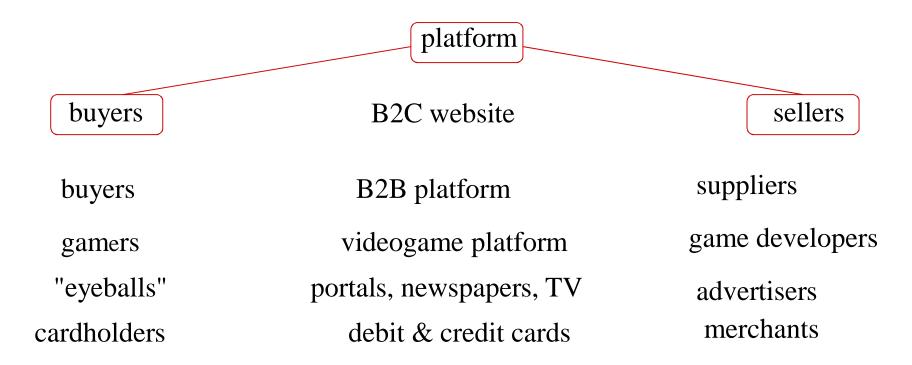
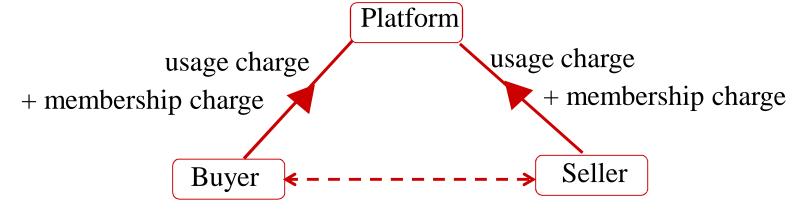
TWO SIDED MARKETS


INDUSTRIAL ORGANIZATION (MICRO III) 2018

Mikko Mustonen

(B. Jullien)

Aalto University and HECER


GETTING MULTIPLE SIDES ON BOARD

Chicken and egg problem. Must get both sides on board/court each side while making money overall.

- 1 INTRODUCTION
- 2 MONOPOLY
 - -Fixed fees, Armstrong
 - -Usage fees, Rochet&Tirole
- **3** COMPETITION
- 4 REMARKS

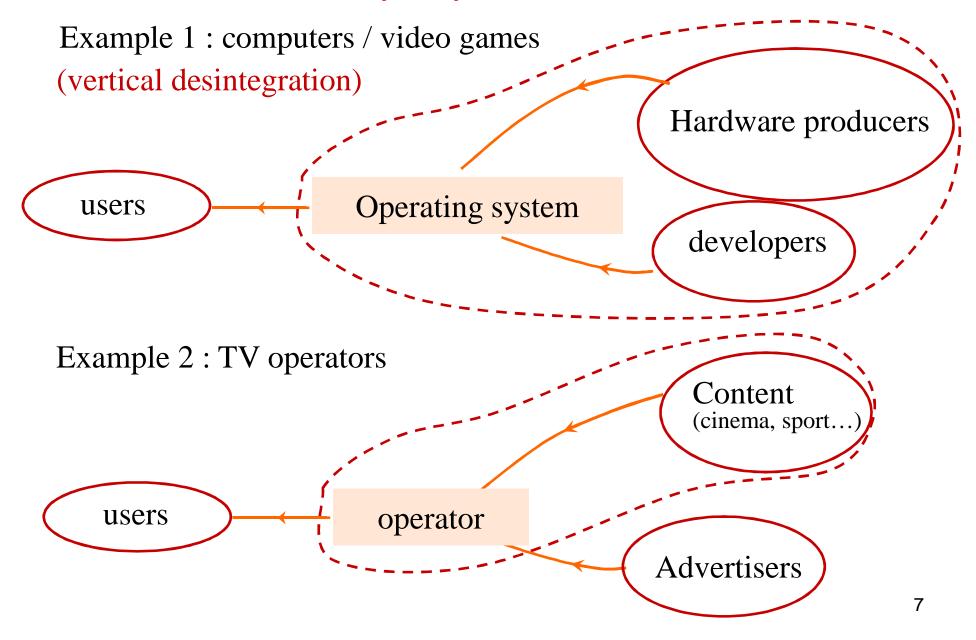
Platform enables or facilitates interaction between "buyers" and "sellers"

