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Summary of the Last Lecture

EKF and SLF can be applied to filtering models of the form

xk = f(xk−1) + qk−1

yk = h(xk ) + rk ,

EKF is based on Taylor series expansions of f and h.

Advantages: Simple, intuitive, computationally efficient
Disadvantages: Local approximation, differentiability
requirements, only for Gaussian noises.

SLF is based on statistical linearization:
Advantages: Global approximation, no differentiability
requirements, computationally efficient
Disadvantages: Closed form computation of expectations,
only for Gaussian noises.
But, there is a connection to sigma-point filters (e.g., UKF).
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Linearization Based Gaussian Approximation

Problem: Determine the mean and covariance of y :

x ∼ N(µ, σ2)

y = sin(x)

Linearization based approximation:

y = sin(µ) +
∂ sin(µ)

∂µ
(x − µ) + . . .

which gives

E[y ] ≈ E[sin(µ) + cos(µ)(x − µ)] = sin(µ)

Cov[y ] ≈ E[(sin(µ) + cos(µ)(x − µ)− sin(µ))2] = cos2(µ)σ2.
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Principle of Unscented Transform [1/3]

Form 3 sigma points as follows:

X (0) = µ

X (1) = µ+ σ

X (2) = µ− σ.

Let’s select some weights W (0),W (1),W (2) such that the
original mean and variance can be recovered by

µ =
∑

i

W (i)X (i)

σ2 =
∑

i

W (i) (X (i) − µ)2.
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Principle of Unscented Transform [2/3]

We use the same formula for approximating the moments
of y = sin(x) as follows:

µy =
∑

i

W (i) sin(X (i))

σ2
y =

∑
i

W (i) (sin(X (i))− µ)2.

For vectors x ∼ N(m,P) the generalization of standard
deviation σ is the Cholesky factor L =

√
P:

P = L LT.

The sigma points can be formed using columns of L (here
c is a suitable positive constant):

X (0) = m

X (i) = m + c Li

X (n+i) = m− c Li
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Principle of Unscented Transform [3/3]

For transformation y = g(x) the approximation is:

µy =
∑

i

W (i) g(X (i))

Σy =
∑

i

W (i) (g(X (i))− µy ) (g(X (i))− µy )T.

It is convenient to define transformed sigma points:

Y(i) = g(X (i))

Joint moments of x and y = g(x) + q are then
approximated as

E

[(
x

g(x) + q

)]
≈
∑

i

W (i)
(
X (i)

Y(i)

)
=

(
m
µy

)
Cov

[(
x

g(x) + q

)]
≈
∑

i

W (i)
(
(X (i) −m) (X (i) −m)T (X (i) −m) (Y(i) − µy )

T

(Y (i) − µy ) (X (i) −m)T (Y (i) − µy ) (Y(i) − µy )
T + Q

)
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Unscented Transform [1/3]

Unscented transform
The unscented transform approximation to the joint distribution
of x and y = g(x) + q where x ∼ N(m,P) and q ∼ N(0,Q) is(

x
y

)
∼ N

((
m
µU

)
,

(
P CU

CT
U SU

))
,

where the sub-matrices are formed as follows:
1 Form the sigma points as

X (0) = m

X (i) = m +
√

n + λ
[√

P
]

i

X (i+n) = m−
√

n + λ
[√

P
]

i
, i = 1, . . . ,n
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Unscented Transform [2/3]

Unscented transform (cont.)
2 Propagate the sigma points through g(·):

Y(i) = g(X (i)), i = 0, . . . ,2n.

3 The sub-matrices are then given as:

µU =
2n∑

i=0

W (m)
i Y(i)

SU =
2n∑

i=0

W (c)
i (Y(i) − µU) (Y(i) − µU)T + Q

CU =
2n∑

i=0

W (c)
i (X (i) −m) (Y(i) − µU)T.
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Unscented Transform [3/3]

Unscented transform (cont.)

λ is a scaling parameter defined as λ = α2 (n + κ)− n.
α and κ determine the spread of the sigma points.

Weights W (m)
i and W (c)

i are given as follows:

W (m)
0 = λ/(n + λ)

W (c)
0 = λ/(n + λ) + (1− α2 + β)

W (m)
i = 1/{2(n + λ)}, i = 1, . . . ,2n

W (c)
i = 1/{2(n + λ)}, i = 1, . . . ,2n,

β can be used for incorporating prior information on the
(non-Gaussian) distribution of x.
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Linearization/UT Example
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x2

)
∼ N

((
0
0

)
,

(
2 −2
−2 3

)) dy1

dt
= exp(−y1), y1(0) = x1

dy2

dt
= −1

2
y3

2 , y2(0) = x2
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Linearization Approximation
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UT Approximation
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Unscented Kalman Filter (UKF): Derivation [1/4]

Assume that the filtering distribution of previous step is
Gaussian

p(xk−1 |y1:k−1) ≈ N(xk−1 |mk−1,Pk−1)

The joint distribution of xk−1 and xk = f(xk−1) + qk−1 can
be approximated with UT as Gaussian

p(xk−1,xk |y1:k−1) ≈ N

([
xk−1
xk

] ∣∣∣ (m′1
m′2

)
,

(
P′11 P′12

(P′12)T P′22

))
,

as follows.
Form the sigma points X (i) of xk−1 ∼ N(mk−1,Pk−1) and
compute the transformed sigma points as X̂ (i) = f(X (i)).
The expected values can now be expressed as:

m′1 = mk−1

m′2 =
∑

i

W (m)
i X̂ (i)
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Unscented Kalman Filter (UKF): Derivation [2/4]

The blocks of covariance can be expressed as:

P′11 = Pk−1

P′12 =
∑

i

W (c)
i (X (i) −mk−1) (X̂ (i) −m′2)T

P′22 =
∑

i

W (c)
i (X̂ (i) −m′2) (X̂ (i) −m′2)T + Qk−1

The prediction mean and covariance of xk are then m′2 and
P′22, and thus we get

m−k =
∑

i

W (m)
i X̂ (i)

P−k =
∑

i

W (c)
i (X̂ (i) −m−k ) (X̂ (i) −m−k )T + Qk−1
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Unscented Kalman Filter (UKF): Derivation [3/4]

For the joint distribution of xk and yk = h(xk ) + rk we
similarly get

p(xk ,yk , |y1:k−1) ≈ N

([
xk
yk

] ∣∣∣ (m′′1
m′′2

)
,

(
P′′11 P′′12

(P′′12)T P′′22

))
,

If X−(i) are the sigma points of xk ∼ N(m−k ,P
−
k ) and

Ŷ(i) = h(X−(i)), we get:

m′′1 = m−k
m′′2 =

∑
i

W (m)
i Ŷ(i)

P′′11 = P−k
P′′12 =

∑
i

W (c)
i (X−(i) −m−k ) (Ŷ(i) −m′′2)T

P′′22 =
∑

i

W (c)
i (Ŷ(i) −m′′2) (Ŷ(i) −m′′2)T + Rk
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Unscented Kalman Filter (UKF): Derivation [4/4]

Recall that if (
x
y

)
∼ N

((
a
b

)
,

(
A C
CT B

))
,

then

x |y ∼ N(a + C B−1 (y− b),A− C B−1CT).

Thus we get the conditional mean and covariance:

mk = m−k + P′′12 (P′′22)−1(yk −m′′2)

Pk = P−k − P′′12 (P′′22)−1 (P′′12)T.
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Unscented Kalman Filter (UKF): Algorithm [1/4]

Unscented Kalman filter: Prediction step
1 Form the sigma points:

X (0)
k−1 = mk−1,

X (i)
k−1 = mk−1 +

√
n + λ

[√
Pk−1

]
i

X (i+n)
k−1 = mk−1 −

√
n + λ

[√
Pk−1

]
i
, i = 1, . . . ,n.

2 Propagate the sigma points through the dynamic model:

X̂ (i)
k = f(X (i)

k−1). i = 0, . . . ,2n.
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Unscented Kalman Filter (UKF): Algorithm [2/4]

Unscented Kalman filter: Prediction step (cont.)
3 Compute the predicted mean and covariance:

m−k =
2n∑

i=0

W (m)
i X̂ (i)

k

P−k =
2n∑

i=0

W (c)
i (X̂ (i)

k −m−k ) (X̂ (i)
k −m−k )T + Qk−1.
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Unscented Kalman Filter (UKF): Algorithm [3/4]

Unscented Kalman filter: Update step
1 Form the sigma points:

X−(0)k = m−k ,

X−(i)k = m−k +
√

n + λ

[√
P−k

]
i

X−(i+n)
k = m−k −

√
n + λ

[√
P−k

]
i
, i = 1, . . . ,n.

