Gaussian processes – theory and applications: State space representations of GPs

Arno Solin

Assistant Professor in Machine Learning Department of Computer Science Aalto University

CS-E4070

February 13, 2019

Lecture 6: Outline

Motivation: Temporal models

One-dimensional problems

(the data has a natural ordering)

Spatio-temproal models
 (something developing over time)

O Long / unbounded data

(sensor data streams, daily observations, etc.)

Three views into GPs

Kernel (moment) representation

 $f(t) \sim \mathsf{GP}(\mu(t), \kappa(t, t'))$ GP prior $\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(t_i))$ likelihood

- Let's focus on the GP prior only.
- A temporal Gaussian process (GP) is a random function f(t), such that joint distribution of f(t₁),..., f(t_n) is always Gaussian.
- Mean and covariance functions have the form:

 $\mu(t) = \mathbb{E}[f(t)],$ $\kappa(t, t') = \mathbb{E}[(f(t) - \mu(t))(f(t') - \mu(t'))^{\mathsf{T}}].$

Convenient for model specification, but expanding the kernel to a covariance matrix can be problematic (the notorious O(n³) scaling).

Spectral (Fourier) representation

• The Fourier transform of a function $f(t) : \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{F}[f](\mathsf{i}\,\omega) = \int_{\mathbb{R}} f(t) \, \exp(-\mathsf{i}\,\omega \, t) \, \mathsf{d}t$$

For a stationary GP, the covariance function can be written in terms of the difference between two inputs:

$$\kappa(t,t') \triangleq \kappa(t-t')$$

- Wiener–Khinchin: If f(t) is a stationary Gaussian process with covariance function κ(t) then its spectral density is S(ω) = F[κ].
- Spectral representation of a GP in terms of spectral density function

$$S(\omega) = \mathbb{E}[\tilde{f}(\mathsf{i}\,\omega)\,\tilde{f}^{\mathsf{T}}(-\mathsf{i}\,\omega)]$$

State space (path) representation [1/3]

Path or state space representation as solution to a linear time-invariant (LTI) stochastic differential equation (SDE):

 $d\mathbf{f} = \mathbf{F} \mathbf{f} dt + \mathbf{L} d\boldsymbol{\beta},$

where $\mathbf{f} = (f, df/dt, ...)$ and $\beta(t)$ is a vector of Wiener processes.

Equivalently, but more informally

$$\frac{\mathrm{d}\mathbf{f}(t)}{\mathrm{d}t} = \mathbf{F}\,\mathbf{f}(t) + \mathbf{L}\,\mathbf{w}(t),$$

where $\mathbf{w}(t)$ is white noise.

- ▶ The model now consists of a drift matrix $\mathbf{F} \in \mathbb{R}^{m \times m}$, a diffusion matrix $\mathbf{L} \in \mathbb{R}^{m \times s}$, and the spectral density matrix of the white noise process $\mathbf{Q}_c \in \mathbb{R}^{s \times s}$.
- The scalar-valued GP can be recovered by $f(t) = \mathbf{H} \mathbf{f}(t)$.

State space (path) representation [2/3]

 \blacktriangleright The initial state is given by a stationary state $f(0) \sim N(0, \textbf{P}_{\infty})$ which fulfills

$$\mathbf{F} \, \mathbf{P}_{\infty} + \mathbf{P}_{\infty} \, \mathbf{F}^{\mathsf{T}} + \mathbf{L} \, \mathbf{Q}_{\mathsf{c}} \, \mathbf{L}^{\mathsf{T}} = \mathbf{0}$$

The covariance function at the stationary state can be recovered by

$$\kappa(t, t') = \begin{cases} \mathbf{P}_{\infty} \, \exp((t' - t)\mathbf{F})^{\mathsf{T}}, & t' \ge t\\ \exp((t' - t)\mathbf{F})\mathbf{P}_{\infty} & t' < t \end{cases}$$

where $exp(\cdot)$ denotes the matrix exponential function.

The spectral density function at the stationary state can be recovered by

$$S(\omega) = (\mathbf{F} + \mathrm{i}\,\omega\,\mathbf{I})^{-1}\,\mathbf{L}\,\mathbf{Q}_{\mathrm{c}}\,\mathbf{L}^{\mathrm{T}}\,(\mathbf{F} - \mathrm{i}\,\omega\,\mathbf{I})^{-\mathrm{T}}$$

State space (path) representation [3/3]

- Similarly as the kernel has to be evaluated into covariance matrix for computations, the SDE can be solved for discrete time points {t_i}ⁿ_{i=1}.
- The resulting model is a discrete state space model:

$$\mathbf{f}_i = \mathbf{A}_{i-1} \mathbf{f}_{i-1} + \mathbf{q}_{i-1}, \quad \mathbf{q}_i \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}_i),$$

where $\mathbf{f}_i = \mathbf{f}(t_i)$.

The discrete-time model matrices are given by:

$$\begin{split} \mathbf{A}_{i} &= \exp(\mathbf{F}\,\Delta t_{i}), \\ \mathbf{Q}_{i} &= \int_{0}^{\Delta t_{i}} \exp(\mathbf{F}\,(\Delta t_{i} - \tau))\,\mathbf{L}\,\mathbf{Q}_{c}\,\mathbf{L}^{\mathsf{T}}\,\exp(\mathbf{F}\,(\Delta t_{i} - \tau))^{\mathsf{T}}\,\mathsf{d}\tau, \end{split}$$

where $\Delta t_i = t_{i+1} - t_i$

If the model is stationary, Q_i is given by

$$\mathbf{Q}_i = \mathbf{P}_{\infty} - \mathbf{A}_i \, \mathbf{P}_{\infty} \, \mathbf{A}_i^{\mathsf{T}}$$

Three views into GPs

Example: Exponential covariance function

Exponential covariance function (Ornstein-Uhlenbeck process):

$$\kappa(t,t') = \exp(-\lambda |t-t'|)$$

Spectral density function:

$$\mathcal{S}(\omega) = rac{2}{\lambda + \omega^2/\lambda}$$

Path representation: Stochastic differential equation (SDE)

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = -\lambda f(t) + w(t),$$

or using the notation from before: $F = -\lambda$, L = 1, $Q_c = 2$, H = 1, and $P_{\infty} = 1$.

Applicable GP priors

Applicable GP priors

- The covariance function needs to be Markovian (or approximated as such).
- Covers many common stationary and non-stationary models.
- Sums of kernels: $\kappa(t, t') = \kappa_1(t, t') + \kappa_2(t, t')$
 - Stacking of the state spaces
 - State dimension: $m = m_1 + m_2$
- Product of kernels: $\kappa(t, t') = \kappa_1(t, t') \kappa_2(t, t')$
 - Kronecker sum of the models
 - State dimension: $m = m_1 m_2$

Example: GP regression, $O(n^3)$

Example: GP regression, $O(n^3)$

Consider the GP regression problem with input–output training pairs {(t_i, y_i)}ⁿ_{i=1}:

$$\begin{split} f(t) &\sim \mathsf{GP}(0, \kappa(t, t')), \\ y_i &= f(t_i) + \varepsilon_i, \quad \varepsilon_i \sim \mathsf{N}(0, \sigma_\mathsf{n}^2) \end{split}$$

The posterior mean and variance for an unseen test input t_{*} is given by (see previous lectures):

$$\mathbb{E}[f_*] = \mathbf{k}_* \, (\mathbf{K} + \sigma_n^2 \, \mathbf{I})^{-1} \, \mathbf{y},$$
$$\mathbb{V}[f_*] = \mathbf{k}_* \, (\mathbf{K} + \sigma_n^2 \, \mathbf{I})^{-1} \, \mathbf{k}_*^{\mathsf{T}}$$

Note the inversion of the $n \times n$ matrix.

Example: GP regression, $O(n^3)$

Example: GP regression, O(n)

- The sequential solution (goes under the name 'Kalman filter') considers one data point at a time, hence the linear time-scaling.
- Start from m₀ = 0 and P₀ = P∞ and for each data point iterate the following steps.
- Kalman prediction:

$$\begin{split} \mathbf{m}_{i|i-1} &= \mathbf{A}_{i-1} \, \mathbf{m}_{i-1|i-1}, \\ \mathbf{P}_{i|i-1} &= \mathbf{A}_{i-1} \, \mathbf{P}_{i-1|i-1} \, \mathbf{A}_{i-1}^{\mathsf{T}} + \mathbf{Q}_{i-1}. \end{split}$$

Kalman update:

$$\mathbf{v}_{i} = \mathbf{y}_{i} - \mathbf{H} \mathbf{m}_{i|i-1},$$

$$\mathbf{S}_{i} = \mathbf{H}_{i} \mathbf{P}_{i|i-1} \mathbf{H}^{\mathsf{T}} + \sigma_{\mathsf{n}}^{2},$$

$$\mathbf{K}_{i} = \mathbf{P}_{i|i-1} \mathbf{H}^{\mathsf{T}} \mathbf{S}_{i}^{-1},$$

$$\mathbf{m}_{i|i} = \mathbf{m}_{i|i-1} + \mathbf{K}_{i} \mathbf{v}_{i},$$

$$\mathbf{P}_{i|i} = \mathbf{P}_{i|i-1} - \mathbf{K}_{i} \mathbf{S}_{i} \mathbf{K}_{i}^{\mathsf{T}}.$$

Example: GP regression, O(n)

To condition all time-marginals on all data, run a backward sweep (Rauch-Tung-Striebel smoother