
Special course on Gaussian processes:
Session #5

Markus Heinonen
Aalto University

users.aalto.fi/heinom10

Feb 6, 2019

users.aalto.fi/heinom10

Outline

1 Part 0: Recap

2 Part 1: spectral kernels

3 Part 2: Non-stationary and heteroscedastic GPs

Kernel method

Kernel ridge regression

f(x∗) =

N∑
i=1

αi︸︷︷︸
weight

K(x∗,xi)︸ ︷︷ ︸
similarity

α = (KXX +λI︸︷︷︸
regulariser

)−1y ∈ RN

Gaussian kernel (similarity)

K(x,x′) = exp

(
−||x− x′||2

2`2

)

x1

x2

x1

x2

x*

x1

x2

Kernel “trick”

Why do we get non-linearity?

Basis expansion
K(x,x′) = 〈φ(x), φ(x′)〉

with
f(x) = wTφ(x)

I Gaussian kernel considers infinite number of monomials xi

φgauss(x) = e−x
2/2`2

[
1,

1
√
1!`2

x,
1

√
2!`4

x2, . . .

x1

x2

φ : R2 7→ F

Gaussian process prior

Bayesian non-parametric kernel model for learning from data

Key idea: function prior f(x) ∼ GP(m(x),Kθ(x, x
′)) that encodes

p

 f(x1)
...

f(xN)

 = N

 f(x1)

...
f(xN)

︸ ︷︷ ︸

f

∣∣∣∣∣
m(x1)

...
m(xN)

︸ ︷︷ ︸

m

,

Kθ(x1, x1) · · · Kθ(1, xN)
...

. . .
...

Kθ(N , x1) · · · Kθ(N , xN)

︸ ︷︷ ︸

Kθ

Gaussian process posterior (regression)

Observed noisy data values y = (y1, . . . , yN) at N inputs X = (x1, . . . ,xN)

Assume Gaussian likelihood N (yi|f(xi), σ
2
n) and prior f(x) ∼ GP(0,Kθ)

Posterior p(f?|y, X) ∼ N (µ?,Σ?) for N? new test points X? = (x?1, . . . , x
?
N?) with

E[f?|y, X] = µ? = K(X?, X) (K(X,X) + σ2
nI)−1y︸ ︷︷ ︸

α

Cov[f?|y, X] = Σ? = K(X?, X?)−K(X?, X)(K(X,X) + σ2
nI)−1K(X,X?)

I The mean is equal to non-probabilistic kernel regression f(x) =
∑
i αiK(x, xi) with

λ = σ2
n

I GP model “adds variances” to kernel machines

Gaussian process posterior (regression)

Observed noisy data values y = (y1, . . . , yN) at N inputs X = (x1, . . . ,xN)

Assume Gaussian likelihood N (yi|f(xi), σ
2
n) and prior f(x) ∼ GP(0,Kθ)

Posterior p(f?|y, X) ∼ N (µ?,Σ?) for N? new test points X? = (x?1, . . . , x
?
N?) with

E[f?|y, X] = µ? = K(X?, X) (K(X,X) + σ2
nI)−1y︸ ︷︷ ︸

α

Cov[f?|y, X] = Σ? = K(X?, X?)−K(X?, X)(K(X,X) + σ2
nI)−1K(X,X?)

I The mean is equal to non-probabilistic kernel regression f(x) =
∑
i αiK(x, xi) with

λ = σ2
n

I GP model “adds variances” to kernel machines

Gaussian process posterior (regression)

Observed noisy data values y = (y1, . . . , yN) at N inputs X = (x1, . . . ,xN)

Assume Gaussian likelihood N (yi|f(xi), σ
2
n) and prior f(x) ∼ GP(0,Kθ)

Posterior p(f?|y, X) ∼ N (µ?,Σ?) for N? new test points X? = (x?1, . . . , x
?
N?) with

E[f?|y, X] = µ? = K(X?, X) (K(X,X) + σ2
nI)−1y︸ ︷︷ ︸

α

Cov[f?|y, X] = Σ? = K(X?, X?)−K(X?, X)(K(X,X) + σ2
nI)−1K(X,X?)

I The mean is equal to non-probabilistic kernel regression f(x) =
∑
i αiK(x, xi) with

λ = σ2
n

I GP model “adds variances” to kernel machines

Gaussian process posterior (regression)

Observed noisy data values y = (y1, . . . , yN) at N inputs X = (x1, . . . ,xN)

Assume Gaussian likelihood N (yi|f(xi), σ
2
n) and prior f(x) ∼ GP(0,Kθ)

Posterior p(f?|y, X) ∼ N (µ?,Σ?) for N? new test points X? = (x?1, . . . , x
?
N?) with

E[f?|y, X] = µ? = K(X?, X) (K(X,X) + σ2
nI)−1y︸ ︷︷ ︸

α

Cov[f?|y, X] = Σ? = K(X?, X?)−K(X?, X)(K(X,X) + σ2
nI)−1K(X,X?)

I The mean is equal to non-probabilistic kernel regression f(x) =
∑
i αiK(x, xi) with

λ = σ2
n

I GP model “adds variances” to kernel machines

2D posterior example

How to learn a kernel?

Choose a prior with maximum amount of functions that match the data D

log p(y|θ) =

∫
p(y|f)p(f |θ)df

= −1

2
yT (Kθ + σ2I)−1y︸ ︷︷ ︸

data fit

−1

2
log |Kθ + σ2I|︸ ︷︷ ︸

model complexity

−N
2

log 2π

Integral has convenient only with Gaussian likelihoods (ie. regression)

Non-Gaussian likelihoods warrant eg. variational inference

Minimizes overfitting
I Determinant captures the volume of the data cloud in the kernel feature space
I Finds a simple basis for the data

Extremely powerful formalism to learn kernels
I No need for model selection cross-validation
I We can differentiate log p(y|θ) and apply gradient optimisation for parameters θ

How to learn a kernel?