2 Propagate sigma points through the measurement model:

Ŷ(i)
k = h(X−(i)k ), i = 0, . . . ,2n.
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Unscented Kalman Filter (UKF): Algorithm [4/4]

Unscented Kalman filter: Update step (cont.)
3 Compute the following:

µk =
2n∑

i=0

W (m)
i Ŷ(i)

k

Sk =
2n∑

i=0

W (c)
i (Ŷ(i)

k − µk ) (Ŷ(i)
k − µk )T + Rk

Ck =
2n∑

i=0

W (c)
i (X−(i)k −m−k ) (Ŷ(i)

k − µk )T

Kk = Ck S−1
k

mk = m−k + Kk [yk − µk ]

Pk = P−k − Kk Sk KT
k .
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Unscented Kalman Filter (UKF): Advantages

No closed form derivatives or expectations needed.
Not a local approximation, but based on values on a larger
area.
Functions f and h do not need to be differentiable.
Theoretically, captures higher order moments of
distribution than linearization — the mean is correct for up
to third order monomials.
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Unscented Kalman Filter (UKF): Disadvantage

Not a truly global approximation, based on a small set of
trial points.
Does not work well with nearly singular covariances, i.e.,
with nearly deterministic systems.
Requires more computations than EKF or SLF, e.g.,
Cholesky factorizations on every step.
The covariance computation is exact only for linear
functions.
Can only be applied to models driven by Gaussian noises.
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Gaussian Moment Matching [1/2]

Consider the transformation of x into y:

x ∼ N(m,P)

y = g(x).

Form Gaussian approximation to (x,y) by directly
approximating the integrals:

µM =

∫
g(x) N(x |m,P) dx

SM =

∫
(g(x)− µM) (g(x)− µM)T N(x |m,P) dx

CM =

∫
(x−m) (g(x)− µM)T N(x |m,P) dx.
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Gaussian Moment Matching [2/2]

Gaussian moment matching

The moment matching based Gaussian approximation to the
joint distribution of x and the transformed random variable
y = g(x) + q where x ∼ N(m,P) and q ∼ N(0,Q) is given as(

x
y

)
∼ N

((
m
µM

)
,

(
P CM

CT
M SM

))
,

where

µM =

∫
g(x) N(x |m,P) dx

SM =

∫
(g(x)− µM) (g(x)− µM)T N(x |m,P) dx + Q

CM =

∫
(x−m) (g(x)− µM)T N(x |m,P) dx.
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Connection with Statistical Linearization

An alternative way of writing the moment matching:

µM = E[g(x)]

SM = Cov[g(x)]

CM = E[g(x) δxT]T.

where δx = x−m.
Differs from statistical linearization only in the S-terms:

µS = E[g(x)]

SS = E[g(x) δxT] P−1 E[g(x) δxT]T + Q

CS = E[g(x) δxT]T.

The Gaussian moment matching is equivalent to so called
statistical linear regression.
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Gaussian Filter [1/3]

Gaussian filter prediction
Compute the following Gaussian integrals:

m−k =

∫
f(xk−1) N(xk−1 |mk−1,Pk−1) dxk−1

P−k =

∫
(f(xk−1)−m−k ) (f(xk−1)−m−k )T

× N(xk−1 |mk−1,Pk−1) dxk−1 + Qk−1.
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Gaussian Filter [2/3]

Gaussian filter update
1 Compute the following Gaussian integrals:

µk =

∫
h(xk ) N(xk |m−k ,P

−
k ) dxk

Sk =

∫
(h(xk )− µk ) (h(xk )− µk )T N(xk |m−k ,P

−
k ) dxk + Rk

Ck =

∫
(xk −m−k ) (h(xk )− µk )T N(xk |m−k ,P

−
k ) dxk .

2 Then compute the following:

Kk = Ck S−1
k

mk = m−k + Kk (yk − µk )

Pk = P−k − Kk Sk KT
k .
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Gaussian Filter [3/3]

Special case of assumed density filtering (ADF).
Multidimensional Gauss-Hermite quadrature⇒ Gauss
Hermite Kalman filter (GHKF).
Cubature integration⇒ Cubature Kalman filter (CKF).
Monte Carlo integration⇒ Monte Carlo Kalman filter
(MCKF).
Gaussian process / Bayes-Hermite Kalman filter: Form
Gaussian process regression model from set of sample
points and integrate the approximation.
Linearization, unscented transform, central differences,
divided differences can be considered as special cases.
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Gauss-Hermite Kalman Filter (GHKF) [1/2]

One-dimensional Gauss-Hermite quadrature of order p:∫ ∞
−∞

g(x) N(x |0,1) dx ≈
p∑

i=1

W (i)g(x (i)),

ξ(i) are roots of pth order Hermite polynomial:

H0(x) = 1
H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x . . .

The weights are W (i) = p!/(p2 [Hp−1(ξ(i))]2).
Exact for polynomials up to order 2p − 1.
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Gauss-Hermite Kalman Filter (GHKF) [2/2]

Multidimensional integrals can be approximated as:∫
g(x) N(x |m,P) dx

=

∫
g(m +

√
P ξ) N(ξ |0, I) dξ

=

∫
· · ·
∫

g(m +
√

P ξ) N(ξ1 |0,1) dξ1 × · · · × N(ξn |0,1) dξn

≈
∑

i1,...,in

W (i1) × · · · ×W (in)g(m +
√

P ξ(i1,...,in)).

