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Last time

q Given certain axioms, a DM’s preferences about a single attribute can be represented
by a cardinal value function such that

≥ ⟺ ≽
− ≥ − ⟺ ← ≽ ← .

q Attribute-specific value functions are obtained by
– Defining measurement scales [ , ∗]
– Asking a series of elicitation questions through, e.g.,

1. Bisection method
2. Equally preferred differences
3. Giving a functional form; e.g., is linear and increasing

q Result: shape of the value function

q Value functions can be normalized such that = 0 and ∗ = 1.
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This time
q How to measure the overall value of multi-attribute alternative =

, , … ?
, , … =?

q Could the overall value be obtained by aggregating attribute-specific
values?

, , … = , … , = ( ) ?

q Answer: Yes, if the attributes are
– Mutually preferentially independent and
– Difference independent

q … But how to interpret and elicit attribute weights ?
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Preferential independence

q Definition: Attribute X is preferentially independent of the other
attributes Y, if for all x,x’ ∈ X

( , ) ≽ ( , ′) ⇒ , ≽ , for all y ∈ Y

q Interpretation: Preference over the level of attribute X does not
depend on the levels of the other attributes, as long as they stay
the same
q “All other things Y being equal (no matter what they are), an

alternative with performance level x w.r.t. X is preferred to an
alternative with level x’ ∈ X”
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Last time
q Consider yourself

choosing
accommodation for
a (downhill) skiing
vacation trip

q How do the
accommodation
alternatives differ
from each other?
q What are the

attributes that
influence your decision?

7.2.2019
5



Preferential independence: example 1
q Attribute X is preferentially independent of the other attributes Y, if

for all x,x’ ∈ X
( , ) ≽ ( , ′) ⇒ , ≽ , for all y ∈ Y

q 2 Attributes
q X={1,…,500} number of reviews
q Y=[1,10] average of reviews

q Is X preferentially independent of Y?
q No: (500,10) ≽(5,10), but (500,1) ≺(5,1)

q Is Y preferentially independent of X?
q Yes (if higher average is preferred independently of #reviews, as long there

are equally many reviews): (500,10) ≽(500,9) ⇒ (x,10)≽(x,9) for any x
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Preferential independence: example 2
q Consider choosing a meal using two attributes:

1. Food ∈ {beef, fish}
2. Wine ∈ {red, white}

q Preferences:
1. Beef is preferred to fish (no matter what the wine is):

o (beef, red) ≽ (fish, red)
o (beef, white) ≽ (fish, white)

2. White wine is preferred with fish and red wine with beef
o (fish, white)≽ (fish, red)
o (beef, red) ≽ (beef, white)

q Food is preferentially independent of wine
q Beef is preferred to fish, no matter what the wine is: ( , ) ≽ ( , ′) ⇒ , ≽ , for all y ∈ Y

q Wine is not preferentially independent of food
q Attribute-specific valuation of wine is not meaningful from the meal’s perspective
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Mutual preferential independence

q Definition: Attributes A are mutually perferentially independent, if
any subset of attributes X⊂A is preferentially independent of the
other attributes Y=A\X. I.e., for any X⊂A, Y=A\X:

( , ) ≽ ( , ′) ⇒ , ≽ , for all y ∈ Y

q Interpretation: Preference over the levels of attributes X does not
depend on the levels of the other attributes, as long as they stay
the same

7.2.2019
8



Mutual preferential independence:
example
q Consider choosing a meal using three attributes:

1. Food ∈ {beef, fish}
2. Side dish ∈ {potato, rice}
3. Wine ∈ {red, white}

q Preferences:
1. All other things being equal, red ≽ white, beef ≽ fish, potato ≽ rice
2. Full meals:

o (beef, rice, red)≽(beef, potato, white)

o (fish, potato, white) ≽ (fish, rice, red)

Each attribute is preferentially independent of the other two, but the
attributes are not mutually preferentially independent:
( , , ) ≽ ( , , ) ⇏ , , ≽ , ,
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Mutual pref. independence: example 2

q Choosing a car w.r.t. attributes A={top speed, price, CO2
emissions}
q Attributes defined on continuous scales

q Are all A’s subsets (X) preferentially independent of the other
attributes (Y=A\X)?

