ELEC-E3210 Optoelectronics

Exercise 5: Photodetectors

- 1. We consider a GaAs-pin-photodiode, with an intrinsic layer thickness of 1.0 μm and a surface area of 10⁻⁴ cm². The detector is illuminated at a wavelength of 775 nm with a light intensity of 0.1 W cm⁻². The absorption coefficient of the active region is 10⁴ cm⁻¹ at the wavelength of interest. Calculate the induced current under the assumption that photons are absorbed only in the active region.
- 2. Estimate the bandwidth of a GaAs pin-photodiode, when the detector surface is 1 mm² and the thickness of the active region is 1.0 μ m. The dielectric constant of GaAs is 12.3, the saturation velocity for holes is 3×10^6 cm/s and the detector load is 50 Ω .
- 3. The active region of a p-i-n-fotodiode (silicon) is circular in shape with a diameter of 0.4 mm. At the wavelength of 700 nm and intensity 0.1 mW/cm² light induces a 56.6 nA current. Calculate the responsivity of the photodiode and the quantum efficiency at this wavelength.
- 4. A pin-photodiode has a responsivity of 0.6 A/W at a wavelength of 0.8 μ m. The dark current value is 1 nA, the bandwidth is 10 MHz and the load resistance is 100 Ω . a) Calculate the signal-to-noise ratio when the input optical signal has a power of 1.0 μ W. b) What is the NEP of the detector?
- 5. The quantum efficiency of an InGaAsP/InP avalanche detector is 0.8 at a wavelength of $1.3 \,\mu$ m. When the detector is illuminated with a power if $1.0 \,\mu$ W, a current of $20 \,\mu$ A is measured from the detector. The thickness of the multiplication region is $1.5 \,\mu$ m. a) What is the multiplication coefficient of the photodiode? b) How large is the ionisation coefficient if we suppose that only electrons multiply themselves?