (UKF): Derivation [3/4]

@ For the joint distribution of x, and yx = h(xx) + r, we
similarly get

Xk m’1’> ( PY P/1/2>>
X k—1) ~ N , ,
P(Xk, Yk | Y1:k—1) <[yk] ‘ <m12/ (PL,)T P
o If x=() are the sigma points of x, ~ N(m,_, P,") and
Y0 = h(x—), we get:

m{ =m,

my = 3" Wm0

i
P{; =Py
= X W0 ) 50

2o = Z WO (IO —mg) (PO - mg)T + Ry
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Unscented Kalman Filter (UKF): Derivation [4/4]

T ma@e)

x|y~N(@+CB ' (y—b),A-—CB~'C).

then

@ Thus we get the conditional mean and covariance:

my = m; + P, (P5,) " (yx — mj)
Py =P, — P}, (P3) " (PY)".
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Unscented Kalman Filter (UKF): Algorithm [1/4]

Unscented Kalman filter: Prediction step

@ Form the sigma points:

X[E(i)1 = mk717
X,EIL =Mg_1 +Vn+A [\/ Pk—1]
XM =my g — VA [\/ qu]

i
. i=1,...,n.

© Propagate the sigma points through the dynamic model:

60 — ). i—o,... 2n
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Unscented Kalman Filter (UKF): Algorithm [2/4]

Unscented Kalman filter: Prediction step (cont.)

© Compute the predicted mean and covariance:

2n
m; = Wi 3

P, _ZWC) ) m) (2 —m)T + Quy.
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Unscented Kalman Filter (UKF): Algorithm [3/4]

Unscented Kalman filter: Update step

@ Form the sigma points:

—(0) _ —
X =my,

2O =myg + vt [VPJ

]

X;(i+n):m;—\/n+)\|: P;}, i=1,...,n
i

© Propagate sigma points through the measurement model:

Y —hx D), i=o0,...,2n
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Unscented Kalman Filter (UKF): Algorithm [4/4]

Unscented Kalman filter: Update step (cont.)

© Compute the following:

py = Z wm 0
Sk = Z W PP = ) D8 — )T + Re
i=0

Ck= Z W m, ) (j}/((i) - .Uk)T

my =m, + Kk [y — 1]
Py = P, — Kk Sk KL
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Unscented Kalman Filter (UKF): Advantages

@ No closed form derivatives or expectations needed.

@ Not a local approximation, but based on values on a larger
area.

@ Functions f and h do not need to be differentiable.

@ Theoretically, captures higher order moments of
distribution than linearization — the mean is correct for up
to third order monomials.
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Unscented Kalman Filter (UKF): Disadvantage

@ Not a truly global approximation, based on a small set of
trial points.

@ Does not work well with nearly singular covariances, i.e.,
with nearly deterministic systems.

@ Requires more computations than EKF or SLF, e.g.,
Cholesky factorizations on every step.

@ The covariance computation is exact only for linear
functions.

@ Can only be applied to models driven by Gaussian noises.
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Gaussian Moment Matching [1/2]

@ Consider the transformation of x into y:

X ~ N(m,P)
y =g(x).

@ Form Gaussian approximation to (x,y) by directly
approximating the integrals:

o = [ 9(x) N(x| m.P) ox

Sy = / (900 — piar) (9(X) — pigs)” N(x | m, P) cx
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Gaussian Moment Matching [2/2]

Gaussian moment matching

The moment matching based Gaussian approximation to the
joint distribution of x and the transformed random variable
y = d(x) + q where x ~ N(m, P) and q ~ N(0, Q) is given as

(5) () (et sw)):

Cu = / (x —m) (@(X) — 24s)" N(x| m, P) dix.
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Connection with Statistical Linearization

@ An alternative way of writing the moment matching:

pm = Elg(x)]
Sm = Cov[g(x)]

Cu = E[g(x) 6x"]".

where X =X —m.
@ Differs from statistical linearization only in the S-terms:

ps = E[g(X)]
Ss = E[g(x)6x"]P~" E[g(x)éx"]T + Q
Cs = E[g(x) ox"]".

@ The Gaussian moment matching is equivalent to so called
statistical linear regression.
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Gaussian Filter [1/3]

Gaussian filter prediction

Compute the following Gaussian integrals:

m, = /f(xk1) N(Xk—1 | My_1,Py_1) dXk_1

P = [ (1001) — my) (1) —mp)T

X N(Xk—1 [ My_1,Pe_1) dXk_1 + Q1.
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Gaussian Filter [2/3]
Gaussian filter update

@ Compute the following Gaussian integrals:
= [ B NO | my ) o
Si— | (h0xe) = 1) (0(x) — )T N i, Py) -+ Ry

Ck = /(xk —m;) (h(xk) — )" N(Xg | My, PL) dx.

@ Then compute the following:

Kk = Ck S’
my =m, + Ky (Yk — 1k)
Py = P, — Kc Sk K.
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Gaussian Filter [3/3]

@ Special case of assumed density filtering (ADF).

@ Multidimensional Gauss-Hermite quadrature = Gauss
Hermite Kalman filter (GHKF).

@ Cubature integration = Cubature Kalman filter (CKF).