q Each single attribute is preferentially independent of the other
attributes, because
q Lower price is preferred to higher price independent of other attributes (if other

attributes are equal)
q Higher top speed is preferred to lower
q Smaller emissions are preferred to bigger ones
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Mutual pref. independence: example 2
q Is X={price, CO2 emissions} pref. independent of Y={top speed}?

q Consider two cars which differ in price (e.g., 30000 e, 25000 e) and emissions
(150 g/km, 200 g/km) so that one of the alternatives is better in emissions and the
other in price. Set the same top speed for the alternatives (e.g. 230 km/h). Which
one is better?
q DM says (230 km/h, 30000 e, 150 g/km) ≻ (230 km/h, 25000 e, 200 g/km)
q = when top speed is 230 km/h, she is willing to pay extra 5000 € on top of 25000 € for

this emission reduction

q Change the top speed. Is the first car still preferred to the second? e.g. does (150
km/h, 30000 e, 150 g/km) ≻ (150 km/h, 25000 e, 200 g/km) hold?
q “No matter what the top speed is, (30000 e, 150 g/km) ≻ (25000 e, 200 g/km)”

q Consider other prices and emissions; does your preference hold for all top speeds?
q If varying the top speed does not influence preference between alternatives, then

{price, CO2 emissions} is preference independent of {top speed}
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Difference independence

q Definition: Attribute X is difference independent of the other
attributes Y if for all x,x’ ∈ X

( , ) ← ( , ′)~ ( , ) ← ( , ) for all ∈

q Interpretation: The preference over a change in attribute X does
not depend on the levels of the other attributes Y, as long as they
stay the same
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Difference independence: example

q Is {top speed} difference independent of the other attributes {price,
CO2 emissions}?
q Construct y and y’ from any two levels of price and CO2 emissions; y=(25000 e,

150 g/km) and y’=(30000 e, 200 g/km)
q Consider any two levels of top speed; x’=200 km/h, x=250 km/h
q Does (250 km/h, 30000 e, 200 g/km) ← (200 km/h, 30000 e, 200 g/km) ~d (250

km/h, 25000 e, 150 g/km) ← (200 km/h, 25000 e, 150 g/km) hold?
q If yes (for all x,x’,y,y’), then difference independence holds
q That is, does the value of increased top speed depend on the levels of other attributes or not?
q Is the ”amount of” value added by a fixed change in top speed independent of the other

attributes?
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Difference independence: example of
implication
q We are choosing downhill skiing accommodation with regard to 6

attributes, which include cost per night (in €) and possibility to go
to sauna (binary)
q We think that (170 e, sauna, x3, x4, …)~(145 e, no sauna, x3, x4, …) with some

x3,…,x6 = we would pay an additional 25 € on top of 145 € for the sauna, with some
x3,…,x6

q Then, if difference independence holds (for each attribute):
(145 e, no sauna, x3, x4, …) ← (170e, no sauna, x3, x4, …) ~d

(170 e, sauna, x3, x4, …) ← (170 e, no sauna, x3, x4, …) for any x3,…,x6

q For any x3,…,x6 = ”No matter how close to nearest ski lifts , no matter how fancy
the breakfast, how bad the reviews, etc.”
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Implication: “the improvement needed in an attribute to compensate a loss in
another attribute does not depend on the levels of other attributes”



Additive value function

Theorem: If all attributes are mutually preferentially independent and each
attribute is difference independent of the others, then there exists an additive
value function

= , … , = ( )

which represents preference relations ≽, ≽ in the sense that
≥ ⇔ ≽

− ≥ − ( ) ⇔ ( ← ) ≽ ( ← )

Note: The additive value function is unique up to positive affine transformations,
i.e., V(x) and V’(x)=αV(x)+β, α>0 represent the same preferences
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… But where are the attribute weights
?

Theorem: If all attributes are (…) , then there exists an
additive value function

= , … , = ( )

q Slide 3: Could the overall value be obtained by
aggregating attribute-specific values?

