

Network Markets

Introduction

- Some products are popular with individual consumers precisely because each consumer places a value on others using the same good
 - A telephone is only valuable if others have one, too
 - Each user of Microsoft Windows benefits from having lots of other Windows users
- Network Effects or network externalities: each consumer's willingness to pay for a product rises as more consumers buy it

Monopoly Provision of a Network Service

- Rohlfs (1974)
- Imagine some service, say a network, where consumers "hook" up to the system but the cost of providing them service after that is effectively zero
 - Provider is a monopolist charging a "hook up" fee but no other payment
 - The basic valuation of the product v_i is uniformly distributed across consumers from 0 to \$100. Consumer willingness to pay is fv_i where f is the fraction of the consumer population that is served
 - The *i*th's consumer's demand is:

0 if $fv_i < p$

- Consider the marginal consumer with basic valuation $\tilde{v} = \frac{p}{\tilde{v}}$. The firm will serve all consumers with valuations $\geq \tilde{v}$
- With 100 consumers, solving for the number of consumers served we have:

 $100f = 100 - \tilde{v} = 100 - p/f$

•So, the inverse demand function is: p = 100f(1-f)

The inverse demand curve has both upward and downward sloping parts. This means that there are two possible values for the fraction of the market served at any price *p*.

Network Markets

- The Rohlfs model makes clear many of the potential problems that can arise in markets with network effects
 - 1. The market may fail altogether
 - Suppose the firm must set a fee over \$30 perhaps to cover fixed costs
 Network will fail even though it is socially efficient
 - When half the market is served, the customers hooking up have v_i's that range from \$50 to \$100 or *fv_i* values that range from \$25 to \$50
 - Average value is then \$37.50, well above \$30
 - But as p rises to \$30, f falls and so does average willingness to pay
 - There is no price at which sufficient numbers of consumers sign on that yields an average willingness to pay of \$30
 - that yields an average willingness to pay of \$30

- 2. There are multiple equilibria
 - At p <\$25, there is more than one equilibrium value of f
 - At p = \$22.22 both $f_L(p) = 1/3$ and $f_H(p) = 2/3$ are possible f values
 - Lower fraction may be unstable (tipping)
 - This group is comprised of consumer with top one-third of v_i values
 - The addition of one more consumer will raise willingness to pay sufficiently that consumers with the next highest third of v_i values will be willing to pay and we will move to the f_H equilibrium
 - The loss of one consumer will lower the willingness to pay of that same top one-third and demand will fall to zero at *p* = \$22.22

- If the firm needs to serve more than one-third of consumers at a price of \$22.22, f_L is called a critical mass.
 - Low or free introductory pricing
 - Lease and guarantee that if critical mass is not reached, refund given
 - Target large consumers with internal networks first

Many firms

- Rohlfs model is a monopoly model but has clear insights for oligopoly setting
 - Market may fail
 - Price competition will be fierce—a firm that fails to reach a critical mass isn't just smaller than its rival—it dies
 - Multiple Equilibria are possible—Betamax versus VHS or Blu-Ray versus AOD DVD format—either system may win
 - Winning system is not necessarily the best one