@ Monte Carlo integration = Monte Carlo Kalman filter
(MCKEF).

@ Gaussian process / Bayes-Hermite Kalman filter: Form
Gaussian process regression model from set of sample
points and integrate the approximation.

@ Linearization, unscented transform, central differences,
divided differences can be considered as special cases.
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Gauss-Hermite Kalman Filter (GHKF) [1/2]

@ One-dimensional Gauss-Hermite quadrature of order p:

/ g(x x]01dx~ZW(’)g x1),

i=1

o ¢ are roots of pth order Hermite polynomial:

Ho(x) =1
Hi(x) =x
Ho(x) = x?
Hy(x) = x® - 3x...

@ The weights are W) = p!/(p? [Hp_1(£1)]?).
@ Exact for polynomials up to order 2p — 1.
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Gauss-Hermite Kalman Filter (GHKF) [2/2]

@ Multidimensional integrals can be approximated as:
[ 0 N(x|m. Py ox
— [am+ VPe) Ngjo.n de

~ Z W(i1) X oo X W(In)g(m_i_\/ﬁé-(h ..... in)).

@ Needs p” evaluation points.

@ Gauss-Hermite Kalman filter (GHKF) uses this for
evaluation of the Gaussian integrals.

Simo Sarkka Lecture 5: UKF, GF, GHKF and CKF



Spherical Cubature Integration [1/3]

@ Postulate symmetric integration rule:
/g (€]0,1)dé ~ WZg (cu),

@ The points u() belong to the symmetric set [1] with
generator (1,0,...,0):

1 —1 0
1 0 —

1] = o, 10,---1 O, ]0{,...
0 0 0 0

@ W is a weight and c is a parameter yet to be determined.
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Spherical Cubature Integration [2/3]

@ Due to symmetry, all odd orders are integrated exactly.
@ We only need to match the following moments:

/N(§|0,|)d§:1
/5,-2 N(£10,1) d = 1

@ Thus we get the equations

WZ1 = W2n=1
i
WZ[cuj(i)]Z: W2c® =1
i

@ Hence the following rule is exact up to third degree:

[ 9 N0 de ~ 55 g(vAu),

Simo Sarkka Lecture 5: UKF, GF, GHKF and CKF



Spherical Cubature Integration [3/3]

@ The resulting Gaussian integral rule:

/g(x x| m, P) dx
:/g(m+ﬁs) N(£]0,1) d¢
1 2n )
i=1
where
S(i)— vne; , i=1,....n
= —\/ﬁei—n , i:n—|—1’...,2n,

where e; denotes a unit vector to the direction of
coordinate axis /.
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Cubature Kalman Filter (CKF) [1/4]

@ Form the sigma points as:

X0 =my_g+ /P €D i=1,....2n.
© Propagate the sigma points through the dynamic model:
20 —1x"). i=1...2n

© Compute the predicted mean and covariance:

1 S 500
— 1V
il = ?Z K
i=1
2n
P, = lZ( ¢ —m )2 -m)) +Q
k = 2n« k k I\ k k=1-

Simo Sarkka Lecture 5: UKF, GF, GHKF and CKF



Cubature Kalman Filter (CKF) [2/4]

Cubature Kalman filter: Update step

@ Form the sigma points:

X0 —m_ /P i=1,... 2n

© Propagate sigma points through the measurement model:

Y —n M), i=1...2n
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Cubature Kalman Filter (CKF) [3/4]

Cubature Kalman filter: Update step (cont.)
© Compute the following:

Ly = 2n Z y(’)
1 2n
Sk=5- Z(yk” — ) (D — )" + Re
1 2n ) )
Ch =5, > (4 =m) (B — )]
i=1
Kk = C, S’

my = my + K [y — ]
Py = P, — Kk Sk K.
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Cubature Kalman Filter (CKF) [4/4]

@ Cubature Kalman filter (CKF) is a special case of UKF with
a=1,8=0,and x = 0 —the mean weight becomes zero
with these choices.

@ Rule is exact for third order polynomials (multinomials) —
note that third order Gauss-Hermite is exact for fifth order
polynomials.

@ UKF was also originally derived using similar way, but is a
bit more general.

@ Very easy algorithm to implement — you can even recall the
rule by heart.
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@ Unscented transform (UT) approximates transformations of
Gaussian variables by propagating sigma points through
the non-linearity.

@ In UT the mean and covariance are approximated as linear
combination of the sigma points.

@ The unscented Kalman filter uses unscented transform for
computing the approximate means and covariance in
non-linear filtering problems.

@ A non-linear transformation can also be approximated with
Gaussian moment matching.

@ Gaussian filter is based on matching the moments with
numerical integration = many kinds of Kalman filters.

@ Gauss-Hermite Kalman filter (GHKF) and Cubature
Kalman filter (CKF) are examples of them.
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Unscented/Cubature Kalman Filter (UKF/CKEF):

Example

@ Recall the discretized pendulum model

<x,1> < X} o+ X2 1At > < 0 )
2] = +
Xk Xg_y — g sin(x}_y) At Qk—1

n'g

f(xk—1)
Yk = sin(X}) +1k,
N——
h(xk)

@ = Matlab demonstration
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