, , … = , … , = ( ) ?
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Normalized form of the additive value
function
q Denote

– = Least preferred level w.r.t to attribute i
– ∗ = Most preferred level w.r.t to attribute i

q Then,
= − + ( )

= ∑ −∑ + = ∑ [ − ] +

= ∑ [ ∗ − ] ∗ +

=∑ ∗ + ∗ + …

7.2.2019
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Normalized form of the additive value
function (cont’d)
…=∑ +

∈[ , ]

+

=∑ ∑
∑

,∑

( ) +

= ∑ ∑ ( )
( )

+

=χ +

= χ + is a positive affine transformation of
; they represent the same preferences!
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Normalized attribute-
specific value
function ( ) ∈
[0,1]

Normalized additive value function
( )=∑ ( ) ∈ [0,1]



Interpretation of attribute weights

q By definition, = ∑ =
∗

∑ ( ∗ )
∝ ∗ −

q Attribute weight reflects the increase in overall value when the performance level on
attribute ai is changed from the worst level to the best – relative to similar changes in
other attributes

q Weights thus reflect trade-offs between attributes; not their absolute ”importance”

q Elicitation of attribute weights without this interpretation is not meaningful
– Do not ask: ”What is more important: environment or economy?”
– Do ask: ”How much is society willing to pay to save an insect species?”
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Interpretation of attribute weights

q Correct interpretation and hence application of the weights may lead to
‘resistance’
q Let the least preferred and the most preferred levels in
q cost savings be 0 € and 1 B€ (“money”)
q the number of insect species saved from extinction in Finland be 0 and 1 (“environmental

aspects”)
q Environmental aspects are likely to receive a small weight, as for example weighting (0.5, 0.5)

would mean that we equally prefer saving 1 B€ and saving 1 species

q Cf. …. Let the least preferred and the most preferred levels in
q cost savings be 0 € and 1 B€
q the number of insect species saved from extinction in Finland be 0 and 100
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Conditions

q What if the conditions (mutual preferential independence and
difference independence) do not hold?

– Reconsider the attribute ranges [ , ∗];  conditions are more likely fulfilled
when the ranges are small

– Reconsider the attributes; are you using the right measures?

q Even if the conditions do not hold, additive value function is often
used to obtain approximate results

7.2.2019
21



Example (Ewing et al. 2006*): military
value of an installation
• “How to realign US Army units and which bases to close in order to

operate more cost-efficiently?”

• Many attributes, including ”total heavy maneuver area” (x1) and
”largest contiguous area” (x2; a measure of heavy maneuver area
quality)

- ”Total heavy maneuver area” is not difference independent of the other attributes x2
∪ ′′ because (1000 ha, 100 ha, y’’) ← (100 ha, 100 ha, y’’) ~d (1000 ha, 10 ha, y’’)
← (100 ha, 10 ha, y’’) as the ncrease from 100 to 1000 ha in total area is found quite
useless, if total area consists of over 100 small isolated pieces of land
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Example (Ewing et al. 2006*): military
value of an installation
q Solution: unite the two attributes x1 and x2 into one attribute ”heavy

maneuver area”
q Then (1000 ha, 100 ha, Y) ← (100 ha, 100 ha, Y) ≻d (1000 ha, 10 ha, Y) ← (100

ha, 10 ha, Y) does not violate required difference independence conditions
( , ) ← ( , ′)~ ( , ) ← ( , ) for all ∈ , because x2 is no longer an element
of y or y’

q BUT we need to elicit preferences between different ’pairs’ (x1, x2)
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Elicitation of attribute weights

q Attribute weights are derived from the DM’s preference
statements

q Approaches to eliciting attribute weights:
– Trade-off weighting
– ”Lighter” techniques: SWING, SMART(S), and ordinal methods
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Trade-off weighting

q The DM is asked to
1. Set the performance levels of two imaginary alternatives x and y such that they are equally

preferred (x~y):

+ ⋯+ = + ⋯+ , or

2. Set the performance levels of four imaginary alternatives x, x’, y, and y’ such that changes
x ← x’ and y ← y’ are equally preferred ( ← ′~ ← ′):

( − ) + ⋯+ ( − ) = ( − ) + ⋯+ ( − )

7.2.2019
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Trade-off weighting

q n-1 pairs of equally preferred alternatives/changes → n-1 linear
constraints + 1 normalization constraint

q If the pairs are suitably selected (no linear dependencies), the system
of n linear constraints has a unique solution

