

CS-E4530 Computational Complexity Theory

Lecture 11: Hierarchy Theorems

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Time hierarchy theorem
- Space hierarchy theorem
- Consequences of hierarchy theorems

Lower Bounds?

- We have argued that some problems *seem* intractable because they are complete for some complexity class
 - ▶ NP-hard, PSPACE-hard, EXP-hard, ...
- However, we *have not* proven any unconditional resource lower bounds
 - Only result of this type so far: undecidability
 - Is it possible e.g. that all decidable problems can be solved in polynomial time?

Recap: Time-constructible Functions

Definition (Time-constructible function)

Let $T: \mathbb{N} \to \mathbb{N}$ be a function. We say that T is *time-constructible* if $T(n) \ge n$ and there is a TM M that computes the function $x \mapsto \llcorner T(|x|) \lrcorner$ in time T(n), where $\llcorner n \lrcorner$ denotes the binary representation of the number n.

Recap: Turing Machine Encoding

- There is a mapping that maps each $\alpha \in \{0,1\}^*$ to a Turing machine M_{α}
- Mapping $\alpha \mapsto M_{\alpha}$ can be constructed to have the following properties
 - Each TM is represented by infinitely many strings
 - Each string represents some Turing machine

Recap: Universal Simulation

Theorem

There is a TM \mathcal{U} such that for every $\alpha, x \in \{0, 1\}^*$,

- if M_{α} halts on input x, then $\mathcal{U}((\alpha, x)) = M_{\alpha}(x)$, and
- if M_{α} does not halt on input x, then \mathcal{U} does not halt on (α, x) .

Moreover, if M_{α} halts on input x in T steps using S space, then \mathcal{U} halts on input (α, x) in $C \cdot T \log T$ steps using $C \cdot S$ space, where C is a constant that only depends on M_{α} .

Universal simulation can be modified so that on input (α, x, t) the machine M_α is simulated on input x for t steps (t encoded in binary)

Time Hierarchy Theorem

Theorem

Let $f,g: \mathbb{N} \to \mathbb{N}$ be time-constructible functions satisfying f(n) = o(g(n)). Then

 $\mathsf{DTIME}(f(n)) \subsetneq \mathsf{DTIME}(g(n)\log g(n))\,.$

• There are problems of almost any possible time complexity

- The factor $\log g(n)$ comes from the universal simulation
- Quadratic simulation: $DTIME(f(n)) \subsetneq DTIME((g(n))^2)$
- Linear simulation: $DTIME(f(n)) \subsetneq DTIME(g(n))$

Time Hierarchy Theorem: Proof

Rough idea:

- Define a function that has different value on some input than all functions computed by Turing machines running in time o(g(n))
- This function can be computed in time $O(g(n) \log g(n))$

• Define a computational problem *L_g* as follows:

- Let $\alpha \in \{0,1\}^*$ be the input
- ► If machine M_{α} halts and outputs *b* on input α in time $g(|\alpha|)$, produce a different output (e.g. 1 b)
- If machine M_α does not halt on input α in time g(|α|), produce output 1
- Put differently:

$$L_g = \{ lpha \in \{0,1\} \colon M_lpha$$
 does not accept $lpha$ in time $g(|lpha|) \}.$

Time Hierarchy Theorem: Proof

- First part: $L_g \in \mathsf{DTIME}(g(n) \log g(n))$
- On input $\alpha \in \{0,1\}^*$:
 - Compute value g(|α|) in time O(g(|α|)) time (g is time-constructible)
 - ► Run universal simulation for $g(|\alpha|)$ steps and decide output (takes $O(g(n)\log g(n))$ time)

Time Hierarchy Theorem: Proof

- Second part: $L_g \notin \mathsf{DTIME}(f(n))$
- Assume L_g is decided by M_g in time $c \cdot f(n)$
 - ▶ Since f(n) = o(g(n)), there is some n_0 such that $c \cdot f(n) < g(n)$ for all $n \ge n_0$
 - ► By the properties of the Turing machine encoding, there is a string α such that $|\alpha| \ge n_0$ and $M_{\alpha} = M_g$
 - Does it hold that $\alpha \in L_g$?
 - $M_g(\alpha) = b \in \{0, 1\}$
 - Since $c \cdot f(|\alpha|) < g(|\alpha|)$, the machine M_g produces output b in $g(\alpha)$ steps, and by definition of L_g , the output must be 1-b
 - This is a contradiction

Nondeterministic Time Hierarchy

Theorem

Let $f, g: \mathbb{N} \to \mathbb{N}$ be time-constructible functions satisfying f(n+1) = o(g(n)). Then

 $\mathsf{NTIME}(f(n)) \subsetneq \mathsf{NTIME}(g(n))$.

• Requires a somewhat different proof (omitted)

Definition (Space-constructible function)

Let $S: \mathbb{N} \to \mathbb{N}$ be a function. We say that S is *space-constructible* if there is a TM M that computes the function $x \mapsto \llcorner S(|x|) \lrcorner$ in space O(S(n)), where $\llcorner n \lrcorner$ denotes the binary representation of the number n.

Time Hierarchy Theorem

Theorem

Let $f,g: \mathbb{N} \to \mathbb{N}$ be space-constructible functions satisfying f(n) = o(g(n)). Then

 $\mathsf{SPACE}(f(n)) \subsetneq \mathsf{SPACE}(g(n))$.

Same proof as for the time hierarchy theorem

No overhead from simulation in terms of space

Consequences of Hierarchy Theorems

- Hierarchy theorems give separations between complexity classes
 - ► $P \neq EXP$
 - ► NP \neq NEXP
 - ► $L \neq PSPACE$
- Hierarchy theorems give separations inside complexity classes
 - ▶ DTIME $(n^k) \neq$ DTIME (n^{k+1}) for any $k \ge 1$

Lecture 11: Summary

- Time hierarchy theorem
- Space hierarchy theorem

