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Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers
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Recap of last week

I Fast batch evaluation and interpolation of polynomials

I Reduction to fast quotient and remainder
—divide-and-conquer recursive remaindering along a subproduct tree

I Secret sharing by randomization



Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd) (this week)

I Interpolation from partly erroneous data
(this week)



Further motivation for this week

I A�er this week we have completed our work on the near-linear time toolbox for
univariate polynomials

I This week is also our first encounter with uncertainty in computation

I This week we learn how to cope with uncertainty in the form of errors in data by
using error-correcting codes

I Next week look at errors in computation ...



Fast extended Euclidean algorithm (for polynomials)

(von zur Gathen and Gerhard [11],
Section 11.1)



Fast interpolation from partly erroneous data

(Gao [10])



Fast extended Euclidean algorithm (for integers)

(Möller [20])



Key content for Lecture 5

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm for polynomials by divide and conquer
I The two polynomial operands truncated to a prefix of the highest-degree monomials

determine the prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder



Extended Euclidean algorithm (for polynomials)

I Let F be a field and let f , g ∈ F [x] with deg f ≥ deg g ≥ 0

I Traditional extended Euclidean algorithm:
1. r0 ← f , s0 ← 1, t0 ← 0,

r1 ← g, s1 ← 0, t1 ← 1
2. i ← 1,

while ri , 0 do
qi ← ri−1 quo ri

ri+1 ← ri−1 − qiri

si+1 ← si−1 − qisi

ti+1 ← ti−1 − qiti

i ← i + 1
3. ` ← i − 1

return `, ri, si, ti for i = 0, 1, . . . , ` + 1, and qi for i = 1, 2, . . . , `

I We want a faster algorithm



Example (over Z2[x])

I Let f = x5 + x4 + x3 + x2 + x + 1 ∈ Z2[x] and g = x5 + x4 + 1 ∈ Z2[x]

I We obtain

i ri si ti qi

0 x5 + x4 + x3 + x2 + x + 1 1 0
1 x5 + x4 + 1 0 1 1
2 x3 + x2 + x 1 1 x2 + 1
3 x2 + x + 1 x2 + 1 x2 x
4 0 x3 + x + 1 x3 + 1

I In particular ` = 3 and r` = x2 + x + 1 is a greatest common divisor of
x5 + x4 + x3 + x2 + x + 1 and x5 + x4 + 1



Terminology

I The sequence q1, q2, . . . , q` is the quotient sequence produced by the algorithm

I The polynomial ri is the remainder at iteration i

I The polynomials si and ti are the Bézout coe�icients at iteration i

I The Bézout coe�icients satisfy ri = sir0 + tir1



Desiderata for a fast algorithm

I Let F be a field and let f , g ∈ F [x] with d ≥ deg f ≥ deg g ≥ 0

I Desired output:
The quotients q1, q2, . . . , qh and two consecutive rows rh, sh, th and rh+1, sh+1, th+1 for a
choice of h = 1, 2, . . . , `

I Using O(M(d ) log d ) operations in F



The degree sequences mi and ni

I It will be convenient to work with the following two sequences

I For i = 1, 2, . . . , ` + 1 let

mi = deg qi

where, for convenience, we let m`+1 = ∞

I For i = 0, 1, . . . , ` + 1, let

ni = deg ri

recalling that n`+1 = deg 0 = −∞

I By assumption, we have deg r0 ≥ deg r1 ≥ 0

I Since we have ri+1 = ri−1−qiri and deg ri > deg ri+1 for all i = 1, 2, . . . , `, it follows that

ni−1 = ni +mi



Example (over Z2[x])

I Let f = x5 + x4 + x3 + x2 + x + 1 ∈ Z2[x] and g = x5 + x4 + 1 ∈ Z2[x]

I We obtain

i ri si ti qi mi ni

0 x5 + x4 + x3 + x2 + x + 1 1 0 5
1 x5 + x4 + 1 0 1 1 0 5
2 x3 + x2 + x 1 1 x2 + 1 2 3
3 x2 + x + 1 x2 + 1 x2 x 1 2
4 0 x3 + x + 1 x3 + 1 ∞ −∞

I In particular ` = 3 and r` = x2 + x + 1 is a greatest common divisor of
x5 + x4 + x3 + x2 + x + 1 and x5 + x4 + 1



The halting threshold h = h(k)

I Given a threshold parameter k = 0, 1, . . . , n0 as input, we want the algorithm to halt
at iteration h = h(k) determined by

m1 +m2 + . . . +mh ≤ k

and

m1 +m2 + . . . +mh +mh+1 > k

I In particular, we observe that 0 ≤ h ≤ `



The halting threshold h = h(k)

I Equivalently, since ni = ni−1 −mi for i = 1, 2, . . . , ` + 1, we have

nh ≥ n0 − k

and

nh+1 < n0 − k

I That is, the algorithm halts at the unique iteration h = 0, 1, . . . , ` when the degree of
rh+1 for the first time decreases below n0 − k



Truncating a polynomial

I Let

f = φnxn + φn−1xn−1 + . . . + φ1x + φ0 ∈ F [x]

with leading coe�icient lc f = φn , 0

I For k ∈ Z, define the truncated polynomial

f � k = φnxk + φn−1xk−1 + . . . + φn−k+1x + φn−k ∈ F [x]

where we set φi = 0 for i < 0 as necessary

I For k ≥ 0 we have that f � k is a polynomial of degree k whose coe�icients are the
k + 1 highest coe�icients of f

I For k < 0 we have f � k = 0

I For all i = 0, 1, . . . we have (fx i )� k = f � k



Example: Truncating a polynomial

I Let us work with the polynomial

f = 2 + 9x + 10x2 + 4x3 ∈ Z11[x]

I We obtain the truncations
.
.
.

f �−2 = 0

f �−1 = 0

f � 0 = 4

f � 1 = 10 + 4x

f � 2 = 9 + 10x + 4x2

f � 3 = 2 + 9x + 10x2 + 4x3

f � 4 = 2x + 9x2 + 10x3 + 4x4

f � 5 = 2x2 + 9x3 + 10x4 + 4x5

.

.

.



Coinciding pairs of polynomials

I Let f , g, f̃ , g̃ ∈ F [x] \ {0} with deg f ≥ deg g and deg f̃ ≥ deg g̃

I For k ∈ Z, we say that (f , g) and (f̃ , g̃) coincide up to k and write (f , g) ≡k (f̃ , g̃) if

f � k = f̃ � k

g�(k − (deg f − deg g)) = g̃�(k − (deg f̃ − deg g̃))

I Remark:
If (f , g) ≡k (f̃ , g̃) and k ≥ deg f − deg g, then deg f − deg g = deg f̃ − deg g̃



Example: Coinciding pairs of polynomials

I The pairs

f = 7 + 2x + x2 + x3 + 10x4 + 7x5 + x6 + 5x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x]

g = 3 + 7x + 4x2 + 2x3 + 2x4 + 6x5 + 3x6 + 2x7 + 4x8 ∈ Z11[x]
and

f̃ = 1 + 5x + 9x2 + 5x3 + 7x4 ∈ Z11[x]

g̃ = 3 + 2x + 4x2 ∈ Z11[x]
coincide up to 4

I Indeed, we have deg f = 10, deg g = 8, deg f̃ = 4, and deg g̃ = 2, with

f � 4 = f̃ � 4 = 1 + 5x + 9x2 + 5x3 + 7x4

g� 2 = g̃� 2 = 3 + 2x + 4x2



�otients of coinciding pairs of polynomials

I The following lemma enables us to design a divide-and-conquer extended Euclidean
algorithm by truncating the operands to division

Lemma 8 (Su�iciently coinciding pairs of polynomials have identical quotients)

Suppose that (f , g) ≡2k (f̃ , g̃) for k ∈ Z with k ≥ deg f − deg g ≥ 0. Define q, r, q̃, r̃ ∈ F [x]
by division with quotients and remainders as follows

f = qg + r, deg r < deg g ,

f̃ = q̃g̃ + r̃, deg r̃ < deg g̃ .

Then, q = q̃ and at least one of the following holds (g, r ) ≡2(k−deg q) (g̃, r̃ ) or r = 0 or
k − deg q < deg g − deg r.

Proof.

Exercise �



Example: �otient of coinciding pairs of polynomials

I The pairs

f = 7 + 2x + x2 + x3 + 10x4 + 7x5 + x6 + 5x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x]

g = 3 + 7x + 4x2 + 2x3 + 2x4 + 6x5 + 3x6 + 2x7 + 4x8 ∈ Z11[x]
and

f̃ = 1 + 5x + 9x2 + 5x3 + 7x4 ∈ Z11[x]

g̃ = 3 + 2x + 4x2 ∈ Z11[x]
coincide up to 4, with 4 ≥ deg f − deg g = 2

I Accordingly (by Lemma 8), the quotients agree:

f quo g = 9 + 10x + 10x2

f̃ quo g̃ = 9 + 10x + 10x2



�otient sequences of coinciding pairs of polynomials

I Now let us study what happens in the extended Euclidean algorithm if we execute it
for two inputs, (r0, r1) and (r̃0, r̃1), with deg r0 ≥ deg r1 ≥ 0 and deg r̃0 ≥ deg r̃1 ≥ 0:

r0 = q1r1 + r2, r̃0 = q̃1r̃1 + r̃2

r1 = q2r2 + r3, r̃1 = q̃2r̃2 + r̃3

...
...

ri−1 = qiri + ri+1, r̃i−1 = q̃i r̃i + r̃i+1

...
...

r`−1 = q`r`, r̃ ˜̀−1 = q̃ ˜̀ r̃ ˜̀

I In particular, our interest is on the case (r0, r1) ≡2k (r̃0, r̃1) ...



�otient sequences of coinciding pairs of polynomials

I We can now study the execution on two coinciding inputs (r0, r1) and (r̃0, r̃1) with
deg r0 ≥ deg r1 ≥ 0 and deg r̃0 ≥ deg r̃1 ≥ 0 as follows

Lemma 9 (Identical quotient sequences up to the halting threshold)

Let k ∈ Z with (r0, r1) ≡2k (r̃0, r̃1). Then, h(k) = h̃(k) with qi = q̃i for all i = 1, 2, . . . , h(k).

Proof sketch.

By induction on i and using Lemma 8 for the induction step, the following holds for all
0 ≤ i ≤ h(k): we have i ≤ h̃(k), qi = q̃i , and at least one of the following holds: i = h(k) or
(ri, ri+1) ≡2(k−

∑j
j=1 mj )

(r̃i, r̃i+1). �



Example: �otient sequences of coinciding pairs
I Let us run the extended Euclidean algorithm for a pair of polynomials in Z11[x]:

i qi ri si ti
0 7 + x + 3x2 + 5x3 + 9x4 + 10x5 + 7x6 1 0
1 4 4 + 10x + 7x2 + 4x3 + 7x4 + 4x5 + 10x6 0 1
2 4 + 2x 2 + 5x + 8x2 + 3x4 + 5x5 1 7
3 4 + 10x 7 + 8x + 9x2 + 10x3 + 6x4 7 + 9x 6 + 8x
4 2 + 3x 7 + 2x + 2x2 + 2x3 6 + 4x + 9x2 5 + 7x + 8x2

5 10 + 9x 4 + 5x + 10x2 6 + 5x + 3x2 + 6x3 7 + x + 7x2 + 9x3

6 4 + 8x 4x 1 + 10x + x3 + x4 1 + 6x2 + x3 + 7x4

7 x 4 2 + x + 2x3 + 10x4 + 3x5 3 + 4x + 5x2 + x3 + 8x4 + 10x5

8 0 1 + 8x + 10x2 + x3 + 10x4 + x5 + 8x6 1 + 8x + 2x2 + 7x3 + 6x4 + 3x5 + x6

I Here is a run on a pair that coincides with the first pair up to length 2k = 4:
i qi ri si ti
0 3 + 5x + 9x2 + 10x3 + 7x4 1 0
1 4 7 + 4x + 7x2 + 4x3 + 10x4 0 1
2 4 + 2x 8 + 3x2 + 5x3 1 7
3 4 + 10x 8 + 10x + 6x2 7 + 9x 6 + 8x
4 6x 9 + x 6 + 4x + 9x2 5 + 7x + 8x2

5 8 + 7x 8 7 + 6x + 9x2 + x3 6 + 2x2 + 7x3

6 0 5 + 6x + 5x2 + 6x3 + 4x4 1 + 9x + 3x2 + 7x3 + 6x4

I Observe that the quotient sequences agree up to total degree
deg q1 + deg q2 + . . . + deg qh(k) ≤ k with h(k) = 3



A divide-and-conquer extended Euclidean algorihtm

I We now use Lemma 9 to design a fast divide-and-conquer version of the extended
Euclidean algorihtm

I For a given input (r0, r1) ∈ F [x]2 with deg r0 ≥ deg r1 ≥ 0 and halting parameter k ≥ 0,
the key idea is to truncate the input using the “�”-operator and build the quotient
sequence q1, q2, . . . , qh(k) using two recursive calls with halting parameter at most
bk/2c each

I That is, the idea essentially to use the first recursive call to recover q1, q2, . . . , qh( bk/2c) ,
then compute (as needed) the next quotient qh( bk/2c)+1 explicitly, and then make a
second recursive call (as needed) to recover the rest of the quotient sequence
q1, q2, . . . , qh(k)

I With careful implementation, this leads to an algorithm that runs in O(M(k) log k)
operations in F

I Before describing the algorithm in detail, let us recall some further terminology ...



Invariants of the extended Euclidean algorithm

I Recall the matrices

R0 =

[
s0 t0

s1 t1

]
=

[
1 0
0 1

]
, Qi =

[
0 1
1 −qi

]
for i = 1, 2, . . . , `

and Ri = QiQi−1 · · ·Q1R0 ∈ F [x]2×2 for i = 0, 1, . . . , ` from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

I We recall that for all i = 0, 1, . . . , ` we have Ri =

[
si ti

si+1 ti+1

]
and Ri

[
r0

r1

]
=

[
ri

ri+1

]

I Our algorithm design will be such that on input (r0, r1) and k it produces as output (i)
the value h(k), (ii) the quotient sequence q1, q2, . . . , qh(k) , and (iii) the matrix Rh(k) ...



Truncating inputs to the extended Euclidean algorithm

I Let us write h(k), q1, q2, . . . , qh(k),Rh(k) ← extgcd(k, r0, r1) to indicate that the
algorithm produces the output h(k), q1, q2, . . . , qh(k),Rh(k) on input k, r0, r1 with
deg r0 ≥ deg r1 ≥ 0

I Lemma 9 now implies that we have

extgcd(k, r0, r1) = extgcd
(
k, r0� 2k, r1�(2k − (deg r0 − deg r1))

)
(30)

I In particular, we can assemble the output recursively so that the input polynomials to
each recursive call are truncated in degree to the minimum enabled by (30)

I We are now ready for the detailed pseudocode of the algorithm ...



A divide-and-conquer extended Euclidean algorithm I

I Let F be a field and let k ∈ Z and r0, r1 ∈ F [x] with deg r0 ≥ deg r1 and r0 , 0 be given
as input

1. If k < deg r0 − deg r1 holds, then return with output h(k) ← 0 and Rh(k) ←

[
1 0
0 1

]

2. If k = 0 and deg r0 = deg r1 hold, then return with output h(k) ← 1, q1 =
lc r0
lc r1

, and

Rh(k) ←

[
0 1
1 −

lc r0
lc r1

]

3. Set k1 ← bk/2c

4. Make the first recursive call
h1, q

(1)
1 , q

(1)
2 , . . . , q

(1)
h1
,R(1) ← extgcd

(
k1, r0� 2k1, r1�(2k1 − (deg r0 − deg r1))

)
5. Compute the matrix-vector product

[
r̃h1

r̃h1+1

]
← R(1)

[
r0� 2k
r1�(2k − (deg r0 − deg r1))

]



A divide-and-conquer extended Euclidean algorithm II

6. If deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg r̃h1 − deg r̃h1+1 > k holds, then return with

output h(k) ← h1, q1, q2, . . . , qh(k) ← q(1)
1 , q

(1)
2 , . . . , q

(1)
h1

, and Rh(k) ← R(1)

7. Compute the quotient qh1+1 ← r̃h1 quo r̃h1+1 and the matrix Qh1+1 ←

[
0 1
1 −qh1+1

]

8. Compute the remainder r̃h1+2 ← r̃h1 − qh1+1r̃h1+1

9. Set k2 ← k − (deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg qh1+1)

10. Make the second recursive call
h2, q

(2)
1 , q

(2)
2 , . . . , q

(2)
h2
,R(2) ← extgcd

(
k2, r̃h1+1� 2k1, r̃h1+2�(2k1 − (deg r̃h1+1 − deg r̃h1+2))

)
11. Return with output h(k) ← h1 + 1 + h2,

q1, q2, . . . , qh(k) ← q(1)
1 , q

(1)
2 , . . . , q

(1)
h1
, qh1+1, q

(2)
1 , q

(2)
2 , . . . , q

(2)
h2

, and

Rh(k) ← R(2)Qh1+1R(1)



Remarks and analysis
I Caveat: In Step 1 we may have deg r1 = −∞ (that is, r1 = 0) and in Step 6 we may have

deg r̃h1+1 = −∞ (that is, r̃h1+1 = 0)

I A�er Step 1 it holds that k ≥ deg r0 − deg r1 ≥ 0, a�er Step 2 it holds that k ≥ 1 and
deg r0 > deg r1 ≥ 0; thus, 0 ≤ k1 ≤ k − 1

I A�er Step 5 we have

deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
≤ k1

and, also recalling that k1 = bk/2c,

deg q(1)
1 + deg q(1)

2 + . . . + deg q(1)
h1
+ deg r̃h1 − deg r̃h1+1 ≥ k1 + 1 ≥ dk/2e

I Assuming that r̃h1+1 , 0, we have deg qh1+1 = deg r̃h1 − deg r̃h1+1

I Thus, k2 ≤ bk/2c ≤ k − 1

I The algorithm runs in T (k) ≤ T (k1) + T (k2) + O(M(k)) ≤ 2T (bk/2c) + O(M(k))
operations in F ; that is, T (k) = O(M(k) log k) operations in F



Key content for Lecture 5 (recalled)

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm for polynomials by divide and conquer
I The two polynomial operands truncated to a prefix of the highest-degree monomials

determine the prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder



Number of roots

I Let F be a field

I A root of a polynomial f ∈ F [x] is an element ξ ∈ F with f (ξ ) = 0

Theorem 10 (Number of roots)
A nonzero polynomial f ∈ F [x] of degree at most d has at most d distinct roots.

Proof.

Exercise �



Two distinct polynomials mostly disagree

I Let F be a field

I Let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e be a vector of e distinct elements of F

I Associate with f ∈ F [x] the vector of evaluations

f (Ξ) = (f (ξ1), f (ξ2), . . . , f (ξe)) ∈ F e

Lemma 11 (Bounded agreement of low-degree polynomials)

Let f0, f1 ∈ F [x] be distinct polynomials of degree at most d.
Then, f0 (Ξ) and f1 (Ξ) agree in at most d coordinates.

Proof.

The di�erence f0 − f1 , 0 is a polynomial of degree at most d and thus has at most d
distinct roots �



Reconstructibility from partly erroneous data

I Let f ∈ F [x] be a polynomial of degree at most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

Lemma 12 (Unique reconstructibility)

Suppose that the vectors Γ ∈ F e and f (Ξ) disagree in at most (e − d − 1)/2 coordinates.
Then, Γ uniquely identifies f

Proof.

Let f0, f1 ∈ F [x] be two polynomials of degree at most d such that f0 (Ξ) and f1 (Ξ) each
disagree with Γ in at most (e − d − 1)/2 coordinates. In total there are e coordinates, so
f0 (Ξ) and f1 (Ξ) and Γ must thus all agree in at least e − 2(e − d − 1)/2 = d + 1 coordinates.
By Lemma 11 thus f0 = f1. �

(Furthermore, we can, very ine�iciently, recover f from Γ by considering in turn each vector Γ̃ ∈ F e that disagrees with Γ

in at most (e − d − 1)/2 coordinates: for each such Γ̃, interpolate f from f (Ξ) = Γ̃, and stop when f has degree at most d .)



Reed–Solomon codes

I Suppose we want to protect a sequence Φ = (φ0,φ1, . . . ,φd ) ∈ F d+1 of elements of a
field F against errors

I We may represent Φ as a polynomial f = φ0 + φ1x + . . . + φdxd ∈ F [x] of degree at
most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

I Let us use Ψ = f (Ξ) ∈ F e as the encoded representation of Φ

I Suppose that Ψ̂ disagrees with Ψ in at most (e − d − 1)/2 coordinates. Then,
Lemma 12 implies that we can recover Φ from Ψ̂

I That is, Ψ̂ may have up to b(e − d − 1)/2c errors and we can still recover Φ

I Encoding can be done in near-linear-time by fast batch evaluation ...

I ... but how e�iciently can we decode in the presence of errors?