– E.g., select a reference attribute and compare the other attributes against it
– E.g., compare the ”most important” attribute to the second most important, the

second most important to the third most important etc

7.2.2019
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Trade-off weighting: example (1/7)

q Consider two magazines A and B reporting a comparison of cars
, , and , based on the same expert appraisal, using the

same attributes:

7.2.2019
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: Top speed
km/h

: Acceleration
0-100 km/h

: CO2
emissions g/km

: Maintenance
costs €/year

192 km/h 12.0 s 120 g/km 400 €/year

200 km/h 10.4 s 140 g/km 500 €/year

220 km/h 8.2 s 150 g/km 600 €/year



Trade-off weighting: example (2/7)

q Consider changing top speed (reference attribute) from 150 to
250 km/h. All other things being equal, what would be an equally
preferred change in

– Acceleration time? Expert’s answer: from 14 to 7 s ⇒

250 − 150 = 7 − 14 ⇒ =

– CO2 emissions? Expert’s answer: from 100 to 0 g/km ⇒

250 − 150 = 0 − 100 ⇒ =

– Maintenance costs? Expert’s answer: from 800 to o €/year ⇒

250 − 150 = 0 − 800 ⇒ =

7.2.2019
28



Trade-off weighting: example (3/7)
q Attribute-specific value functions according to the expert:
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Trade-off weighting: example (4/7)
q Magazine A uses the following measurement scales:

– = =

– = =

– = =

q The three equalities and ∑ = 1 give = = 0.39, = 0.12, = 0.10.
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Attribute Measurement scale

: Top speed (km/h) [150, 250] 180 = 0.5, 192 = 0. 7, 200 = 0.75, 220 = 0.87

: Acceleration time (s) [7, 14] 12 = 0.5, 10.4 = 0.75, 8.2 = 0.95

: CO2 emissions (g/km) [120, 150] 5 − /30

: Maintenance costs (€/year) [400,600] 3− /200

1
100
30 ( 120 − 150 )

1 =
10
3

800
200 ( 400 − 600 )

1 = 4



Trade-off weighting: example (5/7)
q Magazine A reports the alternatives’ attribute-specific values multiplied by 10

(i.e., scaled to interval [0,10]) and the attribute weights:

q Possible (mis)interpretations / ”headlines”:
– ”Only power matters – minor emphasis on costs and environment”
– ”Car terrible w.r.t. CO2 emissions and maintenance costs – yet, it’s the expert’s choice!”
– ”No significant differences in top speed – differences are in CO2 emissions and maintenance

costs”
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: Top speed : Acceleration : CO2 : Maintenance Overall value

7 5 10 10 6.86

7.5 7.5 3.3 5 6.76

8.7 9.5 0 0 7.14

Weights 39% 39% 12% 10%



Trade-off weighting: example (6/7)
q Magazine B uses the following measurement scales:

– 250 − 150 = 7 − 14 ⇒ = = . .
. .

= 0.378

– = =
. .

= 0.068

– = =
. .

= 0.136

q The three equalities and ∑ = 1 give = 0.039, = 0.103, = 0.572, = 0.286.
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Attribute M. scale

: Top speed [192, 220] 150 = −4.12, 180 = −1.18, 192 = 0, 200 = 0.29, 220 = 1, 250 = 1.76

: Acceleration [8.2, 12] 14 = −1.11, 12 = 0, 10.4 = 0.56, 8.2 = 1, 7 = 1.11

: CO2 emissions [0, 250] 1− /250

: Maintenance [0,1000] 1− /1000



Trade-off weighting: example (7/7)
q Magazine B reports the alternatives’ attribute-specific values multiplied by 10

(i.e., scaled to interval [0,10]) and the attribute weights:

q Possible (mis)interpretations:
– ”Emphasis on costs and environmental issues”
– ” wins only on the least important attributes – yet, it’s the expert’s choice!”

