
CS-E4500 Advanced Course in Algorithms (5 cr)
Problem Set 5 Spring 2019

1. Let F be a field. Show that a nonzero polynomial f ∈ F [x] of degree at most d has at
most d distinct roots.

Hints: To reach a contradiction, assume that you have at least d + 1 distinct roots.
Recall what we know about Vandermonde matrices from our earlier problem sets.

2. Reed–Solomon codes.

(a) Encoding. Suppose we want to encode the data vector Φ = (7, 6, 5, 4, 3) ∈ F5
11

using the evaluation points Ξ = (0, 1, 2, 3, 4, 5, 6) ∈ F7
11. Find the encoding Ψ =

f(Ξ) ∈ F7
11.

(b) Decoding in the presence of errors. Suppose that Ξ = (1, 2, 3, 4, 5, 6) ∈ F6
13 and

that Γ = (3, 8, 6, 0, 7, 1) ∈ F6
13. Find the unique polynomial f ∈ F13[x] of degree at

most 1 such that f(Ξ) agrees with Γ in all but at most 2 coordinates, or conclude
that no such f exists.

Hints: For part (a), we have f = 7 + 6x + 5x2 + 4x3 + 3x4 ∈ F11[x], d = 4, and e = 7.
For part (b), we have d = 1 and e = 6. One possibility to decode is to try out all
polynomials f of degree at most 1 over F13. How many such polynomials are there?
Another is to use Gao’s algorithm.

3. Coinciding pairs of polynomials and polynomial quotient. Let us study the two pairs
of polynomials

f = 4 + 5x + 3x2 + 2x3 + 9x4 + 8x5 + x6 + 3x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x] ,

g = 5 + 7x + 5x2 + 5x3 + x4 + 7x5 + 4x6 + 5x7 + 8x8 ∈ Z11[x]

and

f̃ = x6 + 3x7 + 9x8 + 5x9 + 7x10 ∈ Z11[x] ,

g̃ = 4x6 + 5x7 + 8x8 ∈ Z11[x] .

Observe that (f, g) ≡4 (f̃ , g̃). Using the classical algorithm for polynomial division
(recall Lecture 1), divide f by g and divide f̃ by g̃. Observe that both divisions produce
the same quotient. Using the structure of the classical algorithm, justify why the two
divisions must produce the same quotient.

Hints: Study carefully how the classical division algorithm obtains the coefficients
of the quotient, one coefficient at a time. Which coefficients of the dividend and the
divisor can have an effect on a particular coefficient of the quotient?

4. Coinciding pairs of polynomials, polynomial quotient, and further coincidence. Let F
be a field and let f, g, f̃ , g̃ ∈ F [x] with deg f ≥ deg g ≥ 0 and deg f̃ ≥ deg g̃ ≥ 0. Suppose
that (f, g) ≡2k (f̃ , g̃) for k ∈ Z with k ≥ deg f − deg g ≥ 0. Define q, r, q̃, r̃ ∈ F [x] by
division with quotients and remainders as follows

f = qg + r, deg r < deg g ,

f̃ = q̃g̃ + r̃, deg r̃ < deg g̃ .



Prove that we have q = q̃ and at least one of the following holds: (g, r) ≡2(k−deg q) (g̃, r̃)
or r = 0 or k − deg q < deg g − deg r.

Hints: Recall that (f, g) ≡2k (f̃ , g̃) holds if and only if f � 2k = f̃ � 2k and g �(2k −
(deg f − deg g)) = g̃ �(2k − (deg f̃ − deg g̃)). Show first that without loss generality
(by multiplying each pair (f, g) and (f̃ , g̃) with xm for a nonnegative integer m as
necessary), we can assume that deg f = deg f̃ . Then conclude that k ≥ deg f−deg g ≥ 0
implies deg g = deg g̃. To show that q = q̃ holds, study the identity

f − f̃ = q(g − g̃) + (q − q̃)g̃ + r − r̃

and seek to control the degrees of the differences f− f̃ , g− g̃, and r− r̃ from above. For
example, f � 2k = f̃ � 2k and deg f = deg f̃ imply that we have deg(f − f̃) < deg f − 2k.
Finally, show that r 6= 0 and k − deg q ≥ deg g − deg r together imply (g, r) ≡2(k−deg q)

(g̃, r̃).

Deadline and submission instructions. This problem set is due no later than Sunday 24
February 2019, 20:00 (8pm), Finnish time. Please submit your solutions as a single PDF
file via e-mail to the lecturer (petteri.kaski(atsymbol)aalto.fi). Please use the precise
title

CS-E4500 Problem Set 5: [your-student-number]

with “[your-student-number]” replaced by your student number. For example, assuming
that my student number is 123456, I would carefully title my e-mail

CS-E4500 Problem Set 5: 123456

and attach to the e-mail a single PDF file containing my solutions. Please note that the
submissions are automatically processed and archived, implying that failure to follow these
precise instructions may result in your submission not being graded.