Choose a prior with maximum amount of functions that match the data D

log p(y|θ) =

∫
p(y|f)p(f |θ)df

= −1

2
yT (Kθ + σ2I)−1y︸ ︷︷ ︸

data fit

−1

2
log |Kθ + σ2I|︸ ︷︷ ︸

model complexity

−N
2

log 2π

Integral has convenient only with Gaussian likelihoods (ie. regression)

Non-Gaussian likelihoods warrant eg. variational inference

Minimizes overfitting
I Determinant captures the volume of the data cloud in the kernel feature space
I Finds a simple basis for the data

Extremely powerful formalism to learn kernels
I No need for model selection cross-validation
I We can differentiate log p(y|θ) and apply gradient optimisation for parameters θ

How to learn a kernel?

Choose a prior with maximum amount of functions that match the data D

log p(y|θ) =

∫
p(y|f)p(f |θ)df

= −1

2
yT (Kθ + σ2I)−1y︸ ︷︷ ︸

data fit

−1

2
log |Kθ + σ2I|︸ ︷︷ ︸

model complexity

−N
2

log 2π

Integral has convenient only with Gaussian likelihoods (ie. regression)

Non-Gaussian likelihoods warrant eg. variational inference

Minimizes overfitting
I Determinant captures the volume of the data cloud in the kernel feature space
I Finds a simple basis for the data

Extremely powerful formalism to learn kernels
I No need for model selection cross-validation
I We can differentiate log p(y|θ) and apply gradient optimisation for parameters θ

Recap (regression setting)

1 Gaussian process prior on inputs x ∈ RD, output y ∈ R,

f(x) ∼ GP(m(x),K(x,x′)) (1)

⇔ (2)

p(f) = N (f |m,KXX) (3)

E[f(x)] = m(x) (4)

cov[f(x), f(x′)] = K(x,x′) (5)

for inputs X = (x1, . . . ,xN)T ∈ RN×D, functions f = (f(x1), . . . , f(xN))T ∈ RN
and means m = (m(x1), . . . ,m(xN))T ∈ RN ,

2 Predictive (regression) posterior f(x)|(X,y) ∼ N (µ(x), σ(x)2)

µ(x) = KxX(KXX + σ2
nIN)−1y (6)

σ(x)2 = Kxx −KxX(KXX + σ2
nIN)−1KXx (7)

3 Optimization criteria (‘loss function’) for hyperparameters θ

p(y|θ) =

∫
p(y|f)p(f |θ)dx = N (y|0,Kθ(X,X) + σ2

nIN)

Recap (regression setting)

1 Gaussian process prior on inputs x ∈ RD, output y ∈ R,

f(x) ∼ GP(m(x),K(x,x′)) (1)

⇔ (2)

p(f) = N (f |m,KXX) (3)

E[f(x)] = m(x) (4)

cov[f(x), f(x′)] = K(x,x′) (5)

for inputs X = (x1, . . . ,xN)T ∈ RN×D, functions f = (f(x1), . . . , f(xN))T ∈ RN
and means m = (m(x1), . . . ,m(xN))T ∈ RN ,

2 Predictive (regression) posterior f(x)|(X,y) ∼ N (µ(x), σ(x)2)

µ(x) = KxX(KXX + σ2
nIN)−1y (6)

σ(x)2 = Kxx −KxX(KXX + σ2
nIN)−1KXx (7)

3 Optimization criteria (‘loss function’) for hyperparameters θ

p(y|θ) =

∫
p(y|f)p(f |θ)dx = N (y|0,Kθ(X,X) + σ2

nIN)

Recap (regression setting)

1 Gaussian process prior on inputs x ∈ RD, output y ∈ R,

f(x) ∼ GP(m(x),K(x,x′)) (1)

⇔ (2)

p(f) = N (f |m,KXX) (3)

E[f(x)] = m(x) (4)

cov[f(x), f(x′)] = K(x,x′) (5)

for inputs X = (x1, . . . ,xN)T ∈ RN×D, functions f = (f(x1), . . . , f(xN))T ∈ RN
and means m = (m(x1), . . . ,m(xN))T ∈ RN ,

2 Predictive (regression) posterior f(x)|(X,y) ∼ N (µ(x), σ(x)2)

µ(x) = KxX(KXX + σ2
nIN)−1y (6)

σ(x)2 = Kxx −KxX(KXX + σ2
nIN)−1KXx (7)

3 Optimization criteria (‘loss function’) for hyperparameters θ

p(y|θ) =

∫
p(y|f)p(f |θ)dx = N (y|0,Kθ(X,X) + σ2

nIN)

Outline

1 Part 0: Recap

2 Part 1: spectral kernels

3 Part 2: Non-stationary and heteroscedastic GPs

Which kernel to choose?

Gaussian kernel Kg(x, x
′) = exp

(
− (x−x′)2

2`2

)
Periodic kernel Kcos(x, x

′) = exp
(
− 2 sin2(π|x−x′|/p

`2
)
)

Linear kernel Klin(x, x′) = xx′ + c

Kernel sum K(x, x′) = Kg(x, x
′) +Klin(x, x′)

Spectral kernels can learn arbitrary kernel forms
I The topic of today’s lecture

Fourier transforms

Fourier transform S(ω) of a function f(x),

S(ω) =

∫ ∞
−∞

f(x)e−2πixωdx

where
I i is the imaginary number with i2 = −1 and i0 = 1
I ω is a frequency

Inverse Fourier transform f(x) of spectral density S(ω),

f(x) =

∫ ∞
−∞

S(ω)e2πixωdω

Euler’s identity helps compute Fouriers in practise

eix = cosx︸ ︷︷ ︸
real part

+ i · sinx︸ ︷︷ ︸
complex part

where the complex part is often designed to cancel out (or simply ignored)

Hence,

e−2πixω = cos(2πxω)− i sin(2πxω)

e2πixω = cos(2πxω) + i sin(2πxω)

Fourier transforms

Fourier transform S(ω) of a function f(x),

S(ω) =

∫ ∞
−∞

f(x)e−2πixωdx

where
I i is the imaginary number with i2 = −1 and i0 = 1
I ω is a frequency

Inverse Fourier transform f(x) of spectral density S(ω),

f(x) =

∫ ∞
−∞

S(ω)e2πixωdω

Euler’s identity helps compute Fouriers in practise

eix = cosx︸ ︷︷ ︸
real part

+ i · sinx︸ ︷︷ ︸
complex part

where the complex part is often designed to cancel out (or simply ignored)

Hence,

e−2πixω = cos(2πxω)− i sin(2πxω)

e2πixω = cos(2πxω) + i sin(2πxω)

Fourier transforms

Fourier transform S(ω) of a function f(x),

S(ω) =

∫ ∞
−∞

f(x)e−2πixωdx

where
I i is the imaginary number with i2 = −1 and i0 = 1
I ω is a frequency

Inverse Fourier transform f(x) of spectral density S(ω),

f(x) =

∫ ∞
−∞

S(ω)e2πixωdω

Euler’s identity helps compute Fouriers in practise

eix = cosx︸ ︷︷ ︸
real part

+ i · sinx︸ ︷︷ ︸
complex part

where the complex part is often designed to cancel out (or simply ignored)

Hence,

e−2πixω = cos(2πxω)− i sin(2πxω)

e2πixω = cos(2πxω) + i sin(2πxω)

Fourier transforms

Fourier transform S(ω) of a function f(x),

S(ω) =

∫ ∞
−∞

f(x)e−2πixωdx

where
I i is the imaginary number with i2 = −1 and i0 = 1
I ω is a frequency

Inverse Fourier transform f(x) of spectral density S(ω),

f(x) =

∫ ∞
−∞

S(ω)e2πixωdω

Euler’s identity helps compute Fouriers in practise

eix = cosx︸ ︷︷ ︸
real part

+ i · sinx︸ ︷︷ ︸
complex part

where the complex part is often designed to cancel out (or simply ignored)

Hence,

e−2πixω = cos(2πxω)− i sin(2πxω)

e2πixω = cos(2πxω) + i sin(2πxω)

Fourier duals

Let’s apply Fouriers to the function K(τ) ≡ K(x−x′) = K(x, x′), where τ = x−x′

Theorem (Bochner)

Any stationary kernel K : RD 7→ R and its spectral density S : RD 7→ R are Fourier duals

K(x− x′) ≡ K(τ) =

∫ ∞
−∞

S(ω)e2πiω
T τdω (Inverse Fourier Transform)

S(ω) =

∫ ∞
−∞

K(τ)e−2πiωT τdτ, (Fourier Transform)

where τ = x− x′.

1 All stationary kernels have spectral density S(ω) where ω is a frequency
I If someone gives you a kernel K(τ), we can solve what frequencies it considers by

solving the (FT)
I Studying known kernel’s frequency representations usually of theoretical interest

2 All spectral densities define a covariance function K(τ)
I If someone gives you a spectral density S(ω), we can solve its similarity function

(=kernel) by solving the (IFT)
I If we change the spectral density, we get a new kernel
I ⇒ kernel learning (!)

Fourier duals

Let’s apply Fouriers to the function K(τ) ≡ K(x−x′) = K(x, x′), where τ = x−x′

Theorem (Bochner)

Any stationary kernel K : RD 7→ R and its spectral density S : RD 7→ R are Fourier duals

K(x− x′) ≡ K(τ) =

∫ ∞
−∞

S(ω)e2πiω
T τdω (Inverse Fourier Transform)

S(ω) =

∫ ∞
−∞

K(τ)e−2πiωT τdτ, (Fourier Transform)

where τ = x− x′.

1 All stationary kernels have spectral density S(ω) where ω is a frequency
I If someone gives you a kernel K(τ), we can solve what frequencies it considers by

solving the (FT)
I Studying known kernel’s frequency representations usually of theoretical interest

2 All spectral densities define a covariance function K(τ)
I If someone gives you a spectral density S(ω), we can solve its similarity function

(=kernel) by solving the (IFT)
I If we change the spectral density, we get a new kernel
I ⇒ kernel learning (!)

Fourier duals

Let’s apply Fouriers to the function K(τ) ≡ K(x−x′) = K(x, x′), where τ = x−x′

Theorem (Bochner)

Any stationary kernel K : RD 7→ R and its spectral density S : RD 7→ R are Fourier duals

K(x− x′) ≡ K(τ) =

∫ ∞
−∞

S(ω)e2πiω
T τdω (Inverse Fourier Transform)

S(ω) =

∫ ∞
−∞

K(τ)e−2πiωT τdτ, (Fourier Transform)

where τ = x− x′.

1 All stationary kernels have spectral density S(ω) where ω is a frequency
I If someone gives you a kernel K(τ), we can solve what frequencies it considers by

solving the (FT)
I Studying known kernel’s frequency representations usually of theoretical interest

2 All spectral densities define a covariance function K(τ)
I If someone gives you a spectral density S(ω), we can solve its similarity function

(=kernel) by solving the (IFT)
I If we change the spectral density, we get a new kernel
I ⇒ kernel learning (!)

Fourier duals

Let’s apply Fouriers to the function K(τ) ≡ K(x−x′) = K(x, x′), where τ = x−x′

Theorem (Bochner)

Any stationary kernel K : RD 7→ R and its spectral density S : RD 7→ R are Fourier duals

K(x− x′) ≡ K(τ) =

∫ ∞
−∞

S(ω)e2πiω
T τdω (Inverse Fourier Transform)

S(ω) =

∫ ∞
−∞

K(τ)e−2πiωT τdτ, (Fourier Transform)

where τ = x− x′.

1 All stationary kernels have spectral density S(ω) where ω is a frequency
I If someone gives you a kernel K(τ), we can solve what frequencies it considers by

solving the (FT)
I Studying known kernel’s frequency representations usually of theoretical interest

2 All spectral densities define a covariance function K(τ)
I If someone gives you a spectral density S(ω), we can solve its similarity function

(=kernel) by solving the (IFT)
I If we change the spectral density, we get a new kernel
I ⇒ kernel learning (!)

Kernel sinusoid representation

Assume symmetric frequency distribution S(ω) = S(−ω)

Euler’s identity e±ix = cosx± i sinx
Sine identity sin(−x) = − sin(x)

Then we can solve the inverse Fourier as

K(τ) =

∫ ∞
−∞

S(ω)e2πiτωdω

=

∫ ∞
−∞

S(ω) cos(2πτω)dω +

∫ ∞
−∞

i · S(ω) sin(2πτω)dω

= ES(ω) cos(2πτω) +

∫ 0

−∞
i · S(ω) sin(2πτω)dω +

∫ ∞
0

i · S(ω) sin(2πτω)dω

= ES(ω) cos(2πτω) +

∫ ∞
0

iS(−ω) sin(2πτ(−ω))dω +

∫ ∞
0

iS(ω) sin(2πτω)dω

= ES(ω) cos(2πτω) +

∫ ∞
0

−iS(ω) sin(2πτω)dω +

∫ ∞
0

iS(ω) sin(2πτω)dω

= ES(ω) cos(2πτω)

Hence, all stationary kernels are S(ω)-weighted combinations of sinusoids cos(2πτω)

Kernel sinusoid representation

Assume symmetric frequency distribution S(ω) = S(−ω)

Euler’s identity e±ix = cosx± i sinx
Sine identity sin(−x) = − sin(x)

Then we can solve the inverse Fourier as

K(τ) =

∫ ∞
−∞

S(ω)e2πiτωdω

=

∫ ∞
−∞

S(ω) cos(2πτω)dω +

∫ ∞
−∞

i · S(ω) sin(2πτω)dω

= ES(ω) cos(2πτω) +

∫ 0

−∞
i · S(ω) sin(2πτω)dω +

∫ ∞
0

i · S(ω) sin(2πτω)dω

= ES(ω) cos(2πτω) +

∫ ∞
0

iS(−ω) sin(2πτ(−ω))dω +

∫ ∞
0

iS(ω) sin(2πτω)dω

= ES(ω) cos(2πτω) +

∫ ∞
0

−iS(ω) sin(2πτω)dω +

∫ ∞
0

iS(ω) sin(2πτω)dω

= ES(ω) cos(2πτω)

Hence, all stationary kernels are S(ω)-weighted combinations of sinusoids cos(2πτω)

Kernel sinusoid representation

General kernel definition

K(τ) = ES(ω) cos(2πτω)

Frequency ω is inverse of period 1/ω

Frequencies are symmetric S(ω) = S(−ω)

With S(ω) = δ1/15(ω), the kernel becomes K(τ) = cos(2πτ 1
15

)

-20 -10 0 10 20

Input distance x - x'

-2

-1

0

1

2

Cosine kernel

Period of 15

Amplitude of 2

-0.1 0 0.1

Frequency

0

0.5

1

1.5

2

Spectral density

Frequency 1/15

Gaussian kernel sinusoids

Gaussian kernel KSE(τ) = exp(−τ2/`2) fourier representation

SSE(ω) =

∫ ∞
−∞

KSE(τ)e−2πiωT τdτ

= 2π`2 exp(−2π2`2ω2)

KSE(τ) =

∫ ∞
0

SSE(ω)︸ ︷︷ ︸
amplitudes

· cos(2πτω)︸ ︷︷ ︸
sinusoids

dω

≈
∑
ω

SSE(ω) · cos(2πτω)

Gaussian kernel sinusoids

Gaussian kernel KSE(τ) = exp(−τ2/`2) fourier representation

SSE(ω) =

∫ ∞
−∞

KSE(τ)e−2πiωT τdτ

= 2π`2 exp(−2π2`2ω2)

KSE(τ) =

∫ ∞
0

SSE(ω)︸ ︷︷ ︸
amplitudes

· cos(2πτω)︸ ︷︷ ︸
sinusoids

dω

≈
∑
ω

SSE(ω) · cos(2πτω)

Some spectral densities

Kgauss(τ) = exp(−τ
2

`2
) Sgauss(ω) =

√
`

2
√
π

exp(−`ω2/4)

Kexp(τ) = exp(−|τ |/`) Sexp(ω) = 1/(π/`+ π`ω2)

Ktri(τ) = 0.5(1− |τ |)+ Stri(ω) = (1− cosω)/(πω2)

-4 -2 0 2 4

Distance

0

0.2

0.4

0.6

0.8

1
Kernel

Gauss
Exp
Triangular

-20 -10 0 10 20

Frequency

0

0.1

0.2

0.3

0.4
Spectral density

Gauss
Exp
Triangular

Can we construct new kernels from custom spectral densities?

Lazaro-Gredilla: Sparse Spectrum (SS) kernel

Define Q real frequencies (ω1, . . . , ωQ)T ∈ RQ with Fourier dual1

S(ω) :=
1

Q

Q∑
i=1

δ(ω = ωi)

⇒ K(τ) =
1

Q

Q∑
i=1

cos(2πτωi)

Highly structured covariance, no decay, prone to overfitting

1Lazaro-Gredilla, Quinonero-Candela, Rasmussen, Figueiras-Vida (JMLR 2010) Sparse spectrum gaussian
process regression

Lazaro-Gredilla: Sparse Spectrum (SS) kernel

Define Q real frequencies (ω1, . . . , ωQ)T ∈ RQ with Fourier dual1

S(ω) :=
1

Q

Q∑
i=1

δ(ω = ωi)

⇒ K(τ) =
1

Q

Q∑
i=1

cos(2πτωi)

Highly structured covariance, no decay, prone to overfitting

1Lazaro-Gredilla, Quinonero-Candela, Rasmussen, Figueiras-Vida (JMLR 2010) Sparse spectrum gaussian
process regression

Wilson: Spectral Mixture (SM) kernel

Define mixture of Q Gaussians {aiN (µi, σ
2
i)}Qi=1

2

S(ω) :=

Q∑
i=1

aiN (ω|µi, σ2
i)

⇒ K(τ) =

∫ ∞
−∞

S(ω) cos(2πτω)dω

=

Q∑
i=1

ai exp(−2π2σ2
i τ

2)︸ ︷︷ ︸
smooth decay

cos(2πτµi)︸ ︷︷ ︸
periodic

Dense in the set of stationary kernels ⇒ can generate any stationary kernel

2Wilson, Adams (ICML 2013) Gaussian process kernels for pattern discovery and extrapolation

Wilson: Spectral Mixture (SM) kernel

Define mixture of Q Gaussians {aiN (µi, σ
2
i)}Qi=1

2

S(ω) :=

Q∑
i=1

aiN (ω|µi, σ2
i)

⇒ K(τ) =

∫ ∞
−∞

S(ω) cos(2πτω)dω

=

Q∑
i=1

ai exp(−2π2σ2
i τ

2)︸ ︷︷ ︸
smooth decay

cos(2πτµi)︸ ︷︷ ︸
periodic

Dense in the set of stationary kernels ⇒ can generate any stationary kernel

2Wilson, Adams (ICML 2013) Gaussian process kernels for pattern discovery and extrapolation

Wilson: Spectral Mixture (SM) kernel

Approximate gaussian kernel with SM kernel with Q = 5 components, i.e.

Q∑
i=1

ai exp(−2π2σ2
i τ

2) cos(2πτµi) ≈ exp

(
(x− x′)2

2`2

)
for certain ai, µi, σi

Spectral kernels

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: (a)-(d): Examples of kernel matrices on inputs x 2 [�1, 1] for a Gaussian kernel (a), sparse
spectrum kernel [13] (b), spectral mixture kernel [28] (c), and for the GSM kernel (d). (e)-(h): The
corresponding generalised spectral density surfaces of the four kernels. (i)-(l): The corresponding
spectrograms, that is, input-dependent frequency amplitudes. The GSM kernel is highlighted with a
spectrogram mixture of Q = 2 Gaussian process surface functions.

the frequencies µ(x), µ(x0) and frequency lengthscales `(x), `(x0) associated with both inputs. The
GSM kernel encodes the spectrogram surface mixture into a relatively simple kernel. The kernel
reduces to the stationary Spectral Mixture (SM) kernel [28] with constant functions wi(x) = wi,
µi(x) = µi and `i(x) = 1/(2⇡�i) (see the appendix).

We have presented the proposed kernel (7) for univariate inputs for simplicity. The kernel can be
extended to multivariate inputs in a straightforward manner using the generalised Fourier transform
with vector-valued inputs [2, 10]. However, since in many applications multivariate inputs have a
grid-like structure, for instance in geostatistics, image analysis and temporal models. We exploit this
assumption and propose a multivariate extension that assumes the inputs to decompose across input
dimensions [1, 28]:

kGSM(x,x0|✓) =
PY

p=1

kGSM(xp, x
0
p|✓p) . (8)

Here x,x0 2 RP , ✓ = (✓1, . . . ,✓P) collects the dimension-wise kernel parameters ✓p =

(wip, `ip, µip)
Q
i=1 of the N -dimensional realisations wip, `ip, µip 2 RN per dimension p. Then, the

kernel matrix can be expressed using Kronecker products as K✓ = K✓1
⌦ · · · ⌦K✓P

, while missing
values and data not on a regular grid can be handled with standard techniques [1, 21, 27].

3 Inference

We use the Gaussian process regression framework and assume a Gaussian likelihood over NP data
points (xj , yj)

NP

j=1 with all outputs collected into a vector y 2 RNP

,

yj = f(xj) + "j , "j ⇠ N (0,�2
n)

f(x) ⇠ GP(0, kGSM(x,x0|✓)), (9)

4

Image from Remes, Heinonen, Kaski: Non-stationary spectral kernels, NIPS’17

SM kernel inference

Optimize 3Q hyperparameters θ = {ai, µi, σi}Qi=1 of kernel
Kθ(x− x′) =

∑Q
i=1 ai exp(−2π2σi

2τ2) cos(2πτµi) by maximizing

log p(y|θ) = −1

2
yT (Kθ + σ2I)−1y︸ ︷︷ ︸

data fit

−1

2
log |Kθ + σ2I|︸ ︷︷ ︸

model complexity

−N
2

log 2π

After kernel is fixed, predictions have closed form

Results, CO2

1968 1977 1986 1995 2004

320

340

360

380

400

Year

CO
2 C

on
ce

nt
ra

tio
n

(p
pm

)

95% CR
Train
Test
MA
RQ
PER
SE
SM

(c)

0 0.2 0.4 0.6 0.8 1 1.2−10

−5

0

5

10

15

20

Frequency (1/month)

Lo
g

Sp
ec

tra
l D

en
si

ty

SM
SE
Empirical

(d)

24 / 70

Spatio-temporal temperatures

Land Surface Temperature Forecasting

I Train using 9 years of temperature data. First two rows are the last 12 months
of training data, last two rows is a 12 month ahead forecast. 300, 000 data
points, with 40% missing data (from ocean).

I Predictions using GPatt. Training time < 30 minutes.