– ”Car terrible w.r.t. top speed and acceleration time”
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: Top speed : Acceleration : CO2 : Maintenance Overall value

0 0 5.2 6 4.7

2.9 5.6 4.4 5 4.6

10 10 4 4 4.9

Weights 3.9% 10.3% 57.2% 28.6%



Trade-off weighting

q Weights reflect value differences over the measurement scales →
changing the measurement scales changes the weights

q The attribute-specific values used in trade-off weighting take the
measurement scales explicitly into account → weights represent
the DM’s preferences regardless of the measurement scales

q Trade-off weighting has a solid theoretical foundation and requires
thinking; use whenever possible
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SWING

q Swing-weighting process:
1. Consider alternative = ( , … , ) (each attribute on the worst level).
2. Choose the attribute that you would first like to change to its most

preferred level ∗ (i.e., the attribute for which such a change is the most
valuable). Give that attribute a (non-normalized) weight = 100.

3. Consider again. Choose the next attribute that you would like to
change to its most preferred level. Give it weight ∈ 0,100 that reflects
this improvement relative to the first one.

4. Repeat step 3 until all attributes have been weighted.
5. Obtain weights by normalizing .
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SWING: example

q Magazine A’s measurement scales

– Alternative = 150 , 14 , 150 , 600 €

– The first attribute to be changed from the worst to
the best level: → = 100

– The second attribute: → = 100
– The third attribute: → = 30
– The fourth attribute: → = 20
– Normalized weights: = = 40% =

12%, = 8%.
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Attribute Measurement
scale

: Top speed [150, 250]

: Acceleration [7, 14]

: CO2 emissions [120, 150]

: Maintenance [400,600]



About SWING weighting

q The mode of questioning explicitly (but only) considers the
least and most preferred levels of the attributes
q Assumes that the DM can directly numerically assess the strength of preference of

changes between these levels

q NOTE that we only have two preference relations: ≽ and ≽
q For example preference statement = 100, = 20 is equal to ∗ −

= 5[ ∗ − ], which assumes that there exist levels . , . , . ,
. so that . ⟵ ∼ . ⟵ . ∼ … ∼ ( ∗ ⟵ . )

q Then ∗ − = 5 . − = 5[ ∗ − ] if ( . , , , ) ⟵
( , , , ) ∼ ( , , , ∗) ⟵ ( , , , )
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SMART

q Simple Multi-Attribute Rating Technique process:
1. Select the least important attribute and give it a weight of 10 points.
2. Select the second least important attribute and give it a weight (≥10 points) that

reflects its importance compared to the least important attribute.
3. Go through the remaining attributes in ascending order of importance and give

them weights that reflect their importance compared to the less important
attributes.

4. Normalize the weights.

q This process does not consider the measurement scales at all →
interpretation of weights is questionable
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SMARTS

SMARTS = SMART using Swings
1. Select the attribute corresponding to the least preferred change from

worst to best level and give it a weight of 10 points.
2. Go through the remaining attributes in ascending order of preference over

changing the attribute from the worst to the best level, and give them
weights that reflect their importance compared to the less preferred
changes.

3. Normalize the weights.
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SMARTS: example

q Magazine A’s measurement scales

– Alternative = 150 , 14 , 150 , 600 €

– Least preferred change from the worst to the best
level: → = 10

– The second least preferred change: → = 20
– The third least preferred change : → = 40
– The fourth least preferred change: → = 40
– Normalized weights: = = 36%, =

18%, = 9%.
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Attribute Measurement
scale

: Top speed [150, 250]

: Acceleration [7, 14]

: CO2 emissions [120, 150]

: Maintenance [400,600]



Empirical problems related to SWING &
SMARTS
q People tend to use only multiples of 10 when assessing the

weights, e.g.,
– SWING: = = 100, = 30, = 20 → = = 0.40, = 0.12, = 0.08
– SMARTS: = = 40, = 20, = 10 → = = 0.36, = 0.18, = 0.09

� SWING and SMARTS typically produce different weights

q Assessments may reflect only ordinal, not cardinal information
about the weights

– E.g., SMARTS weights = 10 and = 20 only imply that < , not that
/ =2
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Summary
q Additive value function describes the DM’s preferences if and only if the

attributes are mutually preferentially independent and each attribute is
difference independent of the others

q The only meaningful interpretation for attribute weight :

The improvement in overall value when attribute is changed from its worst
level to its best relative to similar changes in other attributes

q In trade-off weighting, attribute weights are elicited by specifying equally
preferred alternatives (or changes in alternatives), which differ from each
other on at least two attributes
q Use trade-off weighting whenever possible
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