Needs pn evaluation points.
Gauss-Hermite Kalman filter (GHKF) uses this for
evaluation of the Gaussian integrals.
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Spherical Cubature Integration [1/3]

Postulate symmetric integration rule:∫
g(ξ) N(ξ |0, I) dξ ≈W

∑
i

g(c u(i)),

The points u(i) belong to the symmetric set [1] with
generator (1,0, . . . ,0):

[1] =




1
0
0
...
0

 ,


0
1
0
...
0

 , · · ·


−1
0
0
...
0

 ,


0
−1
0
...
0

 , · · ·


W is a weight and c is a parameter yet to be determined.
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Spherical Cubature Integration [2/3]

Due to symmetry, all odd orders are integrated exactly.
We only need to match the following moments:∫

N(ξ |0, I) dξ = 1∫
ξ2

j N(ξ |0, I) dξ = 1

Thus we get the equations

W
∑

i

1 = W 2n = 1

W
∑

i

[c u(i)
j ]2 = W 2c2 = 1

Hence the following rule is exact up to third degree:∫
g(ξ) N(ξ |0, I) dξ ≈ 1

2n

∑
i

g(
√

n u(i)).
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Spherical Cubature Integration [3/3]

The resulting Gaussian integral rule:∫
g(x) N(x |m,P) dx

=

∫
g(m +

√
P ξ) N(ξ |0, I) dξ

≈ 1
2n

2n∑
i=1

g(m +
√

P ξ(i)),

where

ξ(i) =

{ √
n ei , i = 1, . . . ,n
−
√

n ei−n , i = n + 1, . . . ,2n,

where ei denotes a unit vector to the direction of
coordinate axis i .
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Cubature Kalman Filter (CKF) [1/4]

Cubature Kalman filter: Prediction step
1 Form the sigma points as:

X (i)
k−1 = mk−1 +

√
Pk−1 ξ

(i) i = 1, . . . ,2n.

2 Propagate the sigma points through the dynamic model:

X̂ (i)
k = f(X (i)

k−1). i = 1 . . . 2n.

3 Compute the predicted mean and covariance:

m−k =
1

2n

2n∑
i=1

X̂ (i)
k

P−k =
1

2n

2n∑
i=1

(X̂ (i)
k −m−k ) (X̂ (i)

k −m−k )T + Qk−1.
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Cubature Kalman Filter (CKF) [2/4]

Cubature Kalman filter: Update step
1 Form the sigma points:

X−(i)k = m−k +
√

P−k ξ(i), i = 1, . . . ,2n.

2 Propagate sigma points through the measurement model:

Ŷ(i)
k = h(X−(i)k ), i = 1 . . . 2n.
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Cubature Kalman Filter (CKF) [3/4]

Cubature Kalman filter: Update step (cont.)
3 Compute the following:

µk =
1

2n

2n∑
i=1

Ŷ(i)
k

Sk =
1

2n

2n∑
i=1

(Ŷ(i)
k − µk ) (Ŷ(i)

k − µk )T + Rk

Ck =
1

2n

2n∑
i=1

(X−(i)k −m−k ) (Ŷ(i)
k − µk )T

Kk = Ck S−1
k

mk = m−k + Kk [yk − µk ]

Pk = P−k − Kk Sk KT
k .

Simo Särkkä Lecture 5: UKF, GF, GHKF and CKF



Cubature Kalman Filter (CKF) [4/4]

Cubature Kalman filter (CKF) is a special case of UKF with
α = 1, β = 0, and κ = 0 – the mean weight becomes zero
with these choices.
Rule is exact for third order polynomials (multinomials) –
note that third order Gauss-Hermite is exact for fifth order
polynomials.
UKF was also originally derived using similar way, but is a
bit more general.
Very easy algorithm to implement – you can even recall the
rule by heart.
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Summary

Unscented transform (UT) approximates transformations of
Gaussian variables by propagating sigma points through
the non-linearity.
In UT the mean and covariance are approximated as linear
combination of the sigma points.
The unscented Kalman filter uses unscented transform for
computing the approximate means and covariance in
non-linear filtering problems.
A non-linear transformation can also be approximated with
Gaussian moment matching.
Gaussian filter is based on matching the moments with
numerical integration⇒ many kinds of Kalman filters.
Gauss-Hermite Kalman filter (GHKF) and Cubature
Kalman filter (CKF) are examples of them.
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Unscented/Cubature Kalman Filter (UKF/CKF):
Example

Recall the discretized pendulum model(
x1

k
x2

k

)
=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1) ∆t

)
︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )︸ ︷︷ ︸

h(xk)

+rk ,

⇒ Matlab demonstration
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