
5. Extended Euclidean algorithm and
interpolation from erroneous data

CS-E4500 Advanced Course on Algorithms
Spring 2019

Pe�eri Kaski
Department of Computer Science

Aalto University

Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers

2019 K A L E N T E R I 2019

Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu

1 Ti Uudenvuodenpäivä 1 Pe 1 Pe 1 Ma Vk 14 1 Ke Vappu 1 La

2 Ke 2 La 2 La 2 Ti 2 To 2 Su

3 To 3 Su 3 Su 3 Ke 3 Pe 3 Ma Vk 23

4 Pe 4 Ma Vk 06 4 Ma Vk 10 4 To 4 La 4 Ti

5 La 5 Ti 5 Ti Laskiainen 5 Pe 5 Su 5 Ke

6 Su Loppiainen 6 Ke 6 Ke 6 La 6 Ma Vk 19 6 To

7 Ma Vk 02 7 To 7 To 7 Su 7 Ti 7 Pe

8 Ti 8 Pe 8 Pe 8 Ma Vk 15 8 Ke 8 La

9 Ke 9 La 9 La 9 Ti 9 To 9 Su Helluntaipäivä

10 To 10 Su 10 Su 10 Ke 10 Pe 10 Ma Vk 24

11 Pe 11 Ma Vk 07 11 Ma Vk 11 11 To 11 La 11 Ti

12 La 12 Ti 12 Ti 12 Pe 12 Su Äitienpäivä 12 Ke

13 Su 13 Ke 13 Ke 13 La 13 Ma Vk 20 13 To

14 Ma Vk 03 14 To 14 To 14 Su Palmusunnuntai 14 Ti 14 Pe

15 Ti 15 Pe 15 Pe 15 Ma Vk 16 15 Ke 15 La

16 Ke 16 La 16 La 16 Ti 16 To 16 Su

17 To 17 Su 17 Su 17 Ke 17 Pe 17 Ma Vk 25

18 Pe 18 Ma Vk 08 18 Ma Vk 12 18 To 18 La 18 Ti

19 La 19 Ti 19 Ti 19 Pe Pitkäperjantai 19 Su Kaatuneiden muistopäivä 19 Ke

20 Su 20 Ke 20 Ke Kevätpäiväntasaus 20 La 20 Ma Vk 21 20 To

21 Ma Vk 04 21 To 21 To 21 Su Pääsiäispäivä 21 Ti 21 Pe Kesäpäivänseisaus

22 Ti 22 Pe 22 Pe 22 Ma 2. pääsiäispäivä 22 Ke 22 La Juhannus

23 Ke 23 La 23 La 23 Ti 23 To 23 Su

24 To 24 Su 24 Su 24 Ke 24 Pe 24 Ma Vk 26

25 Pe 25 Ma Vk 09 25 Ma Vk 13 25 To 25 La 25 Ti

26 La 26 Ti 26 Ti 26 Pe 26 Su 26 Ke

27 Su 27 Ke 27 Ke 27 La 27 Ma Vk 22 27 To

28 Ma Vk 05 28 To 28 To 28 Su 28 Ti 28 Pe

29 Ti 29 Pe 29 Ma Vk 18 29 Ke 29 La

30 Ke 30 La 30 Ti 30 To Helatorstai 30 Su

31 To 31 Su Kesäaika alkaa 31 Pe

Vuotuinen kalenteri Marcel Steinger, luotu 9.11.2018 calendar-yearly.com
Käy meillä -> www.calendar-yearly.com L = Lecture; hall T5, Tue 12–14

Q = Q & A session; hall T5, Thu 12–14
D = Problem set deadline; Sun 20:00
 T = Tutorial (model solutions); hall T6, Mon 16–18

Exam
week

L1

Q1

T1
D1

L2

Q2

D2
T2

L3

Q3

D3
T3

L4

Q4

D4
T4

L5

Q5

D5
T5

Break

L6

Q6

D6
T6

L7

Q7

D7
T7

L8

Q8

D8
T8

L9

Q9

D9

T9

 CS-E4500 Advanced Course in Algorithms (5 ECTS, III–IV, Spring 2019)

Recap of last week

I Fast batch evaluation and interpolation of polynomials

I Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

I Secret sharing by randomization

Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd) (this week)

I Interpolation from partly erroneous data
(this week)

Further motivation for this week

I A�er this week we have completed our work on the near-linear time toolbox for
univariate polynomials

I This week is also our first encounter with uncertainty in computation

I This week we learn how to cope with uncertainty in the form of errors in data by
using error-correcting codes

I Next week look at errors in computation ...

Fast extended Euclidean algorithm (for polynomials)

(von zur Gathen and Gerhard [11],
Section 11.1)

Fast interpolation from partly erroneous data

(Gao [10])

Fast extended Euclidean algorithm (for integers)

(Möller [20])

Key content for Lecture 5

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm for polynomials by divide and conquer
I The two polynomial operands truncated to a prefix of the highest-degree monomials

determine the prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Extended Euclidean algorithm (for polynomials)

I Let F be a field and let f , g ∈ F [x] with deg f ≥ deg g ≥ 0

I Traditional extended Euclidean algorithm:
1. r0 ← f , s0 ← 1, t0 ← 0,

r1 ← g, s1 ← 0, t1 ← 1
2. i ← 1,

while ri , 0 do
qi ← ri−1 quo ri

ri+1 ← ri−1 − qiri

si+1 ← si−1 − qisi

ti+1 ← ti−1 − qiti

i ← i + 1
3. ` ← i − 1

return `, ri, si, ti for i = 0, 1, . . . , ` + 1, and qi for i = 1, 2, . . . , `

I We want a faster algorithm

Example (over Z2[x])

I Let f = x5 + x4 + x3 + x2 + x + 1 ∈ Z2[x] and g = x5 + x4 + 1 ∈ Z2[x]

I We obtain

i ri si ti qi

0 x5 + x4 + x3 + x2 + x + 1 1 0
1 x5 + x4 + 1 0 1 1
2 x3 + x2 + x 1 1 x2 + 1
3 x2 + x + 1 x2 + 1 x2 x
4 0 x3 + x + 1 x3 + 1

I In particular ` = 3 and r` = x2 + x + 1 is a greatest common divisor of
x5 + x4 + x3 + x2 + x + 1 and x5 + x4 + 1

Terminology

I The sequence q1, q2, . . . , q` is the quotient sequence produced by the algorithm

I The polynomial ri is the remainder at iteration i

I The polynomials si and ti are the Bézout coe�icients at iteration i

I The Bézout coe�icients satisfy ri = sir0 + tir1

Desiderata for a fast algorithm

I Let F be a field and let f , g ∈ F [x] with d ≥ deg f ≥ deg g ≥ 0

I Desired output:
The quotients q1, q2, . . . , qh and two consecutive rows rh, sh, th and rh+1, sh+1, th+1 for a
choice of h = 1, 2, . . . , `

I Using O(M(d) log d) operations in F

The degree sequences mi and ni

I It will be convenient to work with the following two sequences

I For i = 1, 2, . . . , ` + 1 let

mi = deg qi

where, for convenience, we let m`+1 = ∞

I For i = 0, 1, . . . , ` + 1, let

ni = deg ri

recalling that n`+1 = deg 0 = −∞

I By assumption, we have deg r0 ≥ deg r1 ≥ 0

I Since we have ri+1 = ri−1−qiri and deg ri > deg ri+1 for all i = 1, 2, . . . , `, it follows that

ni−1 = ni +mi

Example (over Z2[x])

I Let f = x5 + x4 + x3 + x2 + x + 1 ∈ Z2[x] and g = x5 + x4 + 1 ∈ Z2[x]

I We obtain

i ri si ti qi mi ni

0 x5 + x4 + x3 + x2 + x + 1 1 0 5
1 x5 + x4 + 1 0 1 1 0 5
2 x3 + x2 + x 1 1 x2 + 1 2 3
3 x2 + x + 1 x2 + 1 x2 x 1 2
4 0 x3 + x + 1 x3 + 1 ∞ −∞

I In particular ` = 3 and r` = x2 + x + 1 is a greatest common divisor of
x5 + x4 + x3 + x2 + x + 1 and x5 + x4 + 1

The halting threshold h = h(k)

I Given a threshold parameter k = 0, 1, . . . , n0 as input, we want the algorithm to halt
at iteration h = h(k) determined by

m1 +m2 + . . . +mh ≤ k

and

m1 +m2 + . . . +mh +mh+1 > k

I In particular, we observe that 0 ≤ h ≤ `

The halting threshold h = h(k)

I Equivalently, since ni = ni−1 −mi for i = 1, 2, . . . , ` + 1, we have

nh ≥ n0 − k

and

nh+1 < n0 − k

I That is, the algorithm halts at the unique iteration h = 0, 1, . . . , ` when the degree of
rh+1 for the first time decreases below n0 − k

Truncating a polynomial

I Let

f = φnxn + φn−1xn−1 + . . . + φ1x + φ0 ∈ F [x]

with leading coe�icient lc f = φn , 0

I For k ∈ Z, define the truncated polynomial

f � k = φnxk + φn−1xk−1 + . . . + φn−k+1x + φn−k ∈ F [x]

where we set φi = 0 for i < 0 as necessary

I For k ≥ 0 we have that f � k is a polynomial of degree k whose coe�icients are the
k + 1 highest coe�icients of f

I For k < 0 we have f � k = 0

I For all i = 0, 1, . . . we have (fx i)� k = f � k

Example: Truncating a polynomial

I Let us work with the polynomial

f = 2 + 9x + 10x2 + 4x3 ∈ Z11[x]

I We obtain the truncations
.
.
.

f �−2 = 0

f �−1 = 0

f � 0 = 4

f � 1 = 10 + 4x

f � 2 = 9 + 10x + 4x2

f � 3 = 2 + 9x + 10x2 + 4x3

f � 4 = 2x + 9x2 + 10x3 + 4x4

f � 5 = 2x2 + 9x3 + 10x4 + 4x5

.

.

.

Coinciding pairs of polynomials

I Let f , g, f̃ , g̃ ∈ F [x] \ {0} with deg f ≥ deg g and deg f̃ ≥ deg g̃

I For k ∈ Z, we say that (f , g) and (f̃ , g̃) coincide up to k and write (f , g) ≡k (f̃ , g̃) if

f � k = f̃ � k

g�(k − (deg f − deg g)) = g̃�(k − (deg f̃ − deg g̃))

I Remark:
If (f , g) ≡k (f̃ , g̃) and k ≥ deg f − deg g, then deg f − deg g = deg f̃ − deg g̃

Example: Coinciding pairs of polynomials

I The pairs

f = 7 + 2x + x2 + x3 + 10x4 + 7x5 + x6 + 5x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x]

g = 3 + 7x + 4x2 + 2x3 + 2x4 + 6x5 + 3x6 + 2x7 + 4x8 ∈ Z11[x]
and

f̃ = 1 + 5x + 9x2 + 5x3 + 7x4 ∈ Z11[x]

g̃ = 3 + 2x + 4x2 ∈ Z11[x]
coincide up to 4

I Indeed, we have deg f = 10, deg g = 8, deg f̃ = 4, and deg g̃ = 2, with

f � 4 = f̃ � 4 = 1 + 5x + 9x2 + 5x3 + 7x4

g� 2 = g̃� 2 = 3 + 2x + 4x2

�otients of coinciding pairs of polynomials

I The following lemma enables us to design a divide-and-conquer extended Euclidean
algorithm by truncating the operands to division

Lemma 8 (Su�iciently coinciding pairs of polynomials have identical quotients)

Suppose that (f , g) ≡2k (f̃ , g̃) for k ∈ Z with k ≥ deg f − deg g ≥ 0. Define q, r, q̃, r̃ ∈ F [x]
by division with quotients and remainders as follows

f = qg + r, deg r < deg g ,

f̃ = q̃g̃ + r̃, deg r̃ < deg g̃ .

Then, q = q̃ and at least one of the following holds (g, r) ≡2(k−deg q) (g̃, r̃) or r = 0 or
k − deg q < deg g − deg r.

Proof.

Exercise �

Example: �otient of coinciding pairs of polynomials

I The pairs

f = 7 + 2x + x2 + x3 + 10x4 + 7x5 + x6 + 5x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x]

g = 3 + 7x + 4x2 + 2x3 + 2x4 + 6x5 + 3x6 + 2x7 + 4x8 ∈ Z11[x]
and

f̃ = 1 + 5x + 9x2 + 5x3 + 7x4 ∈ Z11[x]

g̃ = 3 + 2x + 4x2 ∈ Z11[x]
coincide up to 4, with 4 ≥ deg f − deg g = 2

I Accordingly (by Lemma 8), the quotients agree:

f quo g = 9 + 10x + 10x2

f̃ quo g̃ = 9 + 10x + 10x2

�otient sequences of coinciding pairs of polynomials

I Now let us study what happens in the extended Euclidean algorithm if we execute it
for two inputs, (r0, r1) and (r̃0, r̃1), with deg r0 ≥ deg r1 ≥ 0 and deg r̃0 ≥ deg r̃1 ≥ 0:

r0 = q1r1 + r2, r̃0 = q̃1r̃1 + r̃2

r1 = q2r2 + r3, r̃1 = q̃2r̃2 + r̃3

...
...

ri−1 = qiri + ri+1, r̃i−1 = q̃i r̃i + r̃i+1

...
...

r`−1 = q`r`, r̃ ˜̀−1 = q̃ ˜̀ r̃ ˜̀

I In particular, our interest is on the case (r0, r1) ≡2k (r̃0, r̃1) ...

�otient sequences of coinciding pairs of polynomials

I We can now study the execution on two coinciding inputs (r0, r1) and (r̃0, r̃1) with
deg r0 ≥ deg r1 ≥ 0 and deg r̃0 ≥ deg r̃1 ≥ 0 as follows

Lemma 9 (Identical quotient sequences up to the halting threshold)

Let k ∈ Z with (r0, r1) ≡2k (r̃0, r̃1). Then, h(k) = h̃(k) with qi = q̃i for all i = 1, 2, . . . , h(k).

Proof sketch.

By induction on i and using Lemma 8 for the induction step, the following holds for all
0 ≤ i ≤ h(k): we have i ≤ h̃(k), qi = q̃i , and at least one of the following holds: i = h(k) or
(ri, ri+1) ≡2(k−

∑j
j=1 mj)

(r̃i, r̃i+1). �

Example: �otient sequences of coinciding pairs
I Let us run the extended Euclidean algorithm for a pair of polynomials in Z11[x]:

i qi ri si ti
0 7 + x + 3x2 + 5x3 + 9x4 + 10x5 + 7x6 1 0
1 4 4 + 10x + 7x2 + 4x3 + 7x4 + 4x5 + 10x6 0 1
2 4 + 2x 2 + 5x + 8x2 + 3x4 + 5x5 1 7
3 4 + 10x 7 + 8x + 9x2 + 10x3 + 6x4 7 + 9x 6 + 8x
4 2 + 3x 7 + 2x + 2x2 + 2x3 6 + 4x + 9x2 5 + 7x + 8x2

5 10 + 9x 4 + 5x + 10x2 6 + 5x + 3x2 + 6x3 7 + x + 7x2 + 9x3

6 4 + 8x 4x 1 + 10x + x3 + x4 1 + 6x2 + x3 + 7x4

7 x 4 2 + x + 2x3 + 10x4 + 3x5 3 + 4x + 5x2 + x3 + 8x4 + 10x5

8 0 1 + 8x + 10x2 + x3 + 10x4 + x5 + 8x6 1 + 8x + 2x2 + 7x3 + 6x4 + 3x5 + x6

I Here is a run on a pair that coincides with the first pair up to length 2k = 4:
i qi ri si ti
0 3 + 5x + 9x2 + 10x3 + 7x4 1 0
1 4 7 + 4x + 7x2 + 4x3 + 10x4 0 1
2 4 + 2x 8 + 3x2 + 5x3 1 7
3 4 + 10x 8 + 10x + 6x2 7 + 9x 6 + 8x
4 6x 9 + x 6 + 4x + 9x2 5 + 7x + 8x2

5 8 + 7x 8 7 + 6x + 9x2 + x3 6 + 2x2 + 7x3

6 0 5 + 6x + 5x2 + 6x3 + 4x4 1 + 9x + 3x2 + 7x3 + 6x4

I Observe that the quotient sequences agree up to total degree
deg q1 + deg q2 + . . . + deg qh(k) ≤ k with h(k) = 3

A divide-and-conquer extended Euclidean algorihtm

I We now use Lemma 9 to design a fast divide-and-conquer version of the extended
Euclidean algorihtm

I For a given input (r0, r1) ∈ F [x]2 with deg r0 ≥ deg r1 ≥ 0 and halting parameter k ≥ 0,
the key idea is to truncate the input using the “�”-operator and build the quotient
sequence q1, q2, . . . , qh(k) using two recursive calls with halting parameter at most
bk/2c each

I That is, the idea essentially to use the first recursive call to recover q1, q2, . . . , qh(bk/2c) ,
then compute (as needed) the next quotient qh(bk/2c)+1 explicitly, and then make a
second recursive call (as needed) to recover the rest of the quotient sequence
q1, q2, . . . , qh(k)

I With careful implementation, this leads to an algorithm that runs in O(M(k) log k)
operations in F

I Before describing the algorithm in detail, let us recall some further terminology ...

Invariants of the extended Euclidean algorithm

I Recall the matrices

R0 =

[
s0 t0

s1 t1

]
=

[
1 0
0 1

]
, Qi =

[
0 1
1 −qi

]
for i = 1, 2, . . . , `

and Ri = QiQi−1 · · ·Q1R0 ∈ F [x]2×2 for i = 0, 1, . . . , ` from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

I We recall that for all i = 0, 1, . . . , ` we have Ri =

[
si ti

si+1 ti+1

]
and Ri

[
r0

r1

]
=

[
ri

ri+1

]

I Our algorithm design will be such that on input (r0, r1) and k it produces as output (i)
the value h(k), (ii) the quotient sequence q1, q2, . . . , qh(k) , and (iii) the matrix Rh(k) ...

Truncating inputs to the extended Euclidean algorithm

I Let us write h(k), q1, q2, . . . , qh(k),Rh(k) ← extgcd(k, r0, r1) to indicate that the
algorithm produces the output h(k), q1, q2, . . . , qh(k),Rh(k) on input k, r0, r1 with
deg r0 ≥ deg r1 ≥ 0

I Lemma 9 now implies that we have

extgcd(k, r0, r1) = extgcd
(
k, r0� 2k, r1�(2k − (deg r0 − deg r1))

)
(30)

I In particular, we can assemble the output recursively so that the input polynomials to
each recursive call are truncated in degree to the minimum enabled by (30)

I We are now ready for the detailed pseudocode of the algorithm ...

A divide-and-conquer extended Euclidean algorithm I

I Let F be a field and let k ∈ Z and r0, r1 ∈ F [x] with deg r0 ≥ deg r1 and r0 , 0 be given
as input

1. If k < deg r0 − deg r1 holds, then return with output h(k) ← 0 and Rh(k) ←

[
1 0
0 1

]

2. If k = 0 and deg r0 = deg r1 hold, then return with output h(k) ← 1, q1 =
lc r0
lc r1

, and

Rh(k) ←

[
0 1
1 −

lc r0
lc r1

]

3. Set k1 ← bk/2c

4. Make the first recursive call
h1, q

(1)
1 , q

(1)
2 , . . . , q

(1)
h1
,R(1) ← extgcd

(
k1, r0� 2k1, r1�(2k1 − (deg r0 − deg r1))

)
5. Compute the matrix-vector product

[
r̃h1

r̃h1+1

]
← R(1)

[
r0� 2k
r1�(2k − (deg r0 − deg r1))

]

A divide-and-conquer extended Euclidean algorithm II

6. If deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg r̃h1 − deg r̃h1+1 > k holds, then return with

output h(k) ← h1, q1, q2, . . . , qh(k) ← q(1)
1 , q

(1)
2 , . . . , q

(1)
h1

, and Rh(k) ← R(1)

7. Compute the quotient qh1+1 ← r̃h1 quo r̃h1+1 and the matrix Qh1+1 ←

[
0 1
1 −qh1+1

]

8. Compute the remainder r̃h1+2 ← r̃h1 − qh1+1r̃h1+1

9. Set k2 ← k − (deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg qh1+1)

10. Make the second recursive call
h2, q

(2)
1 , q

(2)
2 , . . . , q

(2)
h2
,R(2) ← extgcd

(
k2, r̃h1+1� 2k1, r̃h1+2�(2k1 − (deg r̃h1+1 − deg r̃h1+2))

)
11. Return with output h(k) ← h1 + 1 + h2,

q1, q2, . . . , qh(k) ← q(1)
1 , q

(1)
2 , . . . , q

(1)
h1
, qh1+1, q

(2)
1 , q

(2)
2 , . . . , q

(2)
h2

, and

Rh(k) ← R(2)Qh1+1R(1)

Remarks and analysis
I Caveat: In Step 1 we may have deg r1 = −∞ (that is, r1 = 0) and in Step 6 we may have

deg r̃h1+1 = −∞ (that is, r̃h1+1 = 0)

I A�er Step 1 it holds that k ≥ deg r0 − deg r1 ≥ 0, a�er Step 2 it holds that k ≥ 1 and
deg r0 > deg r1 ≥ 0; thus, 0 ≤ k1 ≤ k − 1

I A�er Step 5 we have

deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
≤ k1

and, also recalling that k1 = bk/2c,

deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg r̃h1 − deg r̃h1+1 ≥ k1 + 1 ≥ dk/2e

I Assuming that r̃h1+1 , 0, we have deg qh1+1 = deg r̃h1 − deg r̃h1+1

I Thus, k2 ≤ bk/2c ≤ k − 1

I The algorithm runs in T (k) ≤ T (k1) + T (k2) + O(M(k)) ≤ 2T (bk/2c) + O(M(k))
operations in F ; that is, T (k) = O(M(k) log k) operations in F

Key content for Lecture 5 (recalled)

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm for polynomials by divide and conquer
I The two polynomial operands truncated to a prefix of the highest-degree monomials

determine the prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Number of roots

I Let F be a field

I A root of a polynomial f ∈ F [x] is an element ξ ∈ F with f (ξ) = 0

Theorem 10 (Number of roots)
A nonzero polynomial f ∈ F [x] of degree at most d has at most d distinct roots.

Proof.

Exercise �

Two distinct polynomials mostly disagree

I Let F be a field

I Let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e be a vector of e distinct elements of F

I Associate with f ∈ F [x] the vector of evaluations

f (Ξ) = (f (ξ1), f (ξ2), . . . , f (ξe)) ∈ F e

Lemma 11 (Bounded agreement of low-degree polynomials)

Let f0, f1 ∈ F [x] be distinct polynomials of degree at most d.
Then, f0 (Ξ) and f1 (Ξ) agree in at most d coordinates.

Proof.

The di�erence f0 − f1 , 0 is a polynomial of degree at most d and thus has at most d
distinct roots �

Reconstructibility from partly erroneous data

I Let f ∈ F [x] be a polynomial of degree at most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

Lemma 12 (Unique reconstructibility)

Suppose that the vectors Γ ∈ F e and f (Ξ) disagree in at most (e − d − 1)/2 coordinates.
Then, Γ uniquely identifies f

Proof.

Let f0, f1 ∈ F [x] be two polynomials of degree at most d such that f0 (Ξ) and f1 (Ξ) each
disagree with Γ in at most (e − d − 1)/2 coordinates. In total there are e coordinates, so
f0 (Ξ) and f1 (Ξ) and Γ must thus all agree in at least e − 2(e − d − 1)/2 = d + 1 coordinates.
By Lemma 11 thus f0 = f1. �

(Furthermore, we can, very ine�iciently, recover f from Γ by considering in turn each vector Γ̃ ∈ F e that disagrees with Γ

in at most (e − d − 1)/2 coordinates: for each such Γ̃, interpolate f from f (Ξ) = Γ̃, and stop when f has degree at most d .)

Reed–Solomon codes

I Suppose we want to protect a sequence Φ = (φ0,φ1, . . . ,φd) ∈ F d+1 of elements of a
field F against errors

I We may represent Φ as a polynomial f = φ0 + φ1x + . . . + φdxd ∈ F [x] of degree at
most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

I Let us use Ψ = f (Ξ) ∈ F e as the encoded representation of Φ

I Suppose that Ψ̂ disagrees with Ψ in at most (e − d − 1)/2 coordinates. Then,
Lemma 12 implies that we can recover Φ from Ψ̂

I That is, Ψ̂ may have up to b(e − d − 1)/2c errors and we can still recover Φ

I Encoding can be done in near-linear-time by fast batch evaluation ...

I ... but how e�iciently can we decode in the presence of errors?

Example: Encoding

I Let us work with e = 8, d = 3, F = Z11, and the evaluation points
Ξ = (ξ1, ξ2, . . . , ξe) = (0, 1, 2, 3, 4, 5, 6, 7) ∈ Ze

11

I Suppose we want to protect the data vector Φ = (5, 3, 1, 9) ∈ Zd+1
11

I We view Φ as the degree-at-most-d polynomial f = 5 + 3x + x2 + 9x3 ∈ Z11[x]

I The encoded representation of Φ is

Ψ = f (Ξ) = (f (ξ1), f (ξ2), . . . , f (ξe)) = (5, 7, 10, 2, 4, 4, 1, 5) ∈ Ze
11

Gao’s (2003) decoder for Reed–Solomon codes

I Let f ∈ F [x] be a polynomial of degree at most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

I Suppose that the vectors Γ ∈ F e and f (Ξ) disagree in at most (e − d − 1)/2
coordinates. Then, Γ uniquely identifies f (Lemma 12)

I Moreover, given Ξ, Γ, d as input, f can be computed in O(M(e) log e) operations in F
(Gao [10])

Gao’s decoding algorithm

I Let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consisting of distinct elements, Γ = (γ1,γ2, . . . ,γe) ∈ F e,
and d ∈ Z≥0 with d + 1 ≤ e be given as input

I Gao’s algorithm [10] proceeds as follows:
1. Using a subproduct tree, construct the polynomial g0 =

∏e
i=1 (x − ξi)

2. Interpolate the unique polynomial g1 ∈ F [x] of degree at most e − 1 that satisfies
g1 (ξi) = γi for all i = 1, 2, . . . , e

3. Apply the extended Euclidean algorithm to g0 and g1 to produce the consecutive
remainders gh, gh+1 with deg gh ≥ D, and deg gh+1 < D for D = (e + d + 1)/2. Let
sh+1, th+1 ∈ F [x] be the associated Bézout coe�icients with gh+1 = sh+1g0 + th+1g1

4. Divide gh+1 by th+1 to obtain the quotient f1 ∈ F [x] and the remainder r ∈ F [x] with
gh+1 = th+1f1 + r and deg r < deg th+1

5. Output f1 as the result of interpolation if both deg f1 ≤ d and r = 0;
otherwise assert decoding failure

I It is immediate that the algorithm runs in O(M(e) log e) operations in F

Example: Decoding I

I Let us work with e = 8, d = 3, F = Z11, and the evaluation points
Ξ = (ξ1, ξ2, . . . , ξe) = (0, 1, 2, 3, 4, 5, 6, 7) ∈ Ze

11

I Suppose we have the vector Γ = (γ1,γ2, . . . ,γe) = (5, 7, 1, 2, 9, 4, 1, 5) ∈ Ze
11

I First, we construct the polynomial

g0 =

e∏
i=1

(x − ξi) = 9x + 2x3 + 4x4 + 9x5 + 3x6 + 5x7 + x8

I Then, we interpolate the polynomial

g1 = 5 + 7x + 5x2 + 2x3 + 10x4 + 9x5 + 6x6 + 7x7

that satisfies g1 (ξi) = γi for all i = 1, 2, . . . , e

Example: Decoding II
I Next we apply the extended Euclidean algorithm to g0 and g1 to produce the

consecutive remainders gh, gh+1 with deg gh ≥ D, and deg gh+1 < D for
D = (e + d + 1)/2 = 6 ...

I For convenience, we display the entire output of the extended Euclidean algorithm
(but omi�ing the first Bézout coe�icient sequence):

i qi gi ti
0 9x + 2x3 + 4x4 + 9x5 + 3x6 + 5x7 + x8 0
1 8 + 8x 5 + 7x + 5x2 + 2x3 + 10x4 + 9x5 + 6x6 + 7x7 1
2 7 + 10x 4 + x + 3x2 + x3 + 7x4 + 4x6 3 + 3x
3 3 + 3x 10 + 4x + 7x2 + 9x3 + 6x4 + 5x5 2 + 4x + 3x2

4 6 + 10x 7 + 3x + 3x2 + 8x3 + 6x4 8 + 7x + x2 + 2x3

5 10 + 9x 1 + 4x + 3x2 + 8x3 9 + 3x + 4x2 + 2x4

6 4 + 10x 8 + 9x + 3x2 6 + 6x + 10x3 + 2x4 + 4x5

7 5 + 4x 2 + 9x 7 + 7x + 10x2 + 4x3 + 4x4 + 8x5 + 4x6

8 10 + x 9 4 + 9x + 10x2 + 5x3 + 10x4 + 3x5 + 3x6 + 6x7

9 0 x + 10x3 + 9x4 + x5 + 4x6 + 3x7 + 5x8

I (In a fast implementation we would of course use the divide-and-conquer extended
Euclidean algoritm and would not produce the entire sequence of remainders gi)

Example: Decoding III

I From the extended Euclidean algorithm we obtain that h = 2 with

gh+1 = 10 + 4x + 7x2 + 9x3 + 6x4 + 5x5

th+1 = 2 + 4x + 3x2

I Dividing gh+1 by th+1 we obtain the quotient

f1 = 5 + 3x + x2 + 9x3

and the remainder r = 0

I In particular, the decoding is successful, and the reconstructed data vector is
(5, 3, 1, 9) ∈ Zd+1

11

I Re-encoding the reconstructed vector as appropriate, we can also observe that the
vector Γ has two errors, namely f (ξ3) = 10 , γ3 = 2 and f (ξ5) = 4 , γ5 = 9

Correctness I

I First, suppose that the algorithm does not assert failure

I Then, f1 = gh+1/th+1 has degree at most d

I Since th+1f1 = gh+1 = sh+1g0 + th+1g1, we have sh+1g0 = th+1 (f1 − g1) and hence for all
i = 1, 2, . . . , e we have th+1 (ξi) = 0 or f1 (ξi) = g1 (ξi) = γi

I Since gh+1 is the first remainder with deg gh+1 < D and deg g0 = e, by the structure of
the Bézout coe�icients we have deg th+1 ≤ e − D = (e − d − 1)/2

I Indeed, from the definition of Bézout coe�icients we have
deg sh+1, deg th+1 ≤

∑h
i=1 deg qi = deg g0 − deg gh ≤ e − D since

deg gi + deg qi = deg gi−1 and deg gh ≥ D

I Since th+1 has at most deg th+1 roots, we have f1 (ξi) , γi for at most (e − d − 1)/2
coordinates i = 1, 2, . . . , e

I Thus, f1 is a valid output for input Ξ, Γ, d

Correctness II

I Next, let f ∈ F [x] be a polynomial of degree at most d , let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e

consist of distinct elements, and let Γ = (γ1,γ2, . . . ,γe) ∈ F e be a vector that disagrees
with f (Ξ) in at most (e − d − 1)/2 coordinates for d + 1 ≤ e

I By Lemma 12, we know that Γ uniquely determines f

I We show that Gao’s algorithm outputs f1 = f on input Ξ, Γ, d

I Let B = {i ∈ {1, 2, . . . , e} : f (ξi) , γi } be the set of “bad” coordinates

I That is, B is the set of coordinates where Γ and f (Ξ) disagree

I By assumption we have |B| ≤ (e − d − 1)/2

I To understand the operation of the algorithm, let us split the polynomials g0 and g1

into parts based on B and G = {1, 2, . . . , e} \ B (the “bad” and “good” coordinates)

Correctness III

I Toward this end, let

q =
∏
i∈G

(x − ξi) ∈ F [x] , r0 =
∏
i∈B

(x − ξi) ∈ F [x]

I It is immediate that g0 = qr0

I Let r1 ∈ F [x] be the unique polynomial of degree at most (e − d − 1)/2 − 1 with
r1 (ξi) = q(ξi)

−1 (γi − f (ξi)) , 0 for all i ∈ B

I Thus, we have g1 = qr1 + f

I We have that gcd(r0, r1) = 1 since no root of r0 is a root of r1 and r0 factors into a
product of degree 1 polynomials

I The following lemma will imply that the algorithm outputs f1 = f ; we postpone the
proof and give it as Lemma 13

Correctness IV

I Gao’s Lemma. (Lemma 13 below) Let c, d,D ∈ Z≥0 and let q, r0, r1, f0, f1 ∈ F [x] with
gcd(r0, r1) = 1, deg q ≥ D ≥ c + d + 1, and deg ri ≤ c, deg fi ≤ d for i = 0, 1. Run the
extended Euclidean algorithm on input g0 = qr0 + f0 and g1 = qr1 + f1 to obtain the
remainders gh and gh+1 = sh+1g0 + th+1g1 for sh+1, th+1 ∈ F [x] with deg gh ≥ D and
deg gh+1 < D. Then, sh+1 = −αr1 and th+1 = αr0 for some α ∈ F \ {0}

I Take f0 = 0, f1 = f , c = |B| in the lemma and recall that we have D = (e + d + 1)/2

I Thus, c ≤ (e − d − 1)/2, deg q = |G | = e − |B| ≥ D ≥ c + d + 1, and the lemma applies
to the polynomials g0 = qr0 and g1 = qr1 + f constructed in the algorithm

I Let gh+1, sh+1, th+1 be the output of the lemma (also constructed by the algorithm)

I Because f0 = 0 and f1 = f , we have gh+1 = −αr1qr0 + αr0 (qr1 + f) = th+1f

I In particular, the algorithm outputs f1 = f = gh+1/th+1 �

Preparation for Gao’s Lemma

I Recall the matrices

R0 =

[
s0 t0

s1 t1

]
=

[
1 0
0 1

]
, Qi =

[
0 1
1 −qi

]
for i = 1, 2, . . . , `

and Ri = QiQi−1 · · ·Q1R0 ∈ F [x]2×2 for i = 0, 1, . . . , ` from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

I We recall that for all i = 0, 1, . . . , ` we have Ri =

[
si ti

si+1 ti+1

]
and Ri

[
r0

r1

]
=

[
ri

ri+1

]

I Since det Qi = −1 we have det Ri = (−1)i and thus R−1
i = (−1)i

[
ti+1 −ti

−si+1 si

]

I Since r`+1 = 0, we have
[
r0

r1

]
= R−1

`

[
r`
0

]
=

[
(−1)`t`+1r`
(−1)`+1s`+1r`

]

I We conclude that s`+1 = (−1)`+1r1/r` and t`+1 = (−1)`r0/r`

Gao’s Lemma

Lemma 13 (Gao [10])
Let c, d,D ∈ Z≥0 and let q, r0, r1, f0, f1 ∈ F [x] with gcd(r0, r1) = 1, deg q ≥ D ≥ c + d + 1,
and deg ri ≤ c, deg fi ≤ d for i = 0, 1. Run the extended Euclidean algorithm on input
g0 = qr0 + f0 and g1 = qr1 + f1 to obtain the remainders gh and gh+1 = sh+1g0 + th+1g1 for
sh+1, th+1 ∈ F [x] with deg gh ≥ D and deg gh+1 < D. Then, sh+1 = −αr1 and th+1 = αr0 for
some α ∈ F \ {0}

Proof of Gao’s Lemma I

I Let r0, r1, . . . , r`, r`+1 and q1, q2, . . . , q` be the sequences of remainders and quotients
in the extended Euclidean algorithm on input r0, r1

I Since gcd(r0, r1) = 1, we have r` ∈ F \ {0} and r`+1 = 0

I Let si, ti ∈ F [x] for i = 0, 1, . . . , ` + 1 be the associated sequence of Bézout coe�icients

I For all i = 1, 2, . . . , `, we have

ri+1 = ri−1 − qiri , si+1 = si−1 − qisi , ti+1 = ti−1 − qiti (31)

I For all i = 2, 3, . . . , ` + 1 define gi = sig0 + tig1

I From (31) it follows that gi+1 = gi−1 − qigi for all i = 1, 2, . . . , `

I Let us show that deg gi is a monotone decreasing sequence for i = 1, 2, . . . , `

Proof of Gao’s Lemma II

I We have ri = sir0 + tir1 for all i = 1, 2, . . . , ` + 1. Furthermore, deg si ≤ c and deg ti ≤ c
for all i = 1, 2, . . . , ` + 1

I Since g0 = qr0 + f0, g1 = qr1 + f1, and gi = sig0 + tig1, for all i = 0, 1, . . . , ` we have
gi = qri + sif0 + tif1

I Since deg(sif0 + tif1) ≤ c + d and deg q ≥ D ≥ c + d + 1, we have
deg gi = deg q + deg ri ≥ D for all i = 0, 1, . . . , `

I Since deg ri is monotone decreasing for i = 1, 2, . . . , `, we have that the same holds for
deg gi

I Thus, we have that g0, g1, . . . , g` and q1, q2, . . . , q` form a prefix of the sequence of
remainders and quotients in the extended Euclidean algorithm on input g0, g1

I Since deg r` = 0, we have deg g` = deg q ≥ D

Proof of Gao’s Lemma III

I Since s`+1 = (−1)`+1r1/r` and t`+1 = (−1)`r0/r` , we have

g`+1 = s`+1g0 + t`+1g1 = (−1)` (−f0r1 + f1r0)/r`

I Thus, deg g`+1 ≤ c + d < D and it follows that g`+1 = g = sg0 + tg1 with α = (−1)`/r` ,
s = −αr1, and t = αr0 �

Recap of Lecture 5

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm by divide and conquer
I The two operands truncated to a prefix of the highest-degree monomials determine the

prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic,
online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms

Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability

