5. Extended Euclidean algorithm and interpolation from erroneous data

CS-E4500 Advanced Course on Algorithms Spring 2019

Petteri Kaski
Department of Computer Science
Aalto University

Lecture schedule

Tue 15 Jan:	1. Polynomials and integers
Tue 22 Jan:	2. The fast Fourier transform and fast multiplication
Tue 29 Jan:	3. Quotient and remainder
Tue 5 Feb:	4. Batch evaluation and interpolation
Tue 12 Feb:	5. Extended Euclidean algorithm and interpolation from erroneous data
Tue 19 Feb:	Exam week - no lecture
Tue 27 Feb:	6. Identity testing and probabilistically checkable proofs
Tue 5 Mar:	Break - no lecture
Tue 12 Mar:	7. Finite fields
Tue 19 Mar:	8. Factoring polynomials over finite fields
Tue 26 Mar:	9. Factoring integers

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)

L = Lecture;
$\mathrm{Q}=\mathrm{Q}$ \& A session
D = Problem set deadline;
hall T5, Tue 12-14
hall T5, Thu 12-14
T = Tutorial (model solutions); hall T6, Mon 16-18

Recap of last week

- Fast batch evaluation and interpolation of polynomials
- Reduction to fast quotient and remainder
-divide-and-conquer recursive remaindering along a subproduct tree
- Secret sharing by randomization

Goal: Near-linear-time toolbox for univariate polynomials

- Multiplication
- Division (quotient and remainder)
- Batch evaluation
- Interpolation
- Extended Euclidean algorithm (gcd) (this week)
- Interpolation from partly erroneous data (this week)

Further motivation for this week

- After this week we have completed our work on the near-linear time toolbox for univariate polynomials
- This week is also our first encounter with uncertainty in computation
- This week we learn how to cope with uncertainty in the form of errors in data by using error-correcting codes
- Next week look at errors in computation ...

Fast extended Euclidean algorithm (for polynomials)

(von zur Gathen and Gerhard [11], Section 11.1)

Fast interpolation from partly erroneous data

(Gao [10])
Chapter 5

A NEW ALGORITHM FOR DECODING REED-SOLOMON CODES

Shuhong Gao
Department of Mathematical Sciences
Clemson University,
Clemson, SC 29634-0975, USA.

Abstract A new algorithm is developed for decoding Reed-Solomon codes. It uses fast Fourier transforms and computes the message symbols directly without explicitly finding error locations or error magnitudes. In the decoding radius (up to half of the minimum distance), the new method is easily adapted for error and erasure decoding. It can also detect all errors outside the decoding radius. Compared with the BerlekampMassey algorithm, discovered in the late 1960's, the new method seems impler and more natural yet it has a similar time complexity.

1. Introduction

Reed-Solomon codes are the most popular codes in practical use today with applications ranging from CD players in our living rooms to spacecrafts in deep space exploration. Their main advantage lies in two facts: high capability of correcting both random and burst errors; and existence of efficient decoding algorithm for them, namely the Berlekamp-Massey algorithm, discovered in the late 1960's [1, 9]. The Berlekamp-Massey

Fast extended Euclidean algorithm (for integers)

ON SCHÖNHAGE'S ALGORITHM and subquadratic integer gcd computation
niets möllerr
Bbimact. We dectribe a new subauadratic left-t-right ocd alkorithm, inpired by Schïnhage's alsorithm for neduction of binary guadratic Forms, ana

 $O_{\left.n(\log n)^{2} \log \lg n\right)}$.

1. introduction

In this paper, we deseribe four subquadratic ccD algorithms: Schünhage's algorithm from 1971, Stehle's and Zimmermann's hinary recursive ccD, a hitherto unpublished GCD algorithm dison ed
gorithm that uses similar ideas in a HCD framework. The algorithms are compared with respect to running time and implementation complexity. The new algorithm is slightly faster than all the earlier algorithms, and much simpler to implement. The paper is organized as follows: First we review the development of integer GCD algoritms in recent years. Section 2d describes the gencral structure and flavor of the subquadratic CCD algorithms, the idea of using a half-cCD function, and
the resulting asymptotic running time. In Section ${ }^{\text {U }}$ we briefly describe one variant of Schönhage's 1971 algorithm, and in Section [4, we describe the binary recursive GCD algorithm. The objective of these two sections is to provide sufficient details so that the new algorithm can be compared to earlier algorithms; we define the corresponding half-cco functions, but we don't provide correctness proofs or detailed analysis.
Section Section IS describes a GCD algorithm modeled on Schönhage's algorithm for re-
duetion of binary quadratic forms 8, and in Section 6 this algorithm is roorga nized into half-GCD form, resulting in a novel GCD algorithm. Section प7 describes the implementation of the different GCD algorithms, their rumning times, and code complexity

2000 Maticmatios Subject Casaififiation. Primary 11A05, 11 Y16.

Key content for Lecture 5

- Extended Euclidean algorithm for polynomials recalled and expanded
- The quotient sequence, the Bézout coefficients, and the halting threshold
- Fast extended Euclidean algorithm for polynomials by divide and conquer
- The two polynomial operands truncated to a prefix of the highest-degree monomials determine the prefix of the quotient sequence (exercise)
- Coping with errors in data using error-correcting codes
- A family of error-correcting codes (Reed-Solomon codes) based on evaluation-interpolation duality for univariate polynomials
- Key observation: low-degree polynomials have few roots (exercise)
- Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial toolkit and Gao's (2003) decoder

Extended Euclidean algorithm (for polynomials)

- Let F be a field and let $f, g \in F[x]$ with $\operatorname{deg} f \geq \operatorname{deg} g \geq 0$
- Traditional extended Euclidean algorithm:

1. $r_{0} \leftarrow f, s_{0} \leftarrow 1, t_{0} \leftarrow 0$,
$r_{1} \leftarrow g, s_{1} \leftarrow 0, t_{1} \leftarrow 1$
2. $i \leftarrow 1$,
while $r_{i} \neq 0$ do
$q_{i} \leftarrow r_{i-1}$ quo r_{i}
$r_{i+1} \leftarrow r_{i-1}-q_{i} r_{i}$
$s_{i+1} \leftarrow s_{i-1}-q_{i} s_{i}$
$t_{i+1} \leftarrow t_{i-1}-q_{i} t_{i}$
$i \leftarrow i+1$
3. $\ell \leftarrow i-1$
return $\ell, r_{i}, s_{i}, t_{i}$ for $i=0,1, \ldots, \ell+1$, and q_{i} for $i=1,2, \ldots, \ell$

- We want a faster algorithm

Example (over $\mathbb{Z}_{2}[x]$)

- Let $f=x^{5}+x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Z}_{2}[x]$ and $g=x^{5}+x^{4}+1 \in \mathbb{Z}_{2}[x]$
- We obtain

i	r_{i}	s_{i}	t_{i}	q_{i}
0	$x^{5}+x^{4}+x^{3}+x^{2}+x+1$	1	0	
1	$x^{5}+x^{4}+1$	0	1	1
2	$x^{3}+x^{2}+x$	1	1	$x^{2}+1$
3	$x^{2}+x+1$	$x^{2}+1$	x^{2}	x
4	0	$x^{3}+x+1$	$x^{3}+1$	

- In particular $\ell=3$ and $r_{\ell}=x^{2}+x+1$ is a greatest common divisor of $x^{5}+x^{4}+x^{3}+x^{2}+x+1$ and $x^{5}+x^{4}+1$

Terminology

- The sequence $q_{1}, q_{2}, \ldots, q_{\ell}$ is the quotient sequence produced by the algorithm
- The polynomial r_{i} is the remainder at iteration i
- The polynomials s_{i} and t_{i} are the Bézout coefficients at iteration i
- The Bézout coefficients satisfy $r_{i}=s_{i} r_{0}+t_{i} r_{1}$

Desiderata for a fast algorithm

- Let F be a field and let $f, g \in F[x]$ with $d \geq \operatorname{deg} f \geq \operatorname{deg} g \geq 0$
- Desired output:

The quotients $q_{1}, q_{2}, \ldots, q_{h}$ and two consecutive rows r_{h}, s_{h}, t_{h} and $r_{h+1}, s_{h+1}, t_{h+1}$ for a choice of $h=1,2, \ldots, \ell$

- Using $O(M(d) \log d)$ operations in F

The degree sequences m_{i} and n_{i}

- It will be convenient to work with the following two sequences
- For $i=1,2, \ldots, \ell+1$ let

$$
m_{i}=\operatorname{deg} q_{i}
$$

where, for convenience, we let $m_{\ell+1}=\infty$

- For $i=0,1, \ldots, \ell+1$, let

$$
n_{i}=\operatorname{deg} r_{i}
$$

recalling that $n_{\ell+1}=\operatorname{deg} 0=-\infty$

- By assumption, we have $\operatorname{deg} r_{0} \geq \operatorname{deg} r_{1} \geq 0$
- Since we have $r_{i+1}=r_{i-1}-q_{i} r_{i}$ and $\operatorname{deg} r_{i}>\operatorname{deg} r_{i+1}$ for all $i=1,2, \ldots, \ell$, it follows that

$$
n_{i-1}=n_{i}+m_{i}
$$

Example (over $\mathbb{Z}_{2}[x]$)

- Let $f=x^{5}+x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Z}_{2}[x]$ and $g=x^{5}+x^{4}+1 \in \mathbb{Z}_{2}[x]$
- We obtain

i	r_{i}	s_{i}	t_{i}	q_{i}	m_{i}	n_{i}
0	$x^{5}+x^{4}+x^{3}+x^{2}+x+1$	1	0			5
1	$x^{5}+x^{4}+1$	0	1	1	0	5
2	$x^{3}+x^{2}+x$	1	1	$x^{2}+1$	2	3
3	$x^{2}+x+1$	$x^{2}+1$	x^{2}	x	1	2
4	0	$x^{3}+x+1$	$x^{3}+1$		∞	$-\infty$

- In particular $\ell=3$ and $r_{\ell}=x^{2}+x+1$ is a greatest common divisor of $x^{5}+x^{4}+x^{3}+x^{2}+x+1$ and $x^{5}+x^{4}+1$

The halting threshold $h=h(k)$

- Given a threshold parameter $k=0,1, \ldots, n_{0}$ as input, we want the algorithm to halt at iteration $h=h(k)$ determined by

$$
m_{1}+m_{2}+\ldots+m_{h} \leq k
$$

and

$$
m_{1}+m_{2}+\ldots+m_{h}+m_{h+1}>k
$$

- In particular, we observe that $0 \leq h \leq \ell$

The halting threshold $h=h(k)$

- Equivalently, since $n_{i}=n_{i-1}-m_{i}$ for $i=1,2, \ldots, \ell+1$, we have

$$
n_{h} \geq n_{0}-k
$$

and

$$
n_{h+1}<n_{0}-k
$$

- That is, the algorithm halts at the unique iteration $h=0,1, \ldots, \ell$ when the degree of r_{h+1} for the first time decreases below $n_{0}-k$

Truncating a polynomial

- Let

$$
f=\varphi_{n} x^{n}+\varphi_{n-1} x^{n-1}+\ldots+\varphi_{1} x+\varphi_{0} \in F[x]
$$

with leading coefficient $\operatorname{lc} f=\varphi_{n} \neq 0$

- For $k \in \mathbb{Z}$, define the truncated polynomial

$$
f \upharpoonright k=\varphi_{n} x^{k}+\varphi_{n-1} x^{k-1}+\ldots+\varphi_{n-k+1} x+\varphi_{n-k} \in F[x]
$$

where we set $\varphi_{i}=0$ for $i<0$ as necessary

- For $k \geq 0$ we have that $f \upharpoonright k$ is a polynomial of degree k whose coefficients are the $k+1$ highest coefficients of f
- For $k<0$ we have $f \upharpoonright k=0$
- For all $i=0,1, \ldots$ we have $\left(f x^{i}\right) \upharpoonright k=f \upharpoonright k$

Example: Truncating a polynomial

- Let us work with the polynomial

$$
f=2+9 x+10 x^{2}+4 x^{3} \in \mathbb{Z}_{11}[x]
$$

- We obtain the truncations

$$
\begin{aligned}
f \upharpoonright-2 & =0 \\
f \upharpoonright-1 & =0 \\
f \upharpoonright 0 & =4 \\
f \upharpoonright 1 & =10+4 x \\
f \upharpoonright 2 & =9+10 x+4 x^{2} \\
f \upharpoonright 3 & =2+9 x+10 x^{2}+4 x^{3} \\
f \upharpoonright 4 & =2 x+9 x^{2}+10 x^{3}+4 x^{4} \\
f \upharpoonright 5 & =2 x^{2}+9 x^{3}+10 x^{4}+4 x^{5}
\end{aligned}
$$

Coinciding pairs of polynomials

- Let $f, g, \tilde{f}, \tilde{g} \in F[x] \backslash\{0\}$ with $\operatorname{deg} f \geq \operatorname{deg} g$ and $\operatorname{deg} \tilde{f} \geq \operatorname{deg} \tilde{g}$
- For $k \in \mathbb{Z}$, we say that (f, g) and (\tilde{f}, \tilde{g}) coincide up to k and write $(f, g) \equiv_{k}(\tilde{f}, \tilde{g})$ if

$$
\begin{aligned}
f \upharpoonright k & =\tilde{f} \upharpoonright k \\
g \upharpoonright(k-(\operatorname{deg} f-\operatorname{deg} g)) & =\tilde{g} \upharpoonright(k-(\operatorname{deg} \tilde{f}-\operatorname{deg} \tilde{g}))
\end{aligned}
$$

- Remark:

If $(f, g) \equiv_{k}(\tilde{f}, \tilde{g})$ and $k \geq \operatorname{deg} f-\operatorname{deg} g$, then $\operatorname{deg} f-\operatorname{deg} g=\operatorname{deg} \tilde{f}-\operatorname{deg} \tilde{g}$

Example: Coinciding pairs of polynomials

- The pairs

$$
\begin{aligned}
& f=7+2 x+x^{2}+x^{3}+10 x^{4}+7 x^{5}+x^{6}+5 x^{7}+9 x^{8}+5 x^{9}+7 x^{10} \in \mathbb{Z}_{11}[x] \\
& g=3+7 x+4 x^{2}+2 x^{3}+2 x^{4}+6 x^{5}+3 x^{6}+2 x^{7}+4 x^{8} \in \mathbb{Z}_{11}[x]
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{f}=1+5 x+9 x^{2}+5 x^{3}+7 x^{4} \in \mathbb{Z}_{11}[x] \\
& \tilde{g}=3+2 x+4 x^{2} \in \mathbb{Z}_{11}[x]
\end{aligned}
$$

coincide up to 4

- Indeed, we have $\operatorname{deg} f=10, \operatorname{deg} g=8, \operatorname{deg} \tilde{f}=4$, and $\operatorname{deg} \tilde{g}=2$, with

$$
\begin{aligned}
& f \upharpoonright 4=\tilde{f} \upharpoonright 4=1+5 x+9 x^{2}+5 x^{3}+7 x^{4} \\
& g \upharpoonright 2=\tilde{g} \upharpoonright 2=3+2 x+4 x^{2}
\end{aligned}
$$

Quotients of coinciding pairs of polynomials

- The following lemma enables us to design a divide-and-conquer extended Euclidean algorithm by truncating the operands to division

Lemma 8 (Sufficiently coinciding pairs of polynomials have identical quotients)
Suppose that $(f, g) \equiv_{2 k}(\tilde{f}, \tilde{g})$ for $k \in \mathbb{Z}$ with $k \geq \operatorname{deg} f-\operatorname{deg} g \geq 0$. Define $q, r, \tilde{q}, \tilde{r} \in F[x]$ by division with quotients and remainders as follows

$$
\begin{array}{ll}
f=q g+r, & \operatorname{deg} r<\operatorname{deg} g, \\
\tilde{f}=\tilde{q} \tilde{g}+\tilde{r}, & \operatorname{deg} \tilde{r}<\operatorname{deg} \tilde{g} .
\end{array}
$$

Then, $q=\tilde{q}$ and at least one of the following holds $(g, r) \equiv_{2(k-\operatorname{deg} q)}(\tilde{g}, \tilde{r})$ or $r=0$ or $k-\operatorname{deg} q<\operatorname{deg} g-\operatorname{deg} r$.

Proof.
Exercise

Example: Quotient of coinciding pairs of polynomials

- The pairs

$$
\begin{aligned}
& f=7+2 x+x^{2}+x^{3}+10 x^{4}+7 x^{5}+x^{6}+5 x^{7}+9 x^{8}+5 x^{9}+7 x^{10} \in \mathbb{Z}_{11}[x] \\
& g=3+7 x+4 x^{2}+2 x^{3}+2 x^{4}+6 x^{5}+3 x^{6}+2 x^{7}+4 x^{8} \in \mathbb{Z}_{11}[x]
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{f}=1+5 x+9 x^{2}+5 x^{3}+7 x^{4} \in \mathbb{Z}_{11}[x] \\
& \tilde{g}=3+2 x+4 x^{2} \in \mathbb{Z}_{11}[x]
\end{aligned}
$$

coincide up to 4 , with $4 \geq \operatorname{deg} f-\operatorname{deg} g=2$

- Accordingly (by Lemma 8), the quotients agree:

$$
\begin{aligned}
& f \text { quo } g=9+10 x+10 x^{2} \\
& \tilde{f} \text { quo } \tilde{g}=9+10 x+10 x^{2}
\end{aligned}
$$

Quotient sequences of coinciding pairs of polynomials

- Now let us study what happens in the extended Euclidean algorithm if we execute it for two inputs, $\left(r_{0}, r_{1}\right)$ and ($\tilde{r}_{0}, \tilde{r}_{1}$), with $\operatorname{deg} r_{0} \geq \operatorname{deg} r_{1} \geq 0$ and $\operatorname{deg} \tilde{r}_{0} \geq \operatorname{deg} \tilde{r}_{1} \geq 0$:

$$
\begin{array}{ll}
r_{0}=q_{1} r_{1}+r_{2}, & \tilde{r}_{0}=\tilde{q}_{1} \tilde{r}_{1}+\tilde{r}_{2} \\
r_{1}=q_{2} r_{2}+r_{3}, & \tilde{r}_{1}=\tilde{q}_{2} \tilde{r}_{2}+\tilde{r}_{3}
\end{array}
$$

$$
r_{i-1}=q_{i} r_{i}+r_{i+1}, \quad \tilde{r}_{i-1}=\tilde{q}_{i} \tilde{r}_{i}+\tilde{r}_{i+1}
$$

$$
r_{\ell-1}=q_{\ell} r_{\ell}, \quad \tilde{r}_{\tilde{\ell}-1}=\tilde{q}_{\hat{\ell}} \tilde{r}_{\tilde{\ell}}
$$

- In particular, our interest is on the case $\left(r_{0}, r_{1}\right) \equiv_{2 k}\left(\tilde{r}_{0}, \tilde{r}_{1}\right) \ldots$

Quotient sequences of coinciding pairs of polynomials

- We can now study the execution on two coinciding inputs (r_{0}, r_{1}) and ($\tilde{r}_{0}, \tilde{r}_{1}$) with $\operatorname{deg} r_{0} \geq \operatorname{deg} r_{1} \geq 0$ and $\operatorname{deg} \tilde{r}_{0} \geq \operatorname{deg} \tilde{r}_{1} \geq 0$ as follows

Lemma 9 (Identical quotient sequences up to the halting threshold)
Let $k \in \mathbb{Z}$ with $\left(r_{0}, r_{1}\right) \equiv_{2 k}\left(\tilde{r}_{0}, \tilde{r}_{1}\right)$. Then, $h(k)=\tilde{h}(k)$ with $q_{i}=\tilde{q}_{i}$ for all $i=1,2, \ldots, h(k)$.
Proof sketch.
By induction on i and using Lemma 8 for the induction step, the following holds for all $0 \leq i \leq h(k)$: we have $i \leq \tilde{h}(k), q_{i}=\tilde{q}_{i}$, and at least one of the following holds: $i=h(k)$ or $\left(r_{i}, r_{i+1}\right) \equiv_{2\left(k-\sum_{j=1}^{j} m_{j}\right)}\left(\tilde{r}_{i}, \tilde{r}_{i+1}\right)$.

Example: Quotient sequences of coinciding pairs

- Let us run the extended Euclidean algorithm for a pair of polynomials in $\mathbb{Z}_{11}[x]$:

i	q_{i}	r_{i}	s_{i}	t_{i}
0		$7+x+3 x^{2}+5 x^{3}+9 x^{4}+10 x^{5}+7 x^{6}$	0	
1	4	$4+10 x+7 x^{2}+4 x^{3}+7 x^{4}+4 x^{5}+10 x^{6}$	1	0
2	$4+2 x$	$2+5 x+8 x^{2}+3 x^{4}+5 x^{5}$	1	7
3	$4+10 x$	$7+8 x+9 x^{2}+10 x^{3}+6 x^{4}$	$7+9 x$	$6+8 x$
4	$2+3 x$	$7+2 x+2 x^{2}+2 x^{3}$	$6+4 x+9 x^{2}$	$5+7 x+8 x^{2}$
5	$10+9 x$	$4+5 x+10 x^{2}$	$4 x$	$6+5 x+3 x^{2}+6 x^{3}$
6	$4+8 x$	4	$1+10 x+x^{3}+x^{4}$	$7+x+7 x^{2}+9 x^{3}$
7	x	0	$1+8 x+10 x^{2}+x^{3}+10 x^{4}+x^{5}+8 x^{6}$	$1+8 x+2 x^{2}+7 x^{3}+6 x^{4}+3 x^{5}+x^{6}$

- Here is a run on a pair that coincides with the first pair up to length $2 k=4$:

i	q_{i}	r_{i}	s_{i}	t_{i}
0		$3+5 x+9 x^{2}+10 x^{3}+7 x^{4}$	1	0
1	4	$7+4 x+7 x^{2}+4 x^{3}+10 x^{4}$	0	1
2	$4+2 x$	$8+3 x^{2}+5 x^{3}$	1	7
3	$4+10 x$	$8+10 x+6 x^{2}$	$7+9 x$	$6+8 x$
4	$6 x$	$9+x$	6	$7+6 x+9 x^{2}+x^{3}$
5	$8+7 x$	0	$5+6 x+5 x^{2}+6 x^{3}+4 x^{4}$	$1+9 x+3 x^{2}+7 x^{3}+6 x^{4}$

- Observe that the quotient sequences agree up to total degree $\operatorname{deg} q_{1}+\operatorname{deg} q_{2}+\ldots+\operatorname{deg} q_{h(k)} \leq k$ with $h(k)=3$

A divide-and-conquer extended Euclidean algorihtm

- We now use Lemma 9 to design a fast divide-and-conquer version of the extended Euclidean algorihtm
- For a given input $\left(r_{0}, r_{1}\right) \in F[x]^{2}$ with $\operatorname{deg} r_{0} \geq \operatorname{deg} r_{1} \geq 0$ and halting parameter $k \geq 0$, the key idea is to truncate the input using the " \upharpoonright "-operator and build the quotient sequence $q_{1}, q_{2}, \ldots, q_{h(k)}$ using two recursive calls with halting parameter at most $\lfloor k / 2\rfloor$ each
- That is, the idea essentially to use the first recursive call to recover $q_{1}, q_{2}, \ldots, q_{h(\lfloor k / 2\rfloor)}$, then compute (as needed) the next quotient $q_{h(\lfloor k / 2\rfloor)+1}$ explicitly, and then make a second recursive call (as needed) to recover the rest of the quotient sequence $q_{1}, q_{2}, \ldots, q_{h(k)}$
- With careful implementation, this leads to an algorithm that runs in $O(M(k) \log k)$ operations in F
- Before describing the algorithm in detail, let us recall some further terminology ...

Invariants of the extended Euclidean algorithm

- Recall the matrices

$$
R_{0}=\left[\begin{array}{cc}
s_{0} & t_{0} \\
s_{1} & t_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad Q_{i}=\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{i}
\end{array}\right] \quad \text { for } i=1,2, \ldots, \ell
$$

and $R_{i}=Q_{i} Q_{i-1} \cdots Q_{1} R_{0} \in F[x]^{2 \times 2}$ for $i=0,1, \ldots, \ell$ from the analysis of the traditional extended Euclidean algorithm in Problem Set 1

- We recall that for all $i=0,1, \ldots, \ell$ we have $R_{i}=\left[\begin{array}{cc}s_{i} & t_{i} \\ s_{i+1} & t_{i+1}\end{array}\right]$ and $R_{i}\left[\begin{array}{c}r_{0} \\ r_{1}\end{array}\right]=\left[\begin{array}{c}r_{i} \\ r_{i+1}\end{array}\right]$
- Our algorithm design will be such that on input $\left(r_{0}, r_{1}\right)$ and k it produces as output (i) the value $h(k)$, (ii) the quotient sequence $q_{1}, q_{2}, \ldots, q_{h(k)}$, and (iii) the matrix $R_{h(k)} \ldots$

Truncating inputs to the extended Euclidean algorithm

- Let us write $h(k), q_{1}, q_{2}, \ldots, q_{h(k)}, R_{h(k)} \leftarrow \operatorname{extgcd}\left(k, r_{0}, r_{1}\right)$ to indicate that the algorithm produces the output $h(k), q_{1}, q_{2}, \ldots, q_{h(k)}, R_{h(k)}$ on input k, r_{0}, r_{1} with $\operatorname{deg} r_{0} \geq \operatorname{deg} r_{1} \geq 0$
- Lemma 9 now implies that we have

$$
\begin{equation*}
\operatorname{extgcd}\left(k, r_{0}, r_{1}\right)=\operatorname{extgcd}\left(k, r_{0} \upharpoonright 2 k, r_{1} \upharpoonright\left(2 k-\left(\operatorname{deg} r_{0}-\operatorname{deg} r_{1}\right)\right)\right) \tag{30}
\end{equation*}
$$

- In particular, we can assemble the output recursively so that the input polynomials to each recursive call are truncated in degree to the minimum enabled by (30)
- We are now ready for the detailed pseudocode of the algorithm ...

A divide-and-conquer extended Euclidean algorithm I

- Let F be a field and let $k \in \mathbb{Z}$ and $r_{0}, r_{1} \in F[x]$ with $\operatorname{deg} r_{0} \geq \operatorname{deg} r_{1}$ and $r_{0} \neq 0$ be given as input

1. If $k<\operatorname{deg} r_{0}-\operatorname{deg} r_{1}$ holds, then return with output $h(k) \leftarrow 0$ and $R_{h(k)} \leftarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. If $k=0$ and $\operatorname{deg} r_{0}=\operatorname{deg} r_{1}$ hold, then return with output $h(k) \leftarrow 1, q_{1}=\frac{\mathrm{Ic} r_{0}}{\mathrm{Ic} r_{1}}$, and

$$
R_{h(k)} \leftarrow\left[\begin{array}{rr}
0 & 1 \\
1 & -\frac{\operatorname{Ic} r_{0}}{\operatorname{Ic} r_{1}}
\end{array}\right]
$$

3. Set $k_{1} \leftarrow\lfloor k / 2\rfloor$
4. Make the first recursive call

$$
h_{1}, q_{1}^{(1)}, q_{2}^{(1)}, \ldots, q_{h_{1}}^{(1)}, R^{(1)} \leftarrow \operatorname{extgcd}\left(k_{1}, r_{0} \upharpoonright 2 k_{1}, r_{1} \upharpoonright\left(2 k_{1}-\left(\operatorname{deg} r_{0}-\operatorname{deg} r_{1}\right)\right)\right)
$$

5. Compute the matrix-vector product $\left[\begin{array}{l}\tilde{r}_{h_{1}} \\ \tilde{r}_{h_{1}+1}\end{array}\right] \leftarrow R^{(1)}\left[\begin{array}{l}r_{0} \upharpoonright 2 k \\ r_{1} \upharpoonright\left(2 k-\left(\operatorname{deg} r_{0}-\operatorname{deg} r_{1}\right)\right)\end{array}\right]$

A divide-and-conquer extended Euclidean algorithm II

6. If $\operatorname{deg} q_{1}^{(1)}+\operatorname{deg} q_{2}^{(1)}+\ldots+\operatorname{deg} q_{h_{1}}^{(1)}+\operatorname{deg} \tilde{r}_{h_{1}}-\operatorname{deg} \tilde{r}_{h_{1}+1}>k$ holds, then return with output $h(k) \leftarrow h_{1}, q_{1}, q_{2}, \ldots, q_{h(k)} \leftarrow q_{1}^{(1)}, q_{2}^{(1)}, \ldots, q_{h_{1}}^{(1)}$, and $R_{h(k)} \leftarrow R^{(1)}$
7. Compute the quotient $q_{h_{1}+1} \leftarrow \tilde{r}_{h_{1}}$ quo $\tilde{r}_{h_{1}+1}$ and the matrix $Q_{h_{1}+1} \leftarrow\left[\begin{array}{rr}0 & 1 \\ 1 & -q_{h_{1}+1}\end{array}\right]$
8. Compute the remainder $\tilde{r}_{h_{1}+2} \leftarrow \tilde{r}_{h_{1}}-q_{h_{1}+1} \tilde{r}_{h_{1}+1}$
9. Set $k_{2} \leftarrow k-\left(\operatorname{deg} q_{1}^{(1)}+\operatorname{deg} q_{2}^{(1)}+\ldots+\operatorname{deg} q_{h_{1}}^{(1)}+\operatorname{deg} q_{h_{1}+1}\right)$
10. Make the second recursive call
$h_{2}, q_{1}^{(2)}, q_{2}^{(2)}, \ldots, q_{h_{2}}^{(2)}, R^{(2)} \leftarrow \operatorname{extgcd}\left(k_{2}, \tilde{r}_{h_{1}+1} \upharpoonright 2 k_{1}, \tilde{r}_{h_{1}+2} \upharpoonright\left(2 k_{1}-\left(\operatorname{deg} \tilde{r}_{h_{1}+1}-\operatorname{deg} \tilde{r}_{h_{1}+2}\right)\right)\right)$
11. Return with output $h(k) \leftarrow h_{1}+1+h_{2}$,
$q_{1}, q_{2}, \ldots, q_{h(k)} \leftarrow q_{1}^{(1)}, q_{2}^{(1)}, \ldots, q_{h_{1}}^{(1)}, q_{h_{1}+1}, q_{1}^{(2)}, q_{2}^{(2)}, \ldots, q_{h_{2}}^{(2)}$, and $R_{h(k)} \leftarrow R^{(2)} Q_{h_{1}+1} R^{(1)}$

Remarks and analysis

- Caveat: In Step 1 we may have deg $r_{1}=-\infty$ (that is, $r_{1}=0$) and in Step 6 we may have $\operatorname{deg} \tilde{r}_{h_{1}+1}=-\infty\left(\right.$ that is, $\left.\tilde{r}_{h_{1}+1}=0\right)$
- After Step 1 it holds that $k \geq \operatorname{deg} r_{0}-\operatorname{deg} r_{1} \geq 0$, after Step 2 it holds that $k \geq 1$ and $\operatorname{deg} r_{0}>\operatorname{deg} r_{1} \geq 0$; thus, $0 \leq k_{1} \leq k-1$
- After Step 5 we have

$$
\operatorname{deg} q_{1}^{(1)}+\operatorname{deg} q_{2}^{(1)}+\ldots+\operatorname{deg} q_{h_{1}}^{(1)} \leq k_{1}
$$

and, also recalling that $k_{1}=\lfloor k / 2\rfloor$,

$$
\operatorname{deg} q_{1}^{(1)}+\operatorname{deg} q_{2}^{(1)}+\ldots+\operatorname{deg} q_{h_{1}}^{(1)}+\operatorname{deg} \tilde{r}_{h_{1}}-\operatorname{deg} \tilde{r}_{h_{1}+1} \geq k_{1}+1 \geq\lceil k / 2\rceil
$$

- Assuming that $\tilde{r}_{h_{1}+1} \neq 0$, we have $\operatorname{deg} q_{h_{1}+1}=\operatorname{deg} \tilde{r}_{h_{1}}-\operatorname{deg} \tilde{r}_{h_{1}+1}$
- Thus, $k_{2} \leq\lfloor k / 2\rfloor \leq k-1$
- The algorithm runs in $T(k) \leq T\left(k_{1}\right)+T\left(k_{2}\right)+O(M(k)) \leq 2 T(\lfloor k / 2\rfloor)+O(M(k))$ operations in F; that is, $T(k)=O(M(k) \log k)$ operations in F

Key content for Lecture 5 (recalled)

- Extended Euclidean algorithm for polynomials recalled and expanded
- The quotient sequence, the Bézout coefficients, and the halting threshold
- Fast extended Euclidean algorithm for polynomials by divide and conquer
- The two polynomial operands truncated to a prefix of the highest-degree monomials determine the prefix of the quotient sequence (exercise)
- Coping with errors in data using error-correcting codes
- A family of error-correcting codes (Reed-Solomon codes) based on evaluation-interpolation duality for univariate polynomials
- Key observation: low-degree polynomials have few roots (exercise)
- Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial toolkit and Gao's (2003) decoder

Number of roots

- Let F be a field
- A root of a polynomial $f \in F[x]$ is an element $\xi \in F$ with $f(\xi)=0$

Theorem 10 (Number of roots)
A nonzero polynomial $f \in F[x]$ of degree at most d has at most distinct roots.
Proof.
Exercise

Two distinct polynomials mostly disagree

- Let F be a field
- Let $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{e}\right) \in F^{e}$ be a vector of e distinct elements of F
- Associate with $f \in F[x]$ the vector of evaluations

$$
f(\Xi)=\left(f\left(\xi_{1}\right), f\left(\xi_{2}\right), \ldots, f\left(\xi_{e}\right)\right) \in F^{e}
$$

Lemma 11 (Bounded agreement of low-degree polynomials) Let $f_{0}, f_{1} \in F[x]$ be distinct polynomials of degree at most d. Then, $f_{0}(\Xi)$ and $f_{1}(\Xi)$ agree in at most d coordinates.

Proof.
The difference $f_{0}-f_{1} \neq 0$ is a polynomial of degree at most d and thus has at most d distinct roots

Reconstructibility from partly erroneous data

- Let $f \in F[x]$ be a polynomial of degree at most d
- Let $e \geq d+1$ and let $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{e}\right) \in F^{e}$ consist of distinct elements

Lemma 12 (Unique reconstructibility)

Suppose that the vectors $\Gamma \in F^{e}$ and $f(\Xi)$ disagree in at most $(e-d-1) / 2$ coordinates.
Then, Γ uniquely identifies f
Proof.
Let $f_{0}, f_{1} \in F[x]$ be two polynomials of degree at most d such that $f_{0}(\Xi)$ and $f_{1}(\Xi)$ each disagree with Γ in at most $(e-d-1) / 2$ coordinates. In total there are e coordinates, so $f_{0}(\Xi)$ and $f_{1}(\Xi)$ and Γ must thus all agree in at least $e-2(e-d-1) / 2=d+1$ coordinates. By Lemma 11 thus $f_{0}=f_{1}$.
(Furthermore, we can, very inefficiently, recover f from Γ by considering in turn each vector $\tilde{\Gamma} \in F^{e}$ that disagrees with Γ in at most $(e-d-1) / 2$ coordinates: for each such $\tilde{\Gamma}$, interpolate f from $f(\Xi)=\tilde{\Gamma}$, and stop when f has degree at most d.)

Reed-Solomon codes

- Suppose we want to protect a sequence $\Phi=\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{d}\right) \in F^{d+1}$ of elements of a field F against errors
- We may represent Φ as a polynomial $f=\varphi_{0}+\varphi_{1} x+\ldots+\varphi_{d} X^{d} \in F[x]$ of degree at most d
- Let $e \geq d+1$ and let $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{e}\right) \in F^{e}$ consist of distinct elements
- Let us use $\Psi=f(\Xi) \in F^{e}$ as the encoded representation of Φ
- Suppose that $\hat{\Psi}$ disagrees with Ψ in at most $(e-d-1) / 2$ coordinates. Then, Lemma 12 implies that we can recover Φ from $\hat{\Psi}$
- That is, $\hat{\Psi}$ may have up to $\lfloor(e-d-1) / 2\rfloor$ errors and we can still recover Φ
- Encoding can be done in near-linear-time by fast batch evaluation ...
- ... but how efficiently can we decode in the presence of errors?

Example: Encoding

- Let us work with $e=8, d=3, F=\mathbb{Z}_{11}$, and the evaluation points $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{e}\right)=(0,1,2,3,4,5,6,7) \in \mathbb{Z}_{11}^{e}$
- Suppose we want to protect the data vector $\Phi=(5,3,1,9) \in \mathbb{Z}_{11}^{d+1}$
- We view Φ as the degree-at-most- d polynomial $f=5+3 x+x^{2}+9 x^{3} \in \mathbb{Z}_{11}[x]$
- The encoded representation of Φ is

$$
\Psi=f(\Xi)=\left(f\left(\xi_{1}\right), f\left(\xi_{2}\right), \ldots, f\left(\xi_{e}\right)\right)=(5,7,10,2,4,4,1,5) \in \mathbb{Z}_{11}^{e}
$$

Gao's (2003) decoder for Reed-Solomon codes

- Let $f \in F[x]$ be a polynomial of degree at most d
- Let $e \geq d+1$ and let $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{e}\right) \in F^{e}$ consist of distinct elements
- Suppose that the vectors $\Gamma \in F^{e}$ and $f(\Xi)$ disagree in at most $(e-d-1) / 2$ coordinates. Then, Γ uniquely identifies f (Lemma 12)
- Moreover, given Ξ, Γ, d as input, f can be computed in $O(M(e) \log e)$ operations in F (Gao [10])

Gao's decoding algorithm

- Let $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{e}\right) \in F^{e}$ consisting of distinct elements, $\Gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{e}\right) \in F^{e}$, and $d \in \mathbb{Z}_{\geq 0}$ with $d+1 \leq e$ be given as input
- Gao's algorithm [10] proceeds as follows:

1. Using a subproduct tree, construct the polynomial $g_{0}=\prod_{i=1}^{e}\left(x-\xi_{i}\right)$
2. Interpolate the unique polynomial $g_{1} \in F[x]$ of degree at most $e-1$ that satisfies $g_{1}\left(\xi_{i}\right)=\gamma_{i}$ for all $i=1,2, \ldots, e$
3. Apply the extended Euclidean algorithm to g_{0} and g_{1} to produce the consecutive remainders g_{h}, g_{h+1} with $\operatorname{deg} g_{h} \geq D$, and $\operatorname{deg} g_{h+1}<D$ for $D=(e+d+1) / 2$. Let $s_{h+1}, t_{h+1} \in F[x]$ be the associated Bézout coefficients with $g_{h+1}=s_{h+1} g_{0}+t_{h+1} g_{1}$
4. Divide g_{h+1} by t_{h+1} to obtain the quotient $f_{1} \in F[x]$ and the remainder $r \in F[x]$ with $g_{h+1}=t_{h+1} f_{1}+r$ and $\operatorname{deg} r<\operatorname{deg} t_{h+1}$
5. Output f_{1} as the result of interpolation if both $\operatorname{deg} f_{1} \leq d$ and $r=0$; otherwise assert decoding failure

- It is immediate that the algorithm runs in $O(M(e) \log e)$ operations in F

Example: Decoding I

- Let us work with $e=8, d=3, F=\mathbb{Z}_{11}$, and the evaluation points $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{e}\right)=(0,1,2,3,4,5,6,7) \in \mathbb{Z}_{11}^{e}$
- Suppose we have the vector $\Gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{e}\right)=(5,7,1,2,9,4,1,5) \in \mathbb{Z}_{11}^{e}$
- First, we construct the polynomial

$$
g_{0}=\prod_{i=1}^{e}\left(x-\xi_{i}\right)=9 x+2 x^{3}+4 x^{4}+9 x^{5}+3 x^{6}+5 x^{7}+x^{8}
$$

- Then, we interpolate the polynomial

$$
g_{1}=5+7 x+5 x^{2}+2 x^{3}+10 x^{4}+9 x^{5}+6 x^{6}+7 x^{7}
$$

that satisfies $g_{1}\left(\xi_{i}\right)=\gamma_{i}$ for all $i=1,2, \ldots, e$

Example: Decoding II

- Next we apply the extended Euclidean algorithm to g_{0} and g_{1} to produce the consecutive remainders g_{h}, g_{h+1} with $\operatorname{deg} g_{h} \geq D$, and $\operatorname{deg} g_{h+1}<D$ for $D=(e+d+1) / 2=6 \ldots$
- For convenience, we display the entire output of the extended Euclidean algorithm (but omitting the first Bézout coefficient sequence):

i	q_{i}	g_{i}	t_{i}
0		$9 x+2 x^{3}+4 x^{4}+9 x^{5}+3 x^{6}+5 x^{7}+x^{8}$	0
1	$8+8 x$	$5+7 x+5 x^{2}+2 x^{3}+10 x^{4}+9 x^{5}+6 x^{6}+7 x^{7}$	1
2	$7+10 x$	$4+x+3 x^{2}+x^{3}+7 x^{4}+4 x^{6}$	$3+3 x$
3	$3+3 x$	$10+4 x+7 x^{2}+9 x^{3}+6 x^{4}+5 x^{5}$	$2+4 x+3 x^{2}$
4	$6+10 x$	$7+3 x+3 x^{2}+8 x^{3}+6 x^{4}$	$8+7 x+x^{2}+2 x^{3}$
5	$10+9 x$	$1+4 x+3 x^{2}+8 x^{3}$	$9+3 x+4 x^{2}+2 x^{4}$
6	$4+10 x$	$8+9 x+3 x^{2}$	$6+6 x+10 x^{3}+2 x^{4}+4 x^{5}$
7	$5+4 x$	$2+9 x$	$7+7 x+10 x^{2}+4 x^{3}+4 x^{4}+8 x^{5}+4 x^{6}$
8	$10+x$	9	$4+9 x+10 x^{2}+5 x^{3}+10 x^{4}+3 x^{5}+3 x^{6}+6 x^{7}$
9		0	$x+10 x^{3}+9 x^{4}+x^{5}+4 x^{6}+3 x^{7}+5 x^{8}$

- (In a fast implementation we would of course use the divide-and-conquer extended Euclidean algoritm and would not produce the entire sequence of remainders g_{i})

Example: Decoding III

- From the extended Euclidean algorithm we obtain that $h=2$ with

$$
\begin{aligned}
g_{h+1} & =10+4 x+7 x^{2}+9 x^{3}+6 x^{4}+5 x^{5} \\
t_{h+1} & =2+4 x+3 x^{2}
\end{aligned}
$$

- Dividing g_{h+1} by t_{h+1} we obtain the quotient

$$
f_{1}=5+3 x+x^{2}+9 x^{3}
$$

and the remainder $r=0$

- In particular, the decoding is successful, and the reconstructed data vector is $(5,3,1,9) \in \mathbb{Z}_{11}^{d+1}$
- Re-encoding the reconstructed vector as appropriate, we can also observe that the vector Γ has two errors, namely $f\left(\xi_{3}\right)=10 \neq \gamma_{3}=2$ and $f\left(\xi_{5}\right)=4 \neq \gamma_{5}=9$

Correctness I

- First, suppose that the algorithm does not assert failure
- Then, $f_{1}=g_{h+1} / t_{h+1}$ has degree at most d
- Since $t_{h+1} f_{1}=g_{h+1}=s_{h+1} g_{0}+t_{h+1} g_{1}$, we have $s_{h+1} g_{0}=t_{h+1}\left(f_{1}-g_{1}\right)$ and hence for all $i=1,2, \ldots, e$ we have $t_{h+1}\left(\xi_{i}\right)=0$ or $f_{1}\left(\xi_{i}\right)=g_{1}\left(\xi_{i}\right)=\gamma_{i}$
- Since g_{h+1} is the first remainder with $\operatorname{deg} g_{h+1}<D$ and $\operatorname{deg} g_{0}=e$, by the structure of the Bézout coefficients we have deg $t_{h+1} \leq e-D=(e-d-1) / 2$
- Indeed, from the definition of Bézout coefficients we have $\operatorname{deg} s_{h+1}, \operatorname{deg} t_{h+1} \leq \sum_{i=1}^{h} \operatorname{deg} q_{i}=\operatorname{deg} g_{0}-\operatorname{deg} g_{h} \leq e-D$ since $\operatorname{deg} g_{i}+\operatorname{deg} q_{i}=\operatorname{deg} g_{i-1}$ and $\operatorname{deg} g_{h} \geq D$
- Since t_{h+1} has at most deg t_{h+1} roots, we have $f_{1}\left(\xi_{i}\right) \neq \gamma_{i}$ for at most $(e-d-1) / 2$ coordinates $i=1,2, \ldots, e$
- Thus, f_{1} is a valid output for input Ξ, Γ, d

Correctness II

- Next, let $f \in F[x]$ be a polynomial of degree at most d, let $\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{e}\right) \in F^{e}$ consist of distinct elements, and let $\Gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{e}\right) \in F^{e}$ be a vector that disagrees with $f(\Xi)$ in at most $(e-d-1) / 2$ coordinates for $d+1 \leq e$
- By Lemma 12, we know that Γ uniquely determines f
- We show that Gao's algorithm outputs $f_{1}=f$ on input Ξ, Γ, d
- Let $B=\left\{i \in\{1,2, \ldots, e\}: f\left(\xi_{i}\right) \neq \gamma_{i}\right\}$ be the set of "bad" coordinates
- That is, B is the set of coordinates where Γ and $f(\Xi)$ disagree
- By assumption we have $|B| \leq(e-d-1) / 2$
- To understand the operation of the algorithm, let us split the polynomials g_{0} and g_{1} into parts based on B and $G=\{1,2, \ldots, e\} \backslash B \quad$ (the "bad" and "good" coordinates)

Correctness III

- Toward this end, let

$$
q=\prod_{i \in G}\left(x-\xi_{i}\right) \in F[x], \quad r_{0}=\prod_{i \in B}\left(x-\xi_{i}\right) \in F[x]
$$

- It is immediate that $g_{0}=q r_{0}$
- Let $r_{1} \in F[x]$ be the unique polynomial of degree at most $(e-d-1) / 2-1$ with $r_{1}\left(\xi_{i}\right)=q\left(\xi_{i}\right)^{-1}\left(\gamma_{i}-f\left(\xi_{i}\right)\right) \neq 0$ for all $i \in B$
- Thus, we have $g_{1}=q r_{1}+f$
- We have that $\operatorname{gcd}\left(r_{0}, r_{1}\right)=1$ since no root of r_{0} is a root of r_{1} and r_{0} factors into a product of degree 1 polynomials
- The following lemma will imply that the algorithm outputs $f_{1}=f$; we postpone the proof and give it as Lemma 13

Correctness IV

- Gao's Lemma. (Lemma 13 below) Let $c, d, D \in \mathbb{Z}_{\geq 0}$ and let $q, r_{0}, r_{1}, f_{0}, f_{1} \in F[x]$ with $\operatorname{gcd}\left(r_{0}, r_{1}\right)=1, \operatorname{deg} q \geq D \geq c+d+1$, and $\operatorname{deg} r_{i} \leq c, \operatorname{deg} f_{i} \leq d$ for $i=0,1$. Run the extended Euclidean algorithm on input $g_{0}=q r_{0}+f_{0}$ and $g_{1}=q r_{1}+f_{1}$ to obtain the remainders g_{h} and $g_{h+1}=s_{h+1} g_{0}+t_{h+1} g_{1}$ for $s_{h+1}, t_{h+1} \in F[x]$ with deg $g_{h} \geq D$ and $\operatorname{deg} g_{h+1}<D$. Then, $s_{h+1}=-\alpha r_{1}$ and $t_{h+1}=\alpha r_{0}$ for some $\alpha \in F \backslash\{0\}$
- Take $f_{0}=0, f_{1}=f, c=|B|$ in the lemma and recall that we have $D=(e+d+1) / 2$
- Thus, $c \leq(e-d-1) / 2, \operatorname{deg} q=|G|=e-|B| \geq D \geq c+d+1$, and the lemma applies to the polynomials $g_{0}=q r_{0}$ and $g_{1}=q r_{1}+f$ constructed in the algorithm
- Let $g_{h+1}, s_{h+1}, t_{h+1}$ be the output of the lemma (also constructed by the algorithm)
- Because $f_{0}=0$ and $f_{1}=f$, we have $g_{h+1}=-\alpha r_{1} q r_{0}+\alpha r_{0}\left(q r_{1}+f\right)=t_{h+1} f$
- In particular, the algorithm outputs $f_{1}=f=g_{h+1} / t_{h+1}$

Preparation for Gao's Lemma

- Recall the matrices

$$
R_{0}=\left[\begin{array}{cc}
s_{0} & t_{0} \\
s_{1} & t_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad Q_{i}=\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{i}
\end{array}\right] \quad \text { for } i=1,2, \ldots, \ell
$$

and $R_{i}=Q_{i} Q_{i-1} \cdots Q_{1} R_{0} \in F[x]^{2 \times 2}$ for $i=0,1, \ldots, \ell$ from the analysis of the traditional extended Euclidean algorithm in Problem Set 1

- We recall that for all $i=0,1, \ldots, \ell$ we have $R_{i}=\left[\begin{array}{cc}s_{i} & t_{i} \\ s_{i+1} & t_{i+1}\end{array}\right]$ and $R_{i}\left[\begin{array}{c}r_{0} \\ r_{1}\end{array}\right]=\left[\begin{array}{c}r_{i} \\ r_{i+1}\end{array}\right]$
- Since $\operatorname{det} Q_{i}=-1$ we have $\operatorname{det} R_{i}=(-1)^{i}$ and thus $R_{i}^{-1}=(-1)^{i}\left[\begin{array}{cc}t_{i+1} & -t_{i} \\ -s_{i+1} & s_{i}\end{array}\right]$
- Since $r_{\ell+1}=0$, we have $\left[\begin{array}{l}r_{0} \\ r_{1}\end{array}\right]=R_{\ell}^{-1}\left[\begin{array}{c}r_{\ell} \\ 0\end{array}\right]=\left[\begin{array}{c}(-1)^{\ell} t_{\ell+1} r_{\ell} \\ (-1)^{\ell+1} s_{\ell+1} r_{\ell}\end{array}\right]$
- We conclude that $s_{\ell+1}=(-1)^{\ell+1} r_{1} / r_{\ell}$ and $t_{\ell+1}=(-1)^{\ell} r_{0} / r_{\ell}$

Gao's Lemma

Lemma 13 (Gao [10])
Let $c, d, D \in \mathbb{Z}_{\geq 0}$ and let $q, r_{0}, r_{1}, f_{0}, f_{1} \in F[x]$ with $\operatorname{gcd}\left(r_{0}, r_{1}\right)=1$, $\operatorname{deg} q \geq D \geq c+d+1$, and $\operatorname{deg} r_{i} \leq c, \operatorname{deg} f_{i} \leq d$ for $i=0$, 1 . Run the extended Euclidean algorithm on input $g_{0}=q r_{0}+f_{0}$ and $g_{1}=q r_{1}+f_{1}$ to obtain the remainders g_{h} and $g_{h+1}=s_{h+1} g_{0}+t_{h+1} g_{1}$ for $s_{h+1}, t_{h+1} \in F[x]$ with $\operatorname{deg} g_{h} \geq D$ and $\operatorname{deg} g_{h+1}<D$. Then, $s_{h+1}=-\alpha r_{1}$ and $t_{h+1}=\alpha r_{0}$ for some $\alpha \in F \backslash\{0\}$

Proof of Gao's Lemma I

- Let $r_{0}, r_{1}, \ldots, r_{\ell}, r_{\ell+1}$ and $q_{1}, q_{2}, \ldots, q_{\ell}$ be the sequences of remainders and quotients in the extended Euclidean algorithm on input r_{0}, r_{1}
- Since $\operatorname{gcd}\left(r_{0}, r_{1}\right)=1$, we have $r_{\ell} \in F \backslash\{0\}$ and $r_{\ell+1}=0$
- Let $s_{i}, t_{i} \in F[x]$ for $i=0,1, \ldots, \ell+1$ be the associated sequence of Bézout coefficients
- For all $i=1,2, \ldots, \ell$, we have

$$
\begin{equation*}
r_{i+1}=r_{i-1}-q_{i} r_{i}, \quad s_{i+1}=s_{i-1}-q_{i} s_{i}, \quad t_{i+1}=t_{i-1}-q_{i} t_{i} \tag{31}
\end{equation*}
$$

- For all $i=2,3, \ldots, \ell+1$ define $g_{i}=s_{i} g_{0}+t_{i} g_{1}$
- From (31) it follows that $g_{i+1}=g_{i-1}-q_{i} g_{i}$ for all $i=1,2, \ldots, \ell$
- Let us show that $\operatorname{deg} g_{i}$ is a monotone decreasing sequence for $i=1,2, \ldots, \ell$

Proof of Gao's Lemma II

- We have $r_{i}=s_{i} r_{0}+t_{i} r_{1}$ for all $i=1,2, \ldots, \ell+1$. Furthermore, deg $s_{i} \leq c$ and $\operatorname{deg} t_{i} \leq c$ for all $i=1,2, \ldots, \ell+1$
- Since $g_{0}=q r_{0}+f_{0}, g_{1}=q r_{1}+f_{1}$, and $g_{i}=s_{i} g_{0}+t_{i} g_{1}$, for all $i=0,1, \ldots, \ell$ we have $g_{i}=q r_{i}+s_{i} f_{0}+t_{i} f_{1}$
- Since $\operatorname{deg}\left(s_{i} f_{0}+t_{i} f_{1}\right) \leq c+d$ and $\operatorname{deg} q \geq D \geq c+d+1$, we have $\operatorname{deg} g_{i}=\operatorname{deg} q+\operatorname{deg} r_{i} \geq D$ for all $i=0,1, \ldots, \ell$
- Since deg r_{i} is monotone decreasing for $i=1,2, \ldots, \ell$, we have that the same holds for $\operatorname{deg} g_{i}$
- Thus, we have that $g_{0}, g_{1}, \ldots, g_{\ell}$ and $q_{1}, q_{2}, \ldots, q_{\ell}$ form a prefix of the sequence of remainders and quotients in the extended Euclidean algorithm on input g_{0}, g_{1}
- Since $\operatorname{deg} r_{\ell}=0$, we have $\operatorname{deg} g_{\ell}=\operatorname{deg} q \geq D$

Proof of Gao's Lemma III

- Since $s_{\ell+1}=(-1)^{\ell+1} r_{1} / r_{\ell}$ and $t_{\ell+1}=(-1)^{\ell} r_{0} / r_{\ell}$, we have

$$
g_{\ell+1}=s_{\ell+1} g_{0}+t_{\ell+1} g_{1}=(-1)^{\ell}\left(-f_{0} r_{1}+f_{1} r_{0}\right) / r_{\ell}
$$

- Thus, $\operatorname{deg} g_{\ell+1} \leq c+d<D$ and it follows that $g_{\ell+1}=g=s g_{0}+\operatorname{tg}_{1}$ with $\alpha=(-1)^{\ell} / r_{\ell}$, $s=-\alpha r_{1}$, and $t=\alpha r_{0}$

Recap of Lecture 5

- Extended Euclidean algorithm for polynomials recalled and expanded
- The quotient sequence, the Bézout coefficients, and the halting threshold
- Fast extended Euclidean algorithm by divide and conquer
- The two operands truncated to a prefix of the highest-degree monomials determine the prefix of the quotient sequence (exercise)
- Coping with errors in data using error-correcting codes
- A family of error-correcting codes (Reed-Solomon codes) based on evaluation-interpolation duality for univariate polynomials
- Key observation: low-degree polynomials have few roots (exercise)
- Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial toolkit and Gao's (2003) decoder

Learning objectives (1/2)

- Terminology and objectives of modern algorithmics, including elements of algebraic, online, and randomised algorithms
- Ways of coping with uncertainty in computation, including error-correction and proofs of correctness
- The art of solving a large problem by reduction to one or more smaller instances of the same or a related problem
- (Linear) independence, dependence, and their abstractions as enablers of efficient algorithms

Learning objectives (2/2)

- Making use of duality
- Often a problem has a corresponding dual problem that is obtainable from the original (the primal) problem by means of an easy transformation
- The primal and dual control each other, enabling an algorithm designer to use the interplay between the two representations
- Relaxation and tradeoffs between objectives and resources as design tools
- Instead of computing the exact optimum solution at considerable cost, often a less costly but principled approximation suffices
- Instead of the complete dual, often only a randomly chosen partial dual or other relaxation suffices to arrive at a solution with high probability

