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Learning objectives

• To be able to solve homogeneous system of 
equations
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Homogeneous system of equations

• A homogeneous system (using homogeneous 
coordinates and projective geometry) of 
equations looks (e.g.) like
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Applications of homogeneous 
systems

• Solving vanishing points, an 
absolute conic and an interior 
orientation of a camera (computer 
vision approach) from 
perpendicular object lines 
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• A calibrated perspective camera (essential 
matrix)

• A non-calibrated perspective camera 
(fundamental matrix)

• The projective version of fundamental matrix

Applications of homogeneous systems: 
Direct solution of relative orientation
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The solution of 
a homogeneous system

• In a homogeneous system               , the size of a matrix 
A is    (n = the number of observations, u = the 
number of unknown parameters)

• The solution of such system has some special features:
– The system always has a trivial solution (not 

interesting) 
– If we find a non-trivial solution             , also kx (k=arbitrary 

scalar) is a valid solution 
– From a homogeneous system we can only find relative

values of unknown parameters  
– Non-trivial solutions can be found if the dimension of the 

kernel N(A) > 0
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The solution of 
a homogeneous system

• Because the solution gives, in any case, only a relative solution of 
unknown parameters, the system can be solved by fixing one unknown 
parameter (any parameter can be selected)

• For example, if we select to fix the last parameters, the solution fulfilling 
conditions                  and                is

• If we place                 to the equation                , we get
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The solution of 
a homogeneous system

• Because we have now something at the right side of the equation (= non-
zero), the system is non-homogeneous (a normal case)! 

• Even if we managed to get the solution of the equation, we can have 
problems in special cases 

• If the true value of the parameter which we fixed happens to be (close) to 
zero, the system cannot be solved (no solution)

• The image below illustrates how other parameters can approach infinity in 
such situation ( )
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The solution of 
a homogeneous system

• The figure above also gives a hint that this problem can be avoided if the 
original condition               is replaced with             , which fixes the length of 
the solution vector  

• The solution (in this 2D case) can be only at the circumference of a circle 
(cannot go to infinity in any special cases)  

• Therefore, our aim is to find a solution that fulfills this condition   
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The solution of 
a homogeneous system

 The solution x of the system of equations               is the 
subspace             of the parameter space       i.e. the kernel of 
A, i.e.

 The system of equations have non-trivial solutions only if the 
dimension of a kernel N(A) is > 0, i.e..
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The solution of 
a homogeneous system

• If                  and
• If               and
• In both cases, the dimension of a kernel is 1, which 

means that the solution of a system             is unique 
only up to the length of the solution vector  

• The condition gives a solution that is unique up 
to the sign
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The solution of 
a homogeneous system

• When the elements of a matrix A include 
measurements, we usually have a situation of

• Unfortunately, there is no non-trivial solution to such 
system of equations                in which

• However, it is possible to find a least-squares solution 
by replacing the condition              with the least-
squares condition 

• In following, the solutions of all three cases are 
illustrated   
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The solution of 
a homogeneous system, case A

• This case is an underdetermined system
• Let’s assume that                , and that the rank of A is full 

i.e.                  (i.e. all rows are independent from each 
other) 

• The dimension of a kernel is one, which means that the 
solution is unique up to the length of the solution 
vector

• A unique solution is retrieved if the length of a solution 
vector is fixed with the additional constraint          
(which eliminates the trivial solution           )
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The solution of 
a homogeneous system, case A

• The solution that fulfills both conditions              and      
is found by utilizing singular value decomposition

• In this special case, the solution vector x is the last 
singular vector      (eigenvector)   
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The solution of 
a homogeneous system, case B

• This case is a square system (n=u)
• If the size of a matrix A is u x u, and its rank is 

it is possible to make a singular value decomposition
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The solution of 
a homogeneous system, case B

• Again, it appears that the solution vector x is 
the last singular vector      of a matrix V (the 
last column), i.e.
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The solution of 
a homogeneous system, case C

• This system is overdetermined
• We try to solve a  homogeneous system              when 

• The latter condition (a full rank) is fulfilled in practice 
because the elements of A are results from 
measurements and therefore include errors. Therefore, 
the rank is full (columns are linearly independent) –
even if in theory the rank is not full

• Because the dimension N(A) of the kernel is d=u-
s(A)=u-u=0, the system has only a trivial solution x=0 
(not interesting)
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The solution of 
a homogeneous system, case C

• We can find the solution (e.g.) by utilizing the least-squares condition 

• Geometrical interpretation of errors (2D) 

• The additional condition              prevents the parameters to grow infinitely 
large in any case 

• Notice that fixing one parameter is one alternative, but not recommended 
(no solution if the true value of the fixed parameter is close to zero)
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The solution of 
a homogeneous system, case C

• The task basing on conditions                           and        
is called as a homogeneous least-squares task

• Two main alternatives to solve a homogeneous least-
squares task
– The solution based on eigenvalue decomposition 

(Lagrange) 
– The solution based on singular value decomposition  

 In following, we focus on using singular value decomposition  
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The solution of 
a homogeneous system, case C

• The solution is based on generalized singular value 
decomposition or, in special cases, on a regular 
singular value decomposition 

• For the special case of the generalized singular value 
decomposition, we need a constraint matrix B (the 
number of columns must be equal for matrices A and 
B, but the number of rows can be different)
– In a special case B=I, the solution is actually a regular 

singular value decomposition 
• (In principle, a matrix A constrains rows, and a matrix 

B constrains columns)
20
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An example of matrix B
• An example of a 2D case, in which a line ax+by+c=0 is fitted to 

point observations, and the constraint matrix is 

• For example, following alternatives can be utilized for 
constraint equations (and corresponding B matrices): 
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The solution of 
a homogeneous system, case C

• Generalized singular value decomposition is (Matlab function: GSVD)

in which U is an orthogonal matrix (size of nxn)                       , V is also an 
orthogonal matrix (size of pxp)  (                ) and F is a regular (non-singular) matrix 
(size of uxu)

• Because and ,
and if we name                  , the original conditions                      and  can be 
replaced with following conditions
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The solution of 
a homogeneous system, case C

• Because and (the smallest value is in the 
first diagonal element), the solution fulfilling conditions  and

is

• The least-squares solution      of the original task is solved from the system 
of equations

• The squared sum can be calculated (even before solving x) with equation 

• Residuals are
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The solution of a homogeneous 
system, special case of C

• In many cases, however, we end up in a situation, in which B=I , and we 
are able to use a normal singular value decomposition

• Let say that                       is a singular value decomposition of a matrix A, in 
which case 

• Because and  , we can name  
• The new constraints are then

• Because S is a diagonal matrix that has sorted elements in the diagonal 
(from the largest to the smallest), the solution is
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The solution of a homogeneous 
system, special case of C

• The solution      of the original least-squares task is

i.e. the last column of a matrix V, i.e. the singular vector that corresponds to the 
smallest singular values of a matrix A

• A residual vector is 

• A squared sum:
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