Example: Encoding

I Let us work with e = 8, d = 3, F = Z11, and the evaluation points
Ξ = (ξ1, ξ2, . . . , ξe) = (0, 1, 2, 3, 4, 5, 6, 7) ∈ Ze

11

I Suppose we want to protect the data vector Φ = (5, 3, 1, 9) ∈ Zd+1
11

I We view Φ as the degree-at-most-d polynomial f = 5 + 3x + x2 + 9x3 ∈ Z11[x]

I The encoded representation of Φ is

Ψ = f (Ξ) = (f (ξ1), f (ξ2), . . . , f (ξe)) = (5, 7, 10, 2, 4, 4, 1, 5) ∈ Ze
11



Gao’s (2003) decoder for Reed–Solomon codes

I Let f ∈ F [x] be a polynomial of degree at most d

I Let e ≥ d + 1 and let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consist of distinct elements

I Suppose that the vectors Γ ∈ F e and f (Ξ) disagree in at most (e − d − 1)/2
coordinates. Then, Γ uniquely identifies f (Lemma 12)

I Moreover, given Ξ, Γ, d as input, f can be computed in O(M(e) log e) operations in F
(Gao [10])



Gao’s decoding algorithm

I Let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e consisting of distinct elements, Γ = (γ1,γ2, . . . ,γe) ∈ F e,
and d ∈ Z≥0 with d + 1 ≤ e be given as input

I Gao’s algorithm [10] proceeds as follows:
1. Using a subproduct tree, construct the polynomial g0 =

∏e
i=1 (x − ξi )

2. Interpolate the unique polynomial g1 ∈ F [x] of degree at most e − 1 that satisfies
g1 (ξi ) = γi for all i = 1, 2, . . . , e

3. Apply the extended Euclidean algorithm to g0 and g1 to produce the consecutive
remainders gh, gh+1 with deg gh ≥ D, and deg gh+1 < D for D = (e + d + 1)/2. Let
sh+1, th+1 ∈ F [x] be the associated Bézout coe�icients with gh+1 = sh+1g0 + th+1g1

4. Divide gh+1 by th+1 to obtain the quotient f1 ∈ F [x] and the remainder r ∈ F [x] with
gh+1 = th+1f1 + r and deg r < deg th+1

5. Output f1 as the result of interpolation if both deg f1 ≤ d and r = 0;
otherwise assert decoding failure

I It is immediate that the algorithm runs in O(M(e) log e) operations in F



Example: Decoding I

I Let us work with e = 8, d = 3, F = Z11, and the evaluation points
Ξ = (ξ1, ξ2, . . . , ξe) = (0, 1, 2, 3, 4, 5, 6, 7) ∈ Ze

11

I Suppose we have the vector Γ = (γ1,γ2, . . . ,γe) = (5, 7, 1, 2, 9, 4, 1, 5) ∈ Ze
11

I First, we construct the polynomial

g0 =

e∏
i=1

(x − ξi ) = 9x + 2x3 + 4x4 + 9x5 + 3x6 + 5x7 + x8

I Then, we interpolate the polynomial

g1 = 5 + 7x + 5x2 + 2x3 + 10x4 + 9x5 + 6x6 + 7x7

that satisfies g1 (ξi ) = γi for all i = 1, 2, . . . , e



Example: Decoding II
I Next we apply the extended Euclidean algorithm to g0 and g1 to produce the

consecutive remainders gh, gh+1 with deg gh ≥ D, and deg gh+1 < D for
D = (e + d + 1)/2 = 6 ...

I For convenience, we display the entire output of the extended Euclidean algorithm
(but omi�ing the first Bézout coe�icient sequence):

i qi gi ti
0 9x + 2x3 + 4x4 + 9x5 + 3x6 + 5x7 + x8 0
1 8 + 8x 5 + 7x + 5x2 + 2x3 + 10x4 + 9x5 + 6x6 + 7x7 1
2 7 + 10x 4 + x + 3x2 + x3 + 7x4 + 4x6 3 + 3x
3 3 + 3x 10 + 4x + 7x2 + 9x3 + 6x4 + 5x5 2 + 4x + 3x2

4 6 + 10x 7 + 3x + 3x2 + 8x3 + 6x4 8 + 7x + x2 + 2x3

5 10 + 9x 1 + 4x + 3x2 + 8x3 9 + 3x + 4x2 + 2x4

6 4 + 10x 8 + 9x + 3x2 6 + 6x + 10x3 + 2x4 + 4x5

7 5 + 4x 2 + 9x 7 + 7x + 10x2 + 4x3 + 4x4 + 8x5 + 4x6

8 10 + x 9 4 + 9x + 10x2 + 5x3 + 10x4 + 3x5 + 3x6 + 6x7

9 0 x + 10x3 + 9x4 + x5 + 4x6 + 3x7 + 5x8

I (In a fast implementation we would of course use the divide-and-conquer extended
Euclidean algoritm and would not produce the entire sequence of remainders gi)



Example: Decoding III

I From the extended Euclidean algorithm we obtain that h = 2 with

gh+1 = 10 + 4x + 7x2 + 9x3 + 6x4 + 5x5

th+1 = 2 + 4x + 3x2

I Dividing gh+1 by th+1 we obtain the quotient

f1 = 5 + 3x + x2 + 9x3

and the remainder r = 0

I In particular, the decoding is successful, and the reconstructed data vector is
(5, 3, 1, 9) ∈ Zd+1

11

I Re-encoding the reconstructed vector as appropriate, we can also observe that the
vector Γ has two errors, namely f (ξ3) = 10 , γ3 = 2 and f (ξ5) = 4 , γ5 = 9



Correctness I

I First, suppose that the algorithm does not assert failure

I Then, f1 = gh+1/th+1 has degree at most d

I Since th+1f1 = gh+1 = sh+1g0 + th+1g1, we have sh+1g0 = th+1 (f1 − g1) and hence for all
i = 1, 2, . . . , e we have th+1 (ξi ) = 0 or f1 (ξi ) = g1 (ξi ) = γi

I Since gh+1 is the first remainder with deg gh+1 < D and deg g0 = e, by the structure of
the Bézout coe�icients we have deg th+1 ≤ e − D = (e − d − 1)/2

I Indeed, from the definition of Bézout coe�icients we have
deg sh+1, deg th+1 ≤

∑h
i=1 deg qi = deg g0 − deg gh ≤ e − D since

deg gi + deg qi = deg gi−1 and deg gh ≥ D

I Since th+1 has at most deg th+1 roots, we have f1 (ξi ) , γi for at most (e − d − 1)/2
coordinates i = 1, 2, . . . , e

I Thus, f1 is a valid output for input Ξ, Γ, d



Correctness II

I Next, let f ∈ F [x] be a polynomial of degree at most d , let Ξ = (ξ1, ξ2, . . . , ξe) ∈ F e

consist of distinct elements, and let Γ = (γ1,γ2, . . . ,γe) ∈ F e be a vector that disagrees
with f (Ξ) in at most (e − d − 1)/2 coordinates for d + 1 ≤ e

I By Lemma 12, we know that Γ uniquely determines f

I We show that Gao’s algorithm outputs f1 = f on input Ξ, Γ, d

I Let B = {i ∈ {1, 2, . . . , e} : f (ξi ) , γi } be the set of “bad” coordinates

I That is, B is the set of coordinates where Γ and f (Ξ) disagree

I By assumption we have |B| ≤ (e − d − 1)/2

I To understand the operation of the algorithm, let us split the polynomials g0 and g1

into parts based on B and G = {1, 2, . . . , e} \ B (the “bad” and “good” coordinates)



Correctness III

I Toward this end, let

q =
∏
i∈G

(x − ξi ) ∈ F [x] , r0 =
∏
i∈B

(x − ξi ) ∈ F [x]

I It is immediate that g0 = qr0

I Let r1 ∈ F [x] be the unique polynomial of degree at most (e − d − 1)/2 − 1 with
r1 (ξi ) = q(ξi )

−1 (γi − f (ξi )) , 0 for all i ∈ B

I Thus, we have g1 = qr1 + f

I We have that gcd(r0, r1) = 1 since no root of r0 is a root of r1 and r0 factors into a
product of degree 1 polynomials

I The following lemma will imply that the algorithm outputs f1 = f ; we postpone the
proof and give it as Lemma 13



Correctness IV

I Gao’s Lemma. (Lemma 13 below) Let c, d,D ∈ Z≥0 and let q, r0, r1, f0, f1 ∈ F [x] with
gcd(r0, r1) = 1, deg q ≥ D ≥ c + d + 1, and deg ri ≤ c, deg fi ≤ d for i = 0, 1. Run the
extended Euclidean algorithm on input g0 = qr0 + f0 and g1 = qr1 + f1 to obtain the
remainders gh and gh+1 = sh+1g0 + th+1g1 for sh+1, th+1 ∈ F [x] with deg gh ≥ D and
deg gh+1 < D. Then, sh+1 = −αr1 and th+1 = αr0 for some α ∈ F \ {0}

I Take f0 = 0, f1 = f , c = |B| in the lemma and recall that we have D = (e + d + 1)/2

I Thus, c ≤ (e − d − 1)/2, deg q = |G | = e − |B| ≥ D ≥ c + d + 1, and the lemma applies
to the polynomials g0 = qr0 and g1 = qr1 + f constructed in the algorithm

I Let gh+1, sh+1, th+1 be the output of the lemma (also constructed by the algorithm)

I Because f0 = 0 and f1 = f , we have gh+1 = −αr1qr0 + αr0 (qr1 + f ) = th+1f

I In particular, the algorithm outputs f1 = f = gh+1/th+1 �



Preparation for Gao’s Lemma

I Recall the matrices

R0 =

[
s0 t0

s1 t1

]
=

[
1 0
0 1

]
, Qi =

[
0 1
1 −qi

]
for i = 1, 2, . . . , `

and Ri = QiQi−1 · · ·Q1R0 ∈ F [x]2×2 for i = 0, 1, . . . , ` from the analysis of the
traditional extended Euclidean algorithm in Problem Set 1

I We recall that for all i = 0, 1, . . . , ` we have Ri =

[
si ti

si+1 ti+1

]
and Ri

[
r0

r1

]
=

[
ri

ri+1

]

I Since det Qi = −1 we have det Ri = (−1)i and thus R−1
i = (−1)i

[
ti+1 −ti

−si+1 si

]

I Since r`+1 = 0, we have
[
r0

r1

]
= R−1

`

[
r`
0

]
=

[
(−1)`t`+1r`
(−1)`+1s`+1r`

]

I We conclude that s`+1 = (−1)`+1r1/r` and t`+1 = (−1)`r0/r`



Gao’s Lemma

Lemma 13 (Gao [10])
Let c, d,D ∈ Z≥0 and let q, r0, r1, f0, f1 ∈ F [x] with gcd(r0, r1) = 1, deg q ≥ D ≥ c + d + 1,
and deg ri ≤ c, deg fi ≤ d for i = 0, 1. Run the extended Euclidean algorithm on input
g0 = qr0 + f0 and g1 = qr1 + f1 to obtain the remainders gh and gh+1 = sh+1g0 + th+1g1 for
sh+1, th+1 ∈ F [x] with deg gh ≥ D and deg gh+1 < D. Then, sh+1 = −αr1 and th+1 = αr0 for
some α ∈ F \ {0}



Proof of Gao’s Lemma I

I Let r0, r1, . . . , r`, r`+1 and q1, q2, . . . , q` be the sequences of remainders and quotients
in the extended Euclidean algorithm on input r0, r1

I Since gcd(r0, r1) = 1, we have r` ∈ F \ {0} and r`+1 = 0

I Let si, ti ∈ F [x] for i = 0, 1, . . . , ` + 1 be the associated sequence of Bézout coe�icients

I For all i = 1, 2, . . . , `, we have

ri+1 = ri−1 − qiri , si+1 = si−1 − qisi , ti+1 = ti−1 − qiti (31)

I For all i = 2, 3, . . . , ` + 1 define gi = sig0 + tig1

I From (31) it follows that gi+1 = gi−1 − qigi for all i = 1, 2, . . . , `

I Let us show that deg gi is a monotone decreasing sequence for i = 1, 2, . . . , `



Proof of Gao’s Lemma II

I We have ri = sir0 + tir1 for all i = 1, 2, . . . , ` + 1. Furthermore, deg si ≤ c and deg ti ≤ c
for all i = 1, 2, . . . , ` + 1

I Since g0 = qr0 + f0, g1 = qr1 + f1, and gi = sig0 + tig1, for all i = 0, 1, . . . , ` we have
gi = qri + sif0 + tif1

I Since deg(sif0 + tif1) ≤ c + d and deg q ≥ D ≥ c + d + 1, we have
deg gi = deg q + deg ri ≥ D for all i = 0, 1, . . . , `

I Since deg ri is monotone decreasing for i = 1, 2, . . . , `, we have that the same holds for
deg gi

I Thus, we have that g0, g1, . . . , g` and q1, q2, . . . , q` form a prefix of the sequence of
remainders and quotients in the extended Euclidean algorithm on input g0, g1

I Since deg r` = 0, we have deg g` = deg q ≥ D



Proof of Gao’s Lemma III

I Since s`+1 = (−1)`+1r1/r` and t`+1 = (−1)`r0/r` , we have

g`+1 = s`+1g0 + t`+1g1 = (−1)` (−f0r1 + f1r0)/r`

I Thus, deg g`+1 ≤ c + d < D and it follows that g`+1 = g = sg0 + tg1 with α = (−1)`/r` ,
s = −αr1, and t = αr0 �



Recap of Lecture 5

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm by divide and conquer
I The two operands truncated to a prefix of the highest-degree monomials determine the

prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder



Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic,
online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms



Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability


