References are to equations appearing in the course book.

Problem 5.1

Consider the situation in Fig. 7.2c where the coil lies in the $x-y$ plane and a spatially independent field rotates about the x-axis:

$$
\vec{B}(t)=-B \sin (\omega t) \hat{z}+B \cos (\omega t) \hat{y}
$$

Show that the emf induced in the coil is $L^{2} B \omega \cos (\omega t)$.

Problem 5.2

Consider the signal resulting from two spin isochromats with identical spin densities but different frequencies of precession $\omega_{a}=\omega_{0}+\Delta \omega$ and $\omega_{b}=\omega_{0}-\Delta \omega$. The total signal for this experiment is just the linear addition of the signal from each isochromat. Find the demodulated signal (with zero offset, $\delta \omega=0$) from the two-spin system and compare it to the demodulated signal (with offset) represented by (7.24) or (7.25).

Note: It will be evident in the solution that the signal from two spin isochromats with slightly different frequencies (a difference represented by a small $\Delta \omega$) exhibits beats. See the discussion on beating in Ch. 8 .

[^0]
[^0]: The problems are based on those in Robert W. Brown, Y.-C. Norman Cheng, E. Mark Haacke, Michael R. Thompson, Ramesh Venkatesan. Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2nd Edition, Wiley, 2014.

