5. Extended Euclidean algorithm and
interpolation from erroneous data

CS-E4500 Advanced Course on Algorithms
Spring 2019

Petteri Kaski
Department of Computer Science
Aalto University

Lecture schedule

Tue 15 Jan:
Tue 22 Jan:
Tue 29 Jan:
Tue 5 Feb:

Tue 12 Feb:

Tue 19 Feb:
Tue 27 Feb:
Tue 5 Mar:

Tue 12 Mar:
Tue 19 Mar:
Tue 26 Mar:

O B~ W N =

. Polynomials and integers

. The fast Fourier transform and fast multiplication

. Quotient and remainder

. Batch evaluation and interpolation

. Extended Euclidean algorithm and interpolation from erroneous data

Exam week — no lecture

. Identity testing and probabilistically checkable proofs

Break — no lecture

. Finite fields
. Factoring polynomials over finite fields
. Factoring integers

CS-E4500 Advanced Course in Algorithms (5 ECTS, -1V, Spring 2019)

2019 | KALENTERI | 2019
Tammikuu | Helmikuu Maaliskuu | Huhtikuu Toukokuu I Kesakuu
1T udenwuodenpaiva 1]re 1T I 1]wa [[w4T9[1]kevappu 1]
2|ke 2|La 2| 2|To 2|su
3[m 3[su D3 3[ke 3[re 3[ma k23
4]pe 4|ma Vios || 4™ 4| 4m
5|t 5[14 skiainen 5[pe ®| 5[su 5|ke
6 5u Loppiainen 6[Ke Break 6|La 6ma VK 19 610
7|ma Vicoz 70 Q4 7[su 7| 7[Pe
8|1 8[re] 8|va V15 8[ke 8[La
9|ke 9|La 9T 9|To 9| Su Helluntaipéiva
10[10 10[su D4 6 10] ke 10[pe 10[Ma Vi2e
11]pe 1] ma ko7 T4 11]ma VKT 11T 11]ta 1T
12|t 2[n |5 12[n L7 12[pe ©|| 12]sutenpava 12[ke
13su 13| ke ©| 13[ke 13|La 13|Ma Vk 20 13| Te
ST oo ©| 14[e_Q5 14 Q7 ©|[74 [5u Paimusanmuntai Talm 4P
15| Ll 15(Pe 15|Pe 15|Ma Vk 16 15 (Ke 15|La
16]Ke 16[a 16[La 16[T 1610 16[su
170 Ol 17[su 17[su D7 17Ke 17pe 17| va vizs
18 [Pe 18] M WKGs | 18[Ma vk 127 || 18To 18|La 18T
19]ta o[l Exam Pl elv L8 19 | Pe Pitkaperjantal 19 | Su Kaatuneiden muistopaiva 19[Ke
20[su DI 20| e} 20| Ke Kevatpaiviffasaus 20[ta 20| ma V21 2010
B w0 21 weel 21 Q8 O|[21]su asiaispaiva 21T 21 [Pe Kesaptivanseisaus
22|t |2 22| P 22|Pe 22 | Ma 2. passidispaiva 22|Ke 22| La Juhannus
23[Ke 231 231 23] 23[To 23[su
24|10 Q2 24|su D5 24|su D8 24 |Ke 24]Pe 24[Ma Vk 26
25[pe 25| va Voo 75| 25va V13T 8 || 25]10 25[a 25[n
26[La 26t L6 @) 26[n |9 26]pe 26]su 26| ke
27su D2 @ 27]«e 27 [Ke 27]ta || 27|ma Vk22 2770
28|Ma wosT2|[28] Qf 28[T0 Q9 ®|| 28]su 28[Ti 28] Pe
29[t |3 29[Pe 29 |Ma Vk 18 29[Ke 29|l
30[ke 30[a 30| 30| To Helatorsta 30[su
31[ro Q3 31| Su Kesaaika alkfg) § 31|Pe
L = Lecture; hall T5, Tue 12-14
Q = Q &A session; hall T5, Thu 12-14
D = Problem set deadline; Sun 20:00
T =Tutorial (model solutions); hall T6, Mon 16-18

Recap of last week

» Fast batch evaluation and interpolation of polynomials

» Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

» Secret sharing by randomization

Goal: Near-linear-time toolbox for univariate polynomials

Modern Computer Algebra iz

Joachim van ur Gathen and Jirgen Gerhard

v

Multiplication

v

Division (quotient and remainder)

Batch evaluation

v

v

Interpolation

Chapter 5

Extended Euclidean algorithm (gcd) (this week) AL SLSeaT AR PreoDNG

v

v

Interpolation from partly erroneous data

(this week)

Further motivation for this week

» After this week we have completed our work on the near-linear time toolbox for
univariate polynomials

» This week is also our first encounter with uncertainty in computation

» This week we learn how to cope with uncertainty in the form of errors in data by
using error-correcting codes

» Next week look at errors in computation ...

Fast extended Euclidean algorithm (for polynomials)

Modern Computer Algebra iredition

Joachim von zur Gathen and Jiirgen Gerhard

(von zur Gathen and Gerhard [11],
Section 11.1)

Fast interpolation from partly erroneous data

(Gao [10])

Chapter 5

A NEW ALGORITHM FOR DECODING
REED-SOLOMON CODES

Shuhong Gao

Department of Mathematical Sciences
Clemson University,

Clemson, SC 29634-0975, USA.

Abstract A new algorithm is developed for decoding Reed-Sol codes. It
uses fast Fourier transforms and computes the message symbols directly
without explicitly finding error locations or error magnitudes. In the
decoding radius (up to half of the minimum distance), the new method
is easily adapted for error and erasure decoding. It can also detect
all errors outside the decoding radius. Compared with the Berlekamp-
Massey algorithm, discovered in the late 1960’s, the new method seems
simpler and more natural yet it has a similar time complexity.

1. Introduction

Reed-Solomon codes are the most popular codes in practical use today
with applications ranging from CD players in our living rooms to space-
crafts in deep space exploration. Their main advantage lies in two facts:
high capability of correcting both random and burst errors; and existence
of efficient decoding algorithm for them, namely the Berlekamp-Massey
algorithm, discovered in the late 1960’s [1, 9]. The Berlekamp-Massey

Fast extended Euclidean algorithm (for integers)

(Maller [20])

noroion
A ol pblishe oo Sctember 12, 2007

ON SCHONHAGE'S ALGORITHM
AND SUBQUADRATIC INTEGER GCD COMPUTATION

il provious subcuadatic Wftoright Gco slgorithms
‘running time,

On(log n)? loglog).

1. INTRODUCTION

In this paper, we describe four subquadratic Gcp algorithms: Schnhage’s al-
gorithm from 1971, Stehlé’s and Zimmermann's binary recursive Gc, a hitherto
umpublihed ccp algorithm discovered by Scnhage in 1957, and n novel Gep ok
gorithm that uses similar ideas in a HGCD framework. The algorithms are compared
with respect to running time and plm.uelunuan complexity. The new algorithm
is slightly faster than all the earlier algorithms, and much simpler to implement.

‘The paper is organized as follows: First we review the development of integer
Ge algorithms in recent years. Section Bl deseribes the general structure and fiavor
of the subquadratic GCD algorithms, the idea of using & half-ccp function, and
the resulting asymptotic running time. In Section[3} we briefly describe one variant
of Schonhage's 1971 algorithm, and in Section [, we describe the binary recursive
GeD algorithm. The objective of these two sections is to provide suffiient details
50 that the new algorithm can be compared to carlier algorithms; we define the cor-
responding half-GCD functions, but we don't provide correctness proofs or detailed
analysis.

Section [describes a GCD algorithm modeled on Schonhage's algorithm for re-
duction of binary ic forms [5], and in Section B this algorithm is reorga-
i o Bl orm, rLau\nng in’a novel GCD algorithm. Section) deseribes

he implementation of the different Ge algorithms, their running times, and code
Luluplux.lly

Rece editor Novermber 19, 2005.
3000 Mathrmatin Subi oo Prsaey 1D, 11Y16.

©2007 i Mottr

Key content for Lecture 5

» Extended Euclidean algorithm for polynomials recalled and expanded
> The quotient sequence, the Bézout coefficients, and the halting threshold

» Fast extended Euclidean algorithm for polynomials by divide and conquer

> The two polynomial operands truncated to a prefix of the highest-degree monomials
determine the prefix of the quotient sequence (exercise)

» Coping with errors in data using error-correcting codes

v

A family of error-correcting codes (Reed-Solomon codes) based on
evaluation—interpolation duality for univariate polynomials

> Key observation: low-degree polynomials have few roots (exercise)

» Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Extended Euclidean algorithm (for polynomials)

> Let F be a field and let f, g € F[x] with degf > degg > 0

» Traditional extended Euclidean algorithm:
1. rp—f,s0 < 1, t <0,
r«gs <0t <1
2. 1«1,
while r; # 0 do
Gi < ri-1quor;
Fit1 < Ti-1 — qil;

Si+1 < Sji-1 — qiSi
tiv1 < ti-1— qit;
Pe—i+1

3. L—i—1

return {, r;,s;, t;fori=0,1,...,{+ 1,and g; fori =1,2,...,¢

» We want a faster algorithm

Example (over Z;|[x])

»letf=x"+x'+ X3+ x>+ x+1€Zyx]and g = x° + x* + 1 € Z,[x]

» We obtain
i I S t qi
0 X +x*+x3+x2+x+1 1 0
1 X+ x4+ 1 0 1 1
2 3+ x>+ x 1 1 x?+1
3 X2+ x+1 x>+ 1 x? X
4 0| x3+x+1|x3+1

» In particular £ = 3 and r, = x> + x + 1is a greatest common divisor of

X Hx+x3+x2+x+Tand xX° +x* + 1

Terminology

v

The sequence g1, G2, . . ., g¢ is the quotient sequence produced by the algorithm

v

The polynomial r; is the remainder at iteration i

v

The polynomials s; and t; are the Bézout coefficients at iteration i

v

The Bézout coefficients satisfy r; = s;ry + tir

Desiderata for a fast algorithm

» Let F be a field and let f, g € F[x] with d > degf > degg > 0

» Desired output:
The quotients g1, gy, - . ., g» and two consecutive rows ry, sp, ty and rpi1, Spt1, theq for a

choiceof h=1,2,...,¢
» Using O(M(d) log d) operations in F

The degree sequences m; and n;

» It will be convenient to work with the following two sequences
» Fori=1,2,...,0+1let
m; = deg q;
where, for convenience, we let myy; = o
» Fori=0,1,..., 0+ 1, let
n; = degr;
recalling that ngy = deg0 = —co
» By assumption, we have degry > degry >0
» Since we have ri.1 = ri_; — g;jrjand deg r; > deg iy forall i =1,2,...,¢, it follows that

Nji-1 = n; + m;

Example (over Z;|[x])

»letf=x"+x'+ X3+ x>+ x+1€Zyx]and g = x° + x* + 1 € Z,[x]

» We obtain
i ri Si ti qi | mj n;
0l x+x*+x3+ x>+ x+1 1 0 5
1 X+ x4+ 1 0 1 11 0| 5
2 X3+ x%+x 1 1| x2+1] 2 3
3 X+ x+1 X2+ 1 x? X 1 2
4 0| x>+x+1[x3+1 00 | —co

» In particular £ = 3 and r, = x> + x + 1is a greatest common divisor of

X Hx+x3+x2+x+Tand xX° +x* + 1

The halting threshold h = h(k)

» Given a threshold parameter k =0, 1,.. ., ny as input, we want the algorithm to halt
at iteration h = h(k) determined by

m+m+...+mp<k

and

mi+my+...+mp+ mpq >k

» In particular, we observe that 0 < h < ¢

The halting threshold h = h(k)

» Equivalently, since nj = nj_y — m;fori=1,2,...,{ + 1, we have
np > ng—k
and
Npe1 < np — k

» That is, the algorithm halts at the unique iteration h =0, 1,...,¢ when the degree of
rp+1 for the first time decreases below ny — k

Truncating a polynomial

» Let
f=0xX"+ @nax™ "+ ...+ o1x + @y € F[X]
with leading coefficient Icf = ¢, # 0
» For k € Z, define the truncated polynomial

k-1

frk:(pnxk+(pn,1x + .+ Qg1 X + @pi € F[X]

where we set ¢; = 0 for i < 0 as necessary

» For k > 0 we have that f [k is a polynomial of degree k whose coefficients are the
k + 1 highest coefficients of f

» For k < 0wehave fT k=0
» Foralli=0,1,...wehave (fx) [k = f| k

Example: Truncating a polynomial

» Let us work with the polynomial
f=2+9x+10x* + 4x> € Zy[x]

» We obtain the truncations

fr-2=0

fr=1=0
fro=4
F11=10+4x

F12=9+10x + 4x*
F13=2+9x+10x* +4x°
fr4a=2x+9x>+10x> + 4x*

F15=2x%+9x3 + 10x* + 4x°

Coinciding pairs of polynomials

> Let f,g.f.8 € F[x] \ {0} with deg f > deg g and deg f > degg
> For k € Z, we say that (f,g) and (f,) coincide up to k and write (f, g) = (f, g) if
frk=frk
gh(k - (deg f — degg)) = gl (k - (degf - degg))

» Remark:

If (f,8) =« (f.8) and k > deg f — deg g, then deg f — deg g = deg f — deg g

Example: Coinciding pairs of polynomials

» The pairs
F=7+2x+x*+x>+10x" + 7x° + x® + 5x7 + 9x® + 5x” + 7x'° € Z11[x]
g=3+7x+4x* +2x> + 2x" + 6x° + 3x° + 2x” + 4x® € Z1;[x]
and
f: 1+5x +9x% +5x° + 7x* € Z1[x]
g =3+2x+4x* € Z[]
coincide up to 4
» Indeed, we have deg f = 10, deg g = 8, degf = 4, and deg g = 2, with

fla=f14=1+5x+9"+5x +7x*
g12=2812=3+2x+4x*

Quotients of coinciding pairs of polynomials

» The following lemma enables us to design a divide-and-conquer extended Euclidean
algorithm by truncating the operands to division

Lemma 8 (Sufficiently coinciding pairs of polynomials have identical quotients)
Suppose that (f, g) =y (f, &) for k € Z with k > deg f — deg g > 0. Define q,r, 4, F € F[x]
by division with quotients and remainders as follows

f=qg+r, degr < degg,

f=q8+F, degr < degg.
Then, q = q and at least one of the following holds (g, r) =y(k-deg q) (& T) orr =0 or
k—degq < degg—degr.

Proof.
Exercise =

Example: Quotient of coinciding pairs of polynomials

» The pairs
F=7+2x+x*+x>+10x" + 7x° + x® + 5x7 + 9x® + 5x” + 7x'° € Z11[x]
g=3+7x+4x* +2x> + 2x" + 6x° + 3x° + 2x” + 4x® € Z;;[x]
and
f: 1+5x +9x% +5x° + 7x* € Z1[x]
g =3+2x+4x* € Z[]
coincide up to 4, with 4 > deg f — degg = 2
» Accordingly (by Lemma 8), the quotients agree:
fquog =9+ 10x + 10x*
fquog =9+ 10x + 10x

Quotient sequences of coinciding pairs of polynomials

» Now let us study what happens in the extended Euclidean algorithm if we execute it
for two inputs, (ry, r1) and (ro, 1), with deg rp > degry > 0 and degry > degry > 0:

ro=qin + r, Ih=qn+n

r = qxn +r3, n=qQn+r
i1 = qiri + riz1, i1 = QI + Fiz
re-1 = qere, iy =q;ry

» In particular, our interest is on the case (ry, r1) =k (o, 1) ...

Quotient sequences of coinciding pairs of polynomials

» We can now study the execution on two coinciding inputs (ry, r) and (rp, F1) with
degry > degry > 0 and degry > degry > 0 as follows

Lemma 9 (Identical quotient sequences up to the halting threshold)
Let k € Z with (ry, r1) =5k (Fo, F1). Then, h(k) = f)(k) with q; = q; foralli=1,2,..., h(k).

Proof sketch.

By induction on i and using Lemma 8 for the induction step, the following holds for all
0 < i < h(k): we have i < h(k), g; = g;, and at least one of the following holds: i = h(k) or

(r,-, ri+1) Ez(k_zj::] mj) (r,-, ri+1)' a

Example: Quotient sequences of coinciding pairs

> Let us run the extended Euclidean algorithm for a pair of polynomials in Z11[x]:

i gi ri Si &
0 7+ x+3x2 +5x° +9x7 + 10x° + 7x° 1 0
1 4| 44+10x + 7x% +4x3 + 7x* + 4x° + 10x° 0 1
2| 4+2x 24 5x+8x2 +3x* +5x° 1 7
3| 4+10x 7+ 8x +9x2 + 10x3 + 6x* 7+9x 6+ 8x
4| 243x 74 2x+2x2 +2x3 6 + 4x + 9x? 54 7x + 8x2
5 | 10+9x 4+ 5x + 10x% 6+ 5x +3x2 + 6x3 74 x+7x% +9x3
6 | 4+8x ax 1+10x +x3 + x4 1+6x2+x3+7x*
7 X 4 24 x+2x% +10x* +3x° 34 4x+5x% + x5+ 8x* + 10x°
8 0 | 1T+8x+10x%+x3 +10x* +x° +8x% | 1+8x+2x2 +7x% +6x% +3x% + x°

» Here is a run on a pair that coincides with the first pair up to length 2k = 4:

i| qi | ri | si | t
0 34 5x+9x2 + 10x° + 7x7 1 0
1 4 | 7+4ax+7x% +4x3 +10x* 0 1
2| 4+2x 8+ 3x% +5x° 1 7
3| 4+10x 8 + 10x + 6x2 7+ 9x 6+ 8x
4 6x 9+ x 6 + 4x + 9x? 5+ 7x + 8x2
5| 8+7x 8 7+6x+9x% +x3 6+ 2x% + 7x°
6 0 | 5+6x+5x2+6x>+4x* | 1+9x+3x%2+7x> +6x*

» Observe that the quotient sequences agree up to total degree
deg qi +deg gy + ... + deg qn) < k with h(k) =3

A divide-and-conquer extended Euclidean algorihtm

» We now use Lemma 9 to design a fast divide-and-conquer version of the extended
Euclidean algorihtm

» For a given input (ro, r) € F[x]? with deg ry > deg r; > 0 and halting parameter k > 0,
the key idea is to truncate the input using the “|”-operator and build the quotient

sequence qi, G2, - - - » Gn(k) Using two recursive calls with halting parameter at most
Lk/2] each
» That is, the idea essentially to use the first recursive call to recover qi1, qa, . . ., Gn(|k/2))s

then compute (as needed) the next quotient gp(|«/2))+1 explicitly, and then make a
second recursive call (as needed) to recover the rest of the quotient sequence

q1,q2, ..., CIh(k)

» With careful implementation, this leads to an algorithm that runs in O(M(k) log k)
operations in F

» Before describing the algorithm in detail, let us recall some further terminology ...

Invariants of the extended Euclidean algorithm

» Recall the matrices
so by 1 0 0 1 .
R = = P = f =1,2 o
0 [51 t‘l] |:0]:|’ QI [.I _q’] or1/ < 75
and R = QiQi—1 -+ QiRy € F[x]*?*fori=0,1,...,¢ from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

S ti ri ri
» We recall that forall i=0,1,...,0 we have R, = | ' "l and R; o =1"
Si+1 L+ n T

» Our algorithm design will be such that on input (ry, r1) and k it produces as output (i)
the value h(k), (ii) the quotient sequence qi, g2, . . ., Gn(k)» and (iii) the matrix Ry ...

Truncating inputs to the extended Euclidean algorithm

> Let us write h(k), g1, G2, Gh(k)» Rnky < extged(k, ro, r1) to indicate that the
algorithm produces the output h(k), 1, qa. . . ., Gn(k)> Rnk) on input k, ro, ry with
degry > degr; >0

» Lemma 9 now implies that we have

extged(k, ro, ry) = extgcd(k, rol 2k, ri1(2k — (deg ry — deg r1))) (30)

» In particular, we can assemble the output recursively so that the input polynomials to
each recursive call are truncated in degree to the minimum enabled by (30)

» We are now ready for the detailed pseudocode of the algorithm ...

A divide-and-conquer extended Euclidean algorithm |

» Let F be a field and let k € Z and ry, r; € F[x] with deg ry > deg r; and ry # 0 be given
as input

1. If k < deg ry — deg r; holds, then return with output h(k) < 0 and Ry « [(1) (1)]

Icry

2. If k =0 and deg ry = deg ry hold, then return with output h(k) < 1, g; = 2, and

lcry?

0 1
Ry < lc ro
T =ien
3. Set ki « | k/2]
4. Make the first recursive call
h, qﬁ”, q£1), e q;:]), R extgcd(lq, rol 2k, ri [(2ky — (deg ry — deg rI)))

. rh rol 2k
5. Compute the matrix-vector product | . — R(M []
P P [Py] ri M2k - (deg ro — deg 1))

A divide-and-conquer extended Euclidean algorithm Il

6.

10.

11.

If deg q§1) + deg qg) +...+deg qz]) + deg rn, — deg rp,+1 > k holds, then return with

output h(k) < h1, g1, G2, ..., Guk) < q1 ,qé”, e q;:]), and Ry « R

. - - . 0 1
Compute the quotient gp,4+1 < Fp, quO rp, 41 and the matrix Qp, 1 < [1 0]
- h1+1

Compute the remainder ry 4y < 'y, = Qhy+17h+1

Set ky « k — (deg q?) + deg qé” +...+deg qm) + deg qp,+1)

Make the second recursxve call
ho, g\, 0y, . g R« extged (K, Py o1 1 2K1, Py o2 P(2ky = (deg P, 41 — deg 7y +2)))

Return with output h(k) < hy + 1+ hy,

1 1 2
15 Q25 - - -5 Qh(k) < qg),qg),...,q;,]),qh]ﬂ,qg),qg),.--,qﬁ,z) nd

Rugy — R@ Q41 RM

Remarks and analysis

>

Caveat: In Step 1 we may have deg r; = —co (that is, r; = 0) and in Step 6 we may have
deg rp,+1 = —oo (that is, rp,+1 = 0)

After Step 1 it holds that k > deg ry — deg r; > 0, after Step 2 it holds that kK > 1 and
degry > degry > 0;thus, 0 < ky < k—1

After Step 5 we have
deg q?) + deg q§1) +...+deg qg) < ky
and, also recalling that k; = | k/2],
deg qﬁl) + deg qé” + ...+ deg qZ? + deg ry, —deg rp,1 = ki + 1 > [k/2]
Assuming that rp, .1 # 0, we have deg qp,+1 = deg rp,, — deg rp, 11
Thus, k; < |k/2] < k-1

The algorithm runs in T(k) < T(ky) + T(ky) + O(M(k)) < 2T(Lk/2]) + O(M(k))
operations in F; that is, T(k) = O(M(k) log k) operations in F

Key content for Lecture 5 (recalled)

» Extended Euclidean algorithm for polynomials recalled and expanded
> The quotient sequence, the Bézout coefficients, and the halting threshold

» Fast extended Euclidean algorithm for polynomials by divide and conquer

> The two polynomial operands truncated to a prefix of the highest-degree monomials
determine the prefix of the quotient sequence (exercise)

» Coping with errors in data using error-correcting codes

v

A family of error-correcting codes (Reed-Solomon codes) based on
evaluation—interpolation duality for univariate polynomials

> Key observation: low-degree polynomials have few roots (exercise)

» Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Number of roots

» Let F be a field
» A root of a polynomial f € F[x] is an element & € F with f(£) =0

Theorem 10 (Number of roots)
A nonzero polynomial f € F|x] of degree at most d has at most d distinct roots.

Proof.

Exercise

Two distinct polynomials mostly disagree

» Let F be a field
» Let E = (&1,8, ..., &) € F€ be a vector of e distinct elements of F

» Associate with f € F[x] the vector of evaluations

FE) =(f(&).f(&).....f(&)) € F°

Lemma 11 (Bounded agreement of low-degree polynomials)

Let fy, f1 € F[x] be distinct polynomials of degree at most d.
Then, f,(E) and f1(Z) agree in at most d coordinates.

Proof.
The difference fy — f1 # 0 is a polynomial of degree at most d and thus has at most d
distinct roots

Reconstructibility from partly erroneous data

» Let f € F[x] be a polynomial of degree at most d

» Lete>d+Tandlet E = (&,&,...,&) € F¢ consist of distinct elements

Lemma 12 (Unique reconstructibility)

Suppose that the vectors T € F¢ and f (E) disagree in at most (e — d — 1)/2 coordinates.
Then, T’ uniquely identifies f

Proof.

Let fo, f1 € F[x] be two polynomials of degree at most d such that f,(Z) and f;(Z) each
disagree with T in at most (e — d — 1)/2 coordinates. In total there are e coordinates, so
fo(E) and f1(Z) and T’ must thus all agree in at least e — 2(e —d — 1)/2 = d + 1 coordinates.
By Lemma 11 thus f; = f7. O

(Furthermore, we can, very inefficiently, recover f from I by considering in turn each vector I' € F¢ that disagrees with T

in at most (e — d — 1)/2 coordinates: for each such T, interpolate f from f(Z) = T, and stop when f has degree at most d.)

Reed-Solomon codes

v

Suppose we want to protect a sequence ® = (g, @1, . . ., ¢q) € FI*' of elements of a
field F against errors

We may represent ® as a polynomial f = @o + @1x + ... + pgx? € F[x] of degree at
most d

Lete>d+Tandlet E = (&,&,...,¢&) € F€ consist of distinct elements
Let us use ¥ = f(E) € F° as the encoded representation of ®

Suppose that ¥ disagrees with ¥ in at most (e — d — 1)/2 coordinates. Then,
Lemma 12 implies that we can recover ® from ¥

That is, ¥ may have up to | (e — d — 1)/2] errors and we can still recover ®
Encoding can be done in near-linear-time by fast batch evaluation ...

... but how efficiently can we decode in the presence of errors?

Example: Encoding

v

Let us work with e = 8, d = 3, F = Z;, and the evaluation points
E= (&0 E) =(0,1,2,3,4,5,6,7) € Z¢,

» Suppose we want to protect the data vector ® = (5,3,1,9) € Zﬂ”

v

We view @ as the degree-at-most-d polynomial f = 5 + 3x + x? + 9x> € Z11[x]

v

The encoded representation of @ is

¥ =f(5) = (f(&). f(&),....f(&)) = (5,7,10,2,4,4,1,5) € Z7,

Gao’s (2003) decoder for Reed-Solomon codes

v

Let f € F[x] be a polynomial of degree at most d

v

Lete>d+Tandlet E = (&,&,...,¢&) € F€ consist of distinct elements

v

Suppose that the vectors T € F¢ and f(E) disagree in at most (e — d — 1)/2
coordinates. Then, ' uniquely identifies f (Lemma 12)

» Moreover, given =, T, d as input, f can be computed in O(M(e) log e) operations in F
(Gao [10])

Gao’s decoding algorithm

» Let = = (&,&, ..., &) € F° consisting of distinct elements, I' = (y1,¥2,...,7e) € F¢,
and d € Zso with d + 1 < e be given as input

» Gao’s algorithm [10] proceeds as follows:

1. Using a subproduct tree, construct the polynomial gy = [7_,(x — &)

2. Interpolate the unique polynomial g; € F[x] of degree at most e — 1 that satisfies
gi(&)=vyiforalli=1,2,...,e

3. Apply the extended Euclidean algorithm to gy and g; to produce the consecutive
remainders gy, gh+1 with deg g > D, and deg ghi1 < Dfor D= (e+ d + 1)/2. Let
Sh+1, the1 € F[x] be the associated Bézout coefficients with gy 1 = spi180 + the11

4. Divide gps1 by thy1 to obtain the quotient f; € F[x] and the remainder r € F[x] with
8hi1 = theifi + rand deg r < deg thyq

5. Output f; as the result of interpolation if both deg fi < d and r = 0;
otherwise assert decoding failure

» It is immediate that the algorithm runs in O(M(e) log e) operations in F

Example: Decoding |

v

Let us work with e = 8, d = 3, F = Zq;, and the evaluation points
E = (51’52" ° "ge) = (0’ 192a3’475a6,7) € Z?T

e

> Suppose we have the vector I' = (y1,y2,...,Ye) = (5,7,1,2,9,4,1,5) € ZS,

» First, we construct the polynomial

e
& = I_I(X_gi) = 9x + 2x° + 4x* + 9x° + 3x® + 5x7 + x®
i=1
» Then, we interpolate the polynomial

g1 =5+ 7x+5x% +2x° + 10x* + 9x° + 6x° + 7x’
that satisfies g;(&) = yiforalli=1,2,...,e

Example: Decoding Il

» Next we apply the extended Euclidean algorithm to g, and g; to produce the
consecutive remainders gp, gp1 with deg gy > D, and deg g1 < D for
D=(e+d+1)/2=6..

» For convenience, we display the entire output of the extended Euclidean algorithm
(but omitting the first Bézout coefficient sequence):

i qi & ti
0 9x + 2x3 + 4xT + 9x% +3x% + 5x7 + X8 0
1 8+8x | 5+ 7x+5x% +2x3 + 10x* +9x° + 6x° + 7x7 1
2 | 7+10x 44 x+3x% + x5+ 7xY +ax® 343x
3| 3+3x 10 + 4x + 7x% +9x% + 6x* + 5x° 2+ 4x + 3x7
4 | 6+10x 7+ 3x +3x2 + 8x3 + 6x* 8+ 7x+x% +2x3
5 | 10+9x 1+ 4x +3x% + 8x° 9+ 3x + 4x% + 2x*
6 | 4+10x 8 + 9x + 3x? 6+ 6x + 10x> + 2x* + 4x°
7| 5+4x 2+ 9x 74 7x + 10x2 + 4x3 + 4x* + 8x5 + 4x°
8 10+ x 9 | 44 9x+10x% +5x3 + 10x* +3x% + 3x° + 6x7
9 0 x +10x3 + 9x* + x° +4x% + 3x7 +5x8

» (In a fast implementation we would of course use the divide-and-conquer extended
Euclidean algoritm and would not produce the entire sequence of remainders g;)

Example: Decoding Il

v

From the extended Euclidean algorithm we obtain that h = 2 with

ghi1 = 10 +4x + 7x* + 9x° + 6x* + 5x°
the1 = 2+ 4x + 3x°

v

Dividing gp+1 by th+1 we obtain the quotient

fi=54+3x+x*+9x°

and the remainder r = 0

v

In particular, the decoding is successful, and the reconstructed data vector is
(5,3,1,9) € Z4H

» Re-encoding the reconstructed vector as appropriate, we can also observe that the
vector I" has two errors, namely f(&) =10 £ y3 =2and f(&) =4 #y5 =9

Correctness |

» First, suppose that the algorithm does not assert failure
» Then, fi = gh+1/th+1 has degree at most d

» Since thi1fi = ghi1 = Sh+180 + the181, we have sp180 = the1(fi — g1) and hence for all
i =]7 29 ..., E6We have th+1(§l) - O orfl(gl) g1 (gl) - YI

» Since gpy1 is the first remainder with deg g1 < D and deg &o = e, by the structure of
the Bézout coefficients we have degtp,1 <e—-D=(e—d—1)/2

» Indeed, from the definition of Bézout coefficients we have
deg spi1,deg thi < Zlf-':] deg q; = deg gy — deg gn < e — D since
deggi + deg q; = deg gi_1 and deg gn > D

» Since ty1 has at most deg tp,q roots, we have f;(&;) # y; for at most (e —d —1)/2
coordinates i =1,2,...,¢e

» Thus, f; is a valid output for input E,T, d

Correctness Il

» Next, let f € F[x]| be a polynomial of degree at most d, let = = (&1, &, ..., &) € F¢
consist of distinct elements, and let T = (y1,¥2,. .., Ye) € F¢ be a vector that disagrees
with f(Z) in at most (e — d — 1)/2 coordinates ford + 1 < e

» By Lemma 12, we know that I' uniquely determines f

» We show that Gao’s algorithm outputs fi = f on input E,T, d

» Let B={i€{1,2,...,¢}: f(&) # yi} be the set of “bad” coordinates
» That is, B is the set of coordinates where T and f(E) disagree

» By assumption we have |B| < (e—d —1)/2

» To understand the operation of the algorithm, let us split the polynomials gy and g;
into parts based on Band G ={1,2,...,¢e} \ B (the “bad” and “good” coordinates)

Correctness 111

» Toward this end, let
g=[|x-&eFlx. =]]x-& eFlx
i€G i€B
» It is immediate that gy = grp
» Let r; € F[x] be the unique polynomial of degree at most (e — d — 1)/2 — 1 with
n(&) = q(&) ' (vi—f(&)) # 0forall i € B
» Thus, we have g; = gr + f

» We have that gcd(ry, r1) = 1 since no root of ry is a root of r; and ry factors into a
product of degree 1 polynomials

» The following lemma will imply that the algorithm outputs f; = f; we postpone the
proof and give it as Lemma 13

Correctness 1V

» Gao’s Lemma. (Lemma 13 below) Let ¢, d, D € Z>(and let g, ro, r1, fo, f1 € F[x] with
ged(rg,r) =1,degqg> D > c+d+ 1,and degr; < ¢, degf; < d for i = 0, 1. Run the
extended Euclidean algorithm on input gy = gro + fy and g1 = gry + f; to obtain the
remainders g, and gpi1 = Spr180 + the181 for spir, ther € F[x] with deg gy > D and
deg gn+1 < D. Then, spy1 = —ary and thyq = ary for some o € F \ {0}

» Take fo = 0, fi = f, ¢ = |B| in the lemma and recall that we have D = (e + d + 1)/2

» Thus,c < (e—d—-1)/2,degq=1|G| =e—|B| > D > c+ d+ 1, and the lemma applies
to the polynomials gy = grp and gy = gry + f constructed in the algorithm

» Let gh+1, She1s thet be the output of the lemma (also constructed by the algorithm)
» Because fy = 0 and f; = f, we have gy = —arigro + arg(qri + f) = thef

» In particular, the algorithm outputs f; = f = gh41/ther O

Preparation for Gao’s Lemma

» Recall the matrices

_ S0 to _ 1 0 o 0 1 .
RO—[S1 l‘1}_[0]], Q,—[1 _q’_} fori=1,2,...,¢

and R = QiQi—1- -+ QiRy € F[x]*?*fori=0,1,...,¢ from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

. S; t; I ri
» We recall that forall i=0,1,...,0 we have R; = | ' "land R;| %l =] "
Si+1 Liva ry

» Since det Q; = —1 we have det R; = (—1)i and thus RI._] = (=1) [L1 _l."]

. ro e (=) tepare
» Since rp4q = 0, we have [ﬁ] = RH[O] = [(_])[HS{HFZ

» We conclude that spy1 = (=1)*'ry/rp and troq = (=1)Cr0/re

Gao’s Lemma

Lemma 13 (Gao [10])

Letc,d, D € Z>g and let q, ry, r1, fo, f1 € F[x] with ged(ro,r1) =1, degqg> D > c+d + 1,
anddegr; < ¢, degf; < d fori =0,1. Run the extended Euclidean algorithm on input

&0 = qry + fo and gy = gr1 + f1 to obtain the remainders g, and ghi1 = Sp+180 + thi181 for
Sh+1, the1 € F[x] with deg gn > D and deg gh1 < D. Then, sp11 = —ary and tpy1 = ary for

somea € F\ {0}

Proof of Gao’s Lemmall

» Letrg,ry,..., e, rer1 and gy, o, - - ., ge be the sequences of remainders and quotients
in the extended Euclidean algorithm on input ry, rq

» Since gcd(rg, r1) = 1, we have rp € F\ {0} and rp41 =0
» Lets;, t; € F[x] fori=0,1,...,¢+ 1 be the associated sequence of Bézout coefficients
» Foralli=1,2,...,¢, we have

fig1 = o1 = Qifi, Sig1 = Sic1— §iSi, tipn = tiog — qit; (31)

» Foralli=2,3,...,+ 1define g; = sigy + tig
» From (31) it follows that g1 = gi—1 — g;gi forall i=1,2,...,¢

» Let us show that deg g; is a monotone decreasing sequence for i = 1,2,...,¢

Proof of Gao’s Lemma Il

» We have r; = sjro + tjr; forall i = 1,2,...,£ + 1. Furthermore, degs; < cand degt; < ¢
foralli=1,2,...,0+1

» Since g = qro + fo, &1 = qri + f1, and g; = sigy + tigy, forall i =0,1,...,{ we have
8i = qri + sifo + tifi

» Since deg(sifo + tifi) < c+danddegqg> D > c+ d+ 1, we have
deggi =degq+degr; > Dforalli=0,1,...,¢

» Since deg r; is monotone decreasing for i = 1,2, ..., ¢, we have that the same holds for
deg gi
» Thus, we have that g, g1,...,8¢ and g1, ¢z, . . ., g¢ form a prefix of the sequence of

remainders and quotients in the extended Euclidean algorithm on input g, g;

» Since degr, = 0, we have deg gy = degg > D

Proof of Gao’s Lemma lll

» Since spi1 = (=1)'r/rp and treq = (=1)Cro/re, we have

8ei1 = se180 + tring = (1) (=for1 + firg) /e

» Thus, deg gr+1 < ¢+ d < D and it follows that gry1 = g = sgy + tg; with a = (=1)¢/ry,

s=—arn,andt=ary O

Recap of Lecture 5

» Extended Euclidean algorithm for polynomials recalled and expanded
> The quotient sequence, the Bézout coefficients, and the halting threshold

» Fast extended Euclidean algorithm by divide and conquer

» The two operands truncated to a prefix of the highest-degree monomials determine the
prefix of the quotient sequence (exercise)

» Coping with errors in data using error-correcting codes

v

A family of error-correcting codes (Reed-Solomon codes) based on
evaluation—interpolation duality for univariate polynomials

> Key observation: low-degree polynomials have few roots (exercise)

» Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Learning objectives (1/2)

» Terminology and objectives of modern algorithmics, including elements of algebraic,
online, and randomised algorithms

» Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

» The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

» (Linear) independence, dependence, and their abstractions as enablers of efficient
algorithms

Learning objectives (2/2)

» Making use of duality
» Often a problem has a corresponding dual problem that is obtainable from the original
(the primal) problem by means of an easy transformation

» The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

» Relaxation and tradeoffs between objectives and resources as design tools
> Instead of computing the exact optimum solution at considerable cost, often a less costly
but principled approximation suffices

> Instead of the complete dual, often only a randomly chosen partial dual or other
relaxation suffices to arrive at a solution with high probability