Industry	Usage fee	Membership fee
payment cards	B: cash-back bonuses	B: yearly fee
	S: merchant discount	
e-Bay	transaction fee	
		S: listing fee
operating systems		B: OS price
		S: development kit price (APIs free)

Some Two Sided Platforms

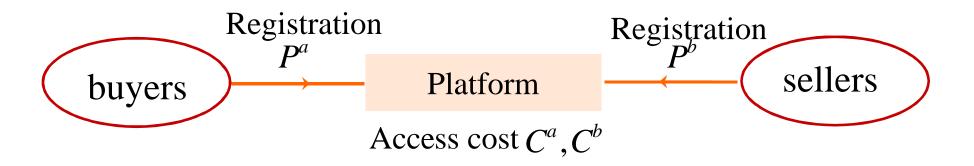
- Exchanges
 - ✓ Exchanges/auctions (eBay, Amazon).
 - ✓ B2B.
 - ✓ Employment agencies.
 - ✓ Dating services.
 - ✓ Real-estate agencies.
 - ✓ Futures and securities exchanges
- **Communications**
 - ✓ Telecoms.
 - ✓ Internet backbone services.
- But also...
 - ✓ Academic journals.
 - ✓ Shopping malls.

What are two-sided markets?


- ✓ Externality: Participants on one side care about the level of participation and usage of the other side
- ✓ Differentiated treatment of each side
- ✓ The profit and the allocation depends on the structure of price not only on the total price.
- ✓ Not all platforms are 2SM

Example: electricity

Only the total price charged on the two sides matters, as they negotiate how to share it: similar to tax neutrality


A « classical » industry may become a 2SMs

Often results in very skewed pricing pattern

- ✓ *Illustration*: Encoding vs. reading
 - Adobe Acrobat, Text Processors: free reader, charge or royalties for encoding.
 - Contrast: books.
- ✓ *Illustration*: why did credit cards and debit cards adopt so markedly different business models?
 - *Credit* (Visa, MasterCard, Amex): high merchant discount, low (negative) cardholder price.
 - *On-line debit*: low merchant discount.
- ✓ *Illustration*: Videogame platforms.
 - Sell console at or below cost, royalties on games

MONOPOLY

$$\Pi = (P^{a} - C^{a})n^{a} + (P^{b} - C^{b})n^{b} + (p^{a} + p^{b} - c)I(n^{a}, n^{b})$$

Let's first look at the platform's behaviour when transaction fees are absent (Armstrong 2006) and then when fixed registration fees are absent (Rochet & Tirole 2003). Rochet& Tirole 2004 integrates these.

Armstrong 2006

$$u_1 = \alpha_1 n_2 - p_1; \quad u_2 = \alpha_2 n_1 - p_2,$$

$$n_1 = \phi_1(u_1); \quad n_2 = \phi_2(u_2)$$

$$\pi(u_1, u_2) = \phi_1(u_1) \left[\alpha_1 \phi_2(u_2) - u_1 - f_1 \right] + \phi_2(u_2) \left[\alpha_2 \phi_1(u_1) - u_2 - f_2 \right]. \tag{2}$$

Let the aggregate consumer surplus of group i = 1, 2 be $v_i(u_i)$, where $v_i(\cdot)$ satisfies the envelope condition $v'_i(u_i) \equiv \phi_i(u_i)$. Then welfare, as measured by the unweighted sum of profit and consumer surplus, is

$$w = \pi(u_1, u_2) + v_1(u_1) + v_2(u_2).$$

It is easily verified that the welfare-maximizing outcome has the utilities satisfying

$$u_1 = (\alpha_1 + \alpha_2)n_2 - f_1;$$
 $u_2 = (\alpha_1 + \alpha_2)n_1 - f_2.$

From expression (1), the socially optimal prices satisfy

$$p_1 = f_1 - \alpha_2 n_2; \quad p_2 = f_2 - \alpha_1 n_1.$$

Price below cost, Ramsey pricing...

From expression (2), the profit-maximizing prices satisfy

$$p_1 = f_1 - \alpha_2 n_2 + \frac{\phi_1(u_1)}{\phi_1'(u_1)}; \quad p_2 = f_2 - \alpha_1 n_1 + \frac{\phi_2(u_2)}{\phi_2'(u_2)}.$$

Proposition 1. Write

$$\eta_1(p_1 \mid n_2) = \frac{p_1 \phi_1'(\alpha_1 n_2 - p_1)}{\phi_1(\alpha_1 n_2 - p_1)}; \quad \eta_2(p_2 \mid n_1) = \frac{p_2 \phi_2'(\alpha_2 n_1 - p_2)}{\phi_2(\alpha_2 n_1 - p_2)}$$

for a group's price elasticity of demand for a given level of participation by the other group. Then the profit-maximizing pair of prices satisfy

$$\frac{p_1 - (f_1 - \alpha_2 n_2)}{p_1} = \frac{1}{\eta_1(p_1 \mid n_2)}; \quad \frac{p_2 - (f_2 - \alpha_1 n_1)}{p_2} = \frac{1}{\eta_2(p_2 \mid n_1)}. \tag{4}$$

$$\frac{\text{price} - \text{marginal cost}}{\text{price}} = \frac{1}{\text{elasticity of demand}}$$

Elasticity = % variation in demand for 1% decrease in price.

Remarks

-Price on one side may be subsidized, zero, even negative, if its elasticity of demand is high or benefit to other side is large

For your information from here

Rochet & Tirole 2003

oly platform. There are network externalities in that the surplus of a buyer with gross per transaction surplus b^B , $(b^B - p^B)N^S$, depends on the number of sellers N^S , but the buyers' "quasi-demand function":

$$N^B = \Pr(b^B \ge p^B) = D^B(p^B)$$

is independent of the number of sellers. Similarly, let

$$N^S = \Pr(b^S \ge p^S) = D^S(p^S)$$

A private monopoly chooses prices so as to maximize total profit:

$$\pi = (p^B + p^S - c) D^B(p^B) D^S(p^S).$$

Assuming that D^B and D^S are log concave, it is easy to see that π is also log concave (jointly in (p^B, p^S)). Its maximum is characterized by the first-order conditions:

$$\frac{\partial(\log \pi)}{\partial p^B} = \frac{1}{p^B + p^S - c} + \frac{(D^B)'}{D^B} = 0,$$

$$\frac{\partial(\log \pi)}{\partial p^S} = \frac{1}{p^B + p^S - c} + \frac{(D^S)'}{D^S} = 0.$$

In particular:

$$(D^B)'D^S = D^B(D^S)'.$$

prices has to be the same on both sides. If we introduce the elasticities of quasi-demands:

$$\eta^B = -\frac{p^B(D^B)'}{D^B}$$
 and $\eta^S = -\frac{p^S(D^S)'}{D^S},$

the private monopoly prices can be characterized by a two-sided formula that is reminiscent of Lerner's formula:

$$p^B + p^S - c = \frac{p^B}{\eta^B} = \frac{p^S}{\eta^S}.$$
 (1)

PROPOSITION 1. (i) A monopoly platform's total price, $p = p^B + p^S$, is given by the standard Lerner formula for elasticity equal to the sum of the two elasticities, $\eta = \eta^B + \eta^S$:

$$\frac{p-c}{p} = \frac{1}{\eta} \,. \tag{2}$$

(ii) The price structure is given by the ratio of elasticities (and not inverse elasticities):

$$\frac{p^B}{\eta^B} = \frac{p^S}{\eta^S}. (5)$$

Remarks

-Higher relative price at the more elastic market
Increasing price lowers participation less, revenue from other side suffers less
The 'partial' Lerner formula contains the other price

✓ Example: price to buyers.

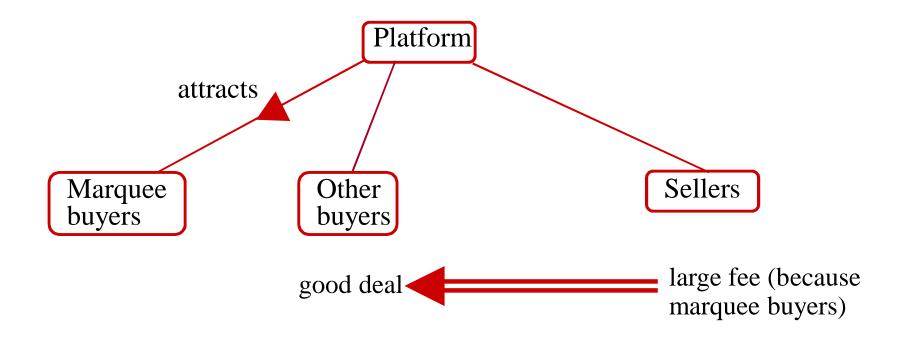
Cost = *opportunity cost*, smaller than cost incurred in serving buyer

[attracting extra buyers generates revenue on seller side either through usage charges or by being able to increase sellers' membership fees.]

- ✓ Price will be low/zero/negative if
 - presence of buyer generates substantial revenue on seller side,
 - buyer side reluctant to get on board (elastic demand).

Comments:

- The non adjusted margin is lower on the side where the elasticity is the highest and/or the externality created is larger.
- In some cases prices may be negative (if possible, otherwise gifts, tying...) or null (free newspapers)

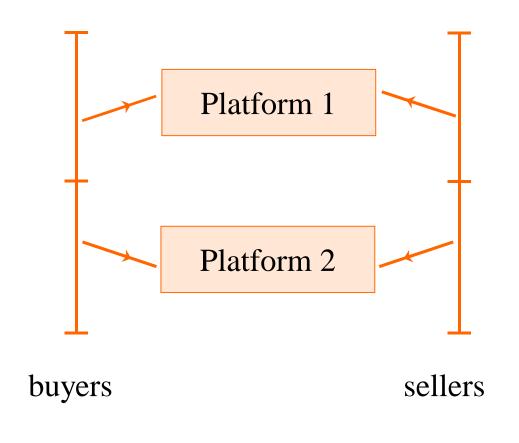

• If one side is captive, the price is higher on this side and smaller on the other side (debit cards).

Other examples of skewed pricing patterns:

Product	loss leader/break-even segment	profit-making segment	
SOFTWARE*			
Browsers	clients	web servers (Netscape)	
Operating systems (Windows, Palm, Pocket PC)	application developers (development tools, support, functionalities,)	clients	
DoCoMo's i - mode phone	content providers	subscribers (based on downloaded volume)	
PORTALS AND MEDIA			
Portals	"eyeballs"	advertisers	
Newspapers	readers	advertisers	
(Charge-free) TV networks	viewers	advertisers	
Yellow pages	consumers	advertisers	

Mind the cross-group externalities

✓ More complex story: within-side externality


- Illustrations: Amex corporate card.
 - Killer application/game.
 - Key store in shopping mall.

Monopoly, summary

- ✓ Competitive access (marginal cost pricing) is not efficient
- ✓ One price should be below access cost (if no fixed cost), it may be negative.
- ✓ Monopoly may be more efficient than competitive access
 - → Optimal market structure?

COMPETITION

Variant 1 : single-homing bilateral

- price smaller on both sides
- expectations of users play an important role (multiplicity of possible equilibria)
- "divide and et conquer"

Single-homing and competition

- ✓ Two identical platforms
- ✓ Participants register with only one
- Competitive benchmark
 - ✓ If usages can be fully taxed in a non-distortionary way and negative registration prices are feasible, then in equilibrium
 - ✓ Only one platform is active
 - ✓ Zero profit
 - ✓ But conditions are very restrictive!
- ✓ In general a positive profit equilibrium is possible, unless there is enough homogeneity within sides and coordination between sides

Armstrong 2006

utilities $\{u_1^i, u_2^i\}$ are determined in a similar manner to the monopoly model expressed in (1): if platform i attracts n_1^i and n_2^i members of the two groups, the utilities on this platform are

$$u_1^i = \alpha_1 n_2^i - p_1^i; \quad u_2^i = \alpha_2 n_1^i - p_2^i,$$
 (5)

When group 1 is offered a choice of utilities u_1^A and u_1^B from the two platforms and group 2 is offered the choice u_2^A and u_2^B , suppose the number of each group who join platform i is given by the Hotelling specification

$$n_1^i = \frac{1}{2} + \frac{u_1^i - u_1^j}{2t_1}; \quad n_2^i = \frac{1}{2} + \frac{u_2^i - u_2^j}{2t_2}.$$
 (6)

Putting (6) together with (5), and using the fact that $n_1^J = 1 - n_1^i$, gives the following implicit expressions for market shares:

$$n_1^i = \frac{1}{2} + \frac{\alpha_1(2n_2^i - 1) - (p_1^i - p_1^j)}{2t_1}; \quad n_2^i = \frac{1}{2} + \frac{\alpha_2(2n_1^i - 1) - (p_2^i - p_2^j)}{2t_2}. \tag{7}$$

Keeping its group-2 price fixed, expression (7) shows that an extra group-1 agent on a platform attracts a further α_2/t_2 group-2 agents to that platform.

Suppose platforms A and B offer the respective price pairs (p_1^A, p_2^A) and (p_1^B, p_2^B) . Given these prices, solving the simultaneous equations (7) implies that market shares are

$$n_1^i = \frac{1}{2} + \frac{1}{2} \frac{\alpha_1(p_2^j - p_2^i) + t_2(p_1^j - p_1^i)}{t_1 t_2 - \alpha_1 \alpha_2}; \quad n_2^i = \frac{1}{2} + \frac{1}{2} \frac{\alpha_2(p_1^j - p_1^i) + t_1(p_2^j - p_2^i)}{t_1 t_2 - \alpha_1 \alpha_2}. \tag{9}$$

As with the monopoly model, suppose each platform has a per-agent cost f_1 for serving group 1 and f_2 for serving group 2. Therefore, platform i's profit is

$$(p_1^i-f_1)\left[\frac{1}{2}+\frac{1}{2}\frac{\alpha_1(p_2^j-p_2^i)+t_2(p_1^j-p_1^i)}{t_1t_2-\alpha_1\alpha_2}\right]+(p_2^i-f_2)\left[\frac{1}{2}+\frac{1}{2}\frac{\alpha_2(p_1^j-p_1^i)+t_1(p_2^j-p_2^i)}{t_1t_2-\alpha_1\alpha_2}\right].$$

This discussion is summarized by an annotated version of formula (10):

$$p_1 = \underbrace{f_1}_{\text{cost}} + \underbrace{t_1}_{\text{market power}} - \underbrace{(\alpha_2/t_2)}_{\text{extra group-2}} \times \underbrace{(\alpha_1 + p_2 - f_2)}_{\text{profit from an extra group-2 agent}}$$
(11)

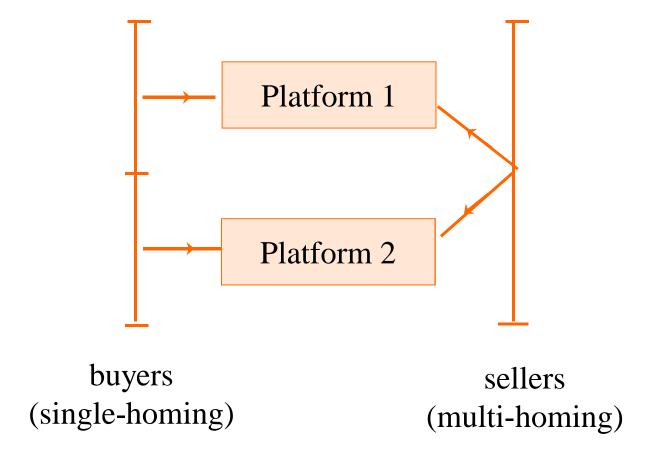
Proposition 2. Suppose (8) holds. Then the model with two-sided single-homing has a unique equilibrium that is symmetric. Equilibrium prices for group 1 and group 2 are given respectively by

$$p_1 = f_1 + t_1 - \alpha_2; \quad p_2 = f_2 + t_2 - \alpha_1.$$
 (12)

Thus, a platform will target one group more aggressively than the other if that group is (i) on the more competitive side of the market and/or (ii) causes larger benefits to the other group than vice versa.⁵

group 1 and group 2 respectively. Thus, expression (12) may be rewritten as

$$\frac{p_1-(f_1-2\alpha_2n_2)}{p_1}=\frac{1}{\eta_1}; \quad \frac{p_2-(f_2-2\alpha_1n_1)}{p_2}=\frac{1}{\eta_2}.$$


Comparing these expressions with the monopoly formulas (4) shows that a duopolist puts twice as much emphasis on the external benefit from one group when it sets its price to the other group.

From (12), in equilibrium each platform makes profit

$$\pi = \frac{t_1 + t_2 - \alpha_1 - \alpha_2}{2}.\tag{13}$$

Assumption (8) guarantees that this profit is positive. Positive cross-group externalities act to reduce profit compared to the case where $\alpha_1 = \alpha_2 = 0$, since platforms have an additional incentive to compete hard for market share. Next, I discuss an extension where platforms can

Competitive bottleneck

- lower prices for buyers
- higher prices for sellers

Regulation of interactions between end-users

2SP performs balancing act through other instruments than membership and usage fees:

The platform as a competition authority.

The platform as a price regulator.

(illustration: no surcharge for payments with card)

The platform as a licensing/certification authority

(illustrations: exchanges: solvency requirements, prohibition of front-running; dating clubs; Nintendo's mid 80s decision to control quality of third-party games)

The platform as a supplier of information and enforcement.

(illustrations: auto auctions arbitration processes, eBay's feedback forum)

COMPETITION POLICY

- ✓ The issue is the lack of clear benchmark
- ✓ Efficiency is not achieved at price equal marginal cost (or TLIC)
- ✓ Efficiency may require cross-subsidies, or direct subsidy
 - ✓ Two violations of anti-trust: "dumping" on one side, excessive price on the other side

Market definition

- ✓ Changing the tariff on one side affects the demand and the profit generated on the other side:
 - ✓ SNIP test?
 - ✓ Estimation of demand elasticity must account for the presence of the other side : due to feedback effects, the elasticity at fixed participation of the other side is not equal to the apparent elasticity
- ✓ One or two markets?
 - ✓ Change the evaluation under dominance criterion
 - ✓ Yellow pages, medias: two markets, readers and advertising
 - ✓ M2M termination charges: two markets (origination, termination) + regulation of termination (one market should lead to no regulation under EC rules)
 - ✓ Credit cards: one market with 2 sides

Price abuse

- ✓ High price-cost margins do not imply market power even if they are low-fixed costs.
- ✓ Competitive cross-subsidy
 - ✓ Competition leads to more cross-subsidy
 - ✓ Competition leads to more price-discrimination
- ✓ Another efficiency defence for price below costs
- ✓ Predation tests: accounting for both sides
 - → Measure of "total price"
 - → Switch to effect based approach?

COMPETITION POLICY

- ✓ Should we regulate?
 - ✓ No clear distortion
 - ✓ No clear guidelines for regulation
 - ✓ No rational for cost based regulated price
 - ✓ Large informational requirement
- ✓ The regulatory response may be worse than the (imperfect) market response
- ✓ Partial regulation (platform neutrality, reciprocal termination charge, ...)?