−40
−20
0
20
40

51 / 70

Learned Kernels for Land Surface Temperatures

0 50 100
0

0.5

1

Time [mon]
0 50

0.2
0.4
0.6
0.8

Y [Km]
0 50

0

0.5

1
C

or
re

la
tio

ns

X [Km]

(a) Learned GPatt Kernel for Temperatures

0 5

0.2
0.4
0.6
0.8

Time [mon]
0 50

0.2
0.4
0.6
0.8

Y [Km]
0 20 40

0.2
0.4
0.6
0.8

C
or

re
la

tio
ns

X [Km]

(b) Learned GP-SE Kernel for Temperatures

I The learned GPatt kernel tells us interesting properties of the data. In this case,
the learned kernels are heavy tailed and quasi-periodic.

52 / 70

SM kernel induces only stationary covariances, but temperatures are non-stationary

Outline

1 Part 0: Recap

2 Part 1: spectral kernels

3 Part 2: Non-stationary and heteroscedastic GPs

Heteroscedastic Gaussian process

Standard Gaussian process assumes additive zero-mean noise model

y(x) = f(x) + ε��(x) (8)

ε��(x) ∼ N (0, σ2
n) (9)

where all noises are zero mean with constant variance σ2
n

Heteroscedastic model assumes input-dependent noise:

ε(x) ∼ N (0, σn(x)2)

More complex (non-Gaussian) noise models are sometimes used
The function σn(x)2 can be another Gaussian process (!)

Most Likely Heteroscedastic Gaussian Process Regression

Kristian Kersting kersting@csail.mit.edu

CSAIL, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139-4307, USA

Christian Plagemann plagem@informatik.uni-freiburg.de
Patrick Pfaff pfaff@informatik.uni-freiburg.de
Wolfram Burgard burgard@informatik.uni-freiburg.de

Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 079, 79110 Freiburg, Germany

Abstract

This paper presents a novel Gaussian pro-
cess (GP) approach to regression with input-
dependent noise rates. We follow Gold-
berg et al.’s approach and model the noise
variance using a second GP in addition to the
GP governing the noise-free output value. In
contrast to Goldberg et al., however, we do
not use a Markov chain Monte Carlo method
to approximate the posterior noise variance
but a most likely noise approach. The re-
sulting model is easy to implement and can
directly be used in combination with various
existing extensions of the standard GPs such
as sparse approximations. Extensive experi-
ments on both synthetic and real-world data,
including a challenging perception problem in
robotics, show the effectiveness of most likely
heteroscedastic GP regression.

1. Introduction

Gaussian processes (GPs) have emerged as a powerful
yet practical tool for solving various machine learning
problems such as non-linear regression or multi-class
classification (Williams, 1998). The increasing popu-
larity is due to the fact that non-linear problems can be
solved in a principled Bayesian framework for learning,
model selection, and density estimation while the basic
model just requires relatively simple linear algebra. An
important practical problem, that has been addressed
in the recent literature, is to relax the assumption of
constant noise made in the standard GP model. In
many real-world problems, the local noise rates are

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

important features of data distributions that have to
be modeled accurately. Consider for example the Mo-
torcycle benchmark dataset depicted in Fig. 1. While
the standard GP regression model quite accurately es-
timates the mean of the sought after distribution, it
clearly overestimates the data variance in some areas
and underestimates it in others. In contrast, taking

0 10 20 30 40 50 60
−200

−150

−100

−50

0

50

100

Time (ms)

Ac
ce

le
ra

tio
n

(g
)

Mean GP
95% Confidence GP
Mean Heteroscedastic GP
95% Confidence Heteroscedastic GP

Figure 1. Silverman’s (1985) motorcycle benchmark is an
example for input dependent noise. It consists of a se-
quence of accelerometer readings through time following a
simulated motor-cycle crash.

the input-dependent noise into account the variance in
the flat regions becomes low. The main contribution
of the present paper is a novel GP treatment of input-
dependent noise. More precisely, we follow Goldberg
et al.’s (1998) approach and model the noise variance
using a second GP in addition to the GP governing the
noise-free output value. In contrast to Goldberg et al.,
however, we do not apply a time consuming Markov
chain Monte Carlo method to approximate the poste-
rior noise variance but replace it with an approxima-
tive most likely noise approach. This treatment allows
us to develop a fast (hard) EM-like procedure for learn-
ing both the hidden noise variances and, in contrast
to other approaches, also the kernel parameters. Ex-
periments on synthetic and real-world data sets show
that our most likely noise approach clearly outper-

Heteroscedastic Gaussian process3

Most Likely Heteroscedastic Gaussian Process Regression

Kristian Kersting kersting@csail.mit.edu

CSAIL, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139-4307, USA

Christian Plagemann plagem@informatik.uni-freiburg.de
Patrick Pfaff pfaff@informatik.uni-freiburg.de
Wolfram Burgard burgard@informatik.uni-freiburg.de

Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 079, 79110 Freiburg, Germany

Abstract

This paper presents a novel Gaussian pro-
cess (GP) approach to regression with input-
dependent noise rates. We follow Gold-
berg et al.’s approach and model the noise
variance using a second GP in addition to the
GP governing the noise-free output value. In
contrast to Goldberg et al., however, we do
not use a Markov chain Monte Carlo method
to approximate the posterior noise variance
but a most likely noise approach. The re-
sulting model is easy to implement and can
directly be used in combination with various
existing extensions of the standard GPs such
as sparse approximations. Extensive experi-
ments on both synthetic and real-world data,
including a challenging perception problem in
robotics, show the effectiveness of most likely
heteroscedastic GP regression.

1. Introduction

Gaussian processes (GPs) have emerged as a powerful
yet practical tool for solving various machine learning
problems such as non-linear regression or multi-class
classification (Williams, 1998). The increasing popu-
larity is due to the fact that non-linear problems can be
solved in a principled Bayesian framework for learning,
model selection, and density estimation while the basic
model just requires relatively simple linear algebra. An
important practical problem, that has been addressed
in the recent literature, is to relax the assumption of
constant noise made in the standard GP model. In
many real-world problems, the local noise rates are

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

important features of data distributions that have to
be modeled accurately. Consider for example the Mo-
torcycle benchmark dataset depicted in Fig. 1. While
the standard GP regression model quite accurately es-
timates the mean of the sought after distribution, it
clearly overestimates the data variance in some areas
and underestimates it in others. In contrast, taking

0 10 20 30 40 50 60
−200

−150

−100

−50

0

50

100

Time (ms)

Ac
ce

le
ra

tio
n

(g
)

Mean GP
95% Confidence GP
Mean Heteroscedastic GP
95% Confidence Heteroscedastic GP

Figure 1. Silverman’s (1985) motorcycle benchmark is an
example for input dependent noise. It consists of a se-
quence of accelerometer readings through time following a
simulated motor-cycle crash.

the input-dependent noise into account the variance in
the flat regions becomes low. The main contribution
of the present paper is a novel GP treatment of input-
dependent noise. More precisely, we follow Goldberg
et al.’s (1998) approach and model the noise variance
using a second GP in addition to the GP governing the
noise-free output value. In contrast to Goldberg et al.,
however, we do not apply a time consuming Markov
chain Monte Carlo method to approximate the poste-
rior noise variance but replace it with an approxima-
tive most likely noise approach. This treatment allows
us to develop a fast (hard) EM-like procedure for learn-
ing both the hidden noise variances and, in contrast
to other approaches, also the kernel parameters. Ex-
periments on synthetic and real-world data sets show
that our most likely noise approach clearly outper-

3Kersting et al (2007): Most Likely Heteroscedastic Gaussian process regression

Stationary kernels

Stationary kernels are translation-invariant:

K(x, x′) = K(x+ a, x′ + a) (10)

K(x, x′) = K(x− x′) (11)

for any a
I Stationary kernels are function of vector distance x− x′
I For instance if input variable is ‘age’ in years, then a stationary kernel has property
K(1, 2) = K(80, 81)

I Strange to assume that 1 and 2 year olds are as similar to each other as 80 and 81
year olds

Non-stationary kernel is not translation invariant, i.e. we can have
K(1, 2) 6= K(80, 81)

Simplest non-stationary kernel is the dot product, K(x,x′) = xTx since
I x = [1, 1]T , x′ = [2, 2], K(x,x′) = 1 · 2 + 1 · 2 = 4
I x = [10, 10]T , x′ = [11, 11], K(x,x′) = 10 · 11 + 10 · 11 = 120

Problem with stationary functions

Value
0 0.2 0.4 0.6 0.8 1

Ti
m

e

-0.5

0

0.5

Data

Data
True function

Simple dataset

Problem with stationary functions

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

GP posterior

Data
Posterior mean
Posterior
Noisy posterior
True function

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3
Parameters

` lengthscale
<2 signal variance
!2 noise variance

Optimal Gaussian process fit

Bad fit in the beginning

Problem with stationary functions

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

GP posterior

Data
Posterior mean
Posterior
Noisy posterior
True function

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3
Parameters

` lengthscale
<2 signal variance
!2 noise variance

Let’s increase lengthscale to get smoother model

Initial fit fixed, now ill fit in the middle

Problem with stationary functions

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

GP posterior

Data
Posterior mean
Posterior
Noisy posterior
True function

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3
Parameters

` lengthscale
<2 signal variance
!2 noise variance

Let’s increase noise level to to match data

⇒ We need input-dependent parameters

Non-stationary solution4

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Nonstationary GP

Data
Posterior mean
Posterior
Noisy posterior
True function

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3
MAP parameters

` lengthscale
<2 signal variance
!2 noise variance

Function process

y(x) = f(x) + ε(x)

f(x) ∼ GP(0, σ(x)σ(x′)K`(·)(x, x
′))

ε(x) ∼ N (0, ω(x)2)

Parameter processes

`(x) ∼ GP(µ`,K`(x, x
′))

σ(x) ∼ GP(µσ,Kσ(x, x′))

ω(x) ∼ GP(µω,Kω(x, x′))

Kernel

K(x, x
′
) =

√
2`(x)`(x′)

`(x)2 + `(x′)2
exp

(
−

(x− x′)2

`(x)2 + `(x′)2

)

Explicit function representation through
smoothness, scale and noise functions

4Heinonen et al. Non-stationary Gaussian process regression with Hamiltonian Monte Carlo. AISTATS 2016

Non-stationary inference

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Nonstationary GP

Data
Posterior mean
Posterior
Noisy posterior
True function

time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3
MAP parameters

` lengthscale
<2 signal variance
!2 noise variance

Marginal joint likelihood

L = p(y, `,ω,σ) = p(y|`,ω,σ)p(`)p(σ)p(ω)

= N (y|0,σσT ◦K` + diag(ω))N (`|µ`,K`)N (σ|µσ,Kσ)N (ω|µω,Kω)

We optimize L for MAP estimates ˆ̀, σ̂, ω̂.
The predictive posterior p(f |ˆ̀, σ̂, ω̂,y) is of standard form, except our kernel is
σ̂σ̂T ◦Kˆ̀

Inference

Sample exact posterior with HMC5

p(f , `,σ,ω;y)

5Heinonen et al. Non-stationary Gaussian process regression with Hamiltonian Monte Carlo. AISTATS 2016

Non-stationary spectral kernels

We have seen how to learn arbitrary stationary kernels via spectral learning

We have seen how to learn (non-stationary) Gaussian kernel with parameter
functions

What about non-stationary spectral kernels?

Model input-dependent frequencies, or spectrograms S(x, ω)
I E.g. wavelets are time-dependent frequencies in signal processing

Generalised Spectral Mixture (GSM) kernel67

Non-stationary spectral kernel can be derived:

Kw,µ,σ(x, x′) ∝
Q∑
i=1

wi(x)wi(x
′) exp

(
− (x− x′)2

`i(x)2 + `i(x′)2)

)
︸ ︷︷ ︸

Exponential kernel

cos(2π(µi(x)x− µi(x′)x′))︸ ︷︷ ︸
periodic

with

logwi(x) ∼ GP(0,Kw)

logµi(x) ∼ GP(0,Kµ)

log `i(x) ∼ GP(0,Kσ)

Remes Heinonen Kaski

(a)

-1.5

-1

-0.5

0

0.5

1

1.5

(b)

0.5

1

1.5

2

2.5

3

3.5

(c)

(d)

Figure 4: (a) A simulated time series with a single decreasing frequency component and a
GP fitted using a GSM kernel. (b) The learned kernel shows that close to x = �1

the signal is highly correlated and anti-correlated with close time points, while
these periodic dependencies vanish when moving towards x = 1. For visualisation,
the values are scaled as K = (K)

p|K|. (c) The spectrogram shows the decreasing
frequency. (d) The learned latent frequency function µ(x) correctly finds the
decreasing trend. The length-scale `(x) is almost a constant, and weights w(x)
slightly decrease in time.

8.1. Simulated time series with a decreasing frequency component

First we experiment whether the GSM kernel can find a simulated time-varying frequency
pattern. We simulated a dataset where the frequency of the signal changes deterministically
as µ(x) = 1 + (1 � x)2 on the interval x 2 [�1, 1]. We built a single-component GSM
kernel K using the specified functions µ(x), `(x) = ` = exp(�1) and w(x) = w = 1. We
sampled a noisy function y ⇠ N (0,K + �2

n

I) with a noise variance �2
n

= 0.1. The example
in Figure 4 shows the learned GSM kernel, as well as the data and the function posterior
f(x). For this 1D case, we also employed the empirical spectrogram for initialising the
hyperparameter values. The kernel correctly captures the increasing frequency towards
negative values (towards left in Figure 4a).

8.2. Image data

We applied our kernel to two texture images. The first image of a sheet of metal represents
a mostly stationary periodic pattern. The second, a wood texture, represents an example

12

6Remes, Heinonen, Kaski (2017): Non-stationary spectral kernels
7Shen, Heinonen, Kaski (2019): Harmonizable mixture kernels with variational Fourier features

Summary

Performance of GP has crucial dependency on how well the kernel matches the data

Gaussian kernel is a convenient ‘default’ kernel that can interpolate well
I Advantage: simple, efficient, easy-to-learn, universal
I Disadvantage: cannot fit periodic data, stationary only

Spectral kernels can extrapolate repeating patterns
I Advantage: can learn arbitrary periodic or non-periodic stationary patterns
I Disadvantage: slower to learn, high possibility to overfit

Non-stationary Gaussian kernel can learn adaptive interpolations
I Advantage: can learn smoothly changing smoothness / variance
I Disadvantage: slower to learn, more possibilities to overfit

Non-stationary spectral kernels can learn rich frequency representations
I Advantage: can learn smoothly changing smoothness / variance
I Disadvantage: complex modelling of the kernel, computer intensive optimization,

major risk of overfitting
I Active research field

Summary

Performance of GP has crucial dependency on how well the kernel matches the data

Gaussian kernel is a convenient ‘default’ kernel that can interpolate well
I Advantage: simple, efficient, easy-to-learn, universal
I Disadvantage: cannot fit periodic data, stationary only

Spectral kernels can extrapolate repeating patterns
I Advantage: can learn arbitrary periodic or non-periodic stationary patterns
I Disadvantage: slower to learn, high possibility to overfit

Non-stationary Gaussian kernel can learn adaptive interpolations
I Advantage: can learn smoothly changing smoothness / variance
I Disadvantage: slower to learn, more possibilities to overfit

Non-stationary spectral kernels can learn rich frequency representations
I Advantage: can learn smoothly changing smoothness / variance
I Disadvantage: complex modelling of the kernel, computer intensive optimization,

major risk of overfitting
I Active research field

Summary

Performance of GP has crucial dependency on how well the kernel matches the data

Gaussian kernel is a convenient ‘default’ kernel that can interpolate well
I Advantage: simple, efficient, easy-to-learn, universal
I Disadvantage: cannot fit periodic data, stationary only

Spectral kernels can extrapolate repeating patterns
I Advantage: can learn arbitrary periodic or non-periodic stationary patterns
I Disadvantage: slower to learn, high possibility to overfit

Non-stationary Gaussian kernel can learn adaptive interpolations
I Advantage: can learn smoothly changing smoothness / variance
I Disadvantage: slower to learn, more possibilities to overfit

Non-stationary spectral kernels can learn rich frequency representations
I Advantage: can learn smoothly changing smoothness / variance
I Disadvantage: complex modelling of the kernel, computer intensive optimization,

major risk of overfitting
I Active research field

Summary

Performance of GP has crucial dependency on how well the kernel matches the data

Gaussian kernel is a convenient ‘default’ kernel that can interpolate well
I Advantage: simple, efficient, easy-to-learn, universal
I Disadvantage: cannot fit periodic data, stationary only

Spectral kernels can extrapolate repeating patterns
I Advantage: can learn arbitrary periodic or non-periodic stationary patterns
I Disadvantage: slower to learn, high possibility to overfit

Non-stationary Gaussian kernel can learn adaptive interpolations
I Advantage: can learn smoothly changing smoothness / variance
I Disadvantage: slower to learn, more possibilities to overfit

Non-stationary spectral kernels can learn rich frequency representations
I Advantage: can learn smoothly changing smoothness / variance
I Disadvantage: complex modelling of the kernel, computer intensive optimization,

major risk of overfitting
I Active research field

	Part 0: Recap
	Part 1: spectral kernels
	Part 2: Non-stationary and heteroscedastic GPs

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	anm2:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	3.16:
	3.17:
	3.18:
	3.19:
	3.20:
	3.21:
	3.22:
	3.23:
	3.24:
	3.25:
	3.26:
	3.27:
	3.28:
	3.29:
	3.30:
	3.31:
	3.32:
	3.33:
	3.34:
	3.35:
	3.36:
	3.37:
	3.38:
	3.39:
	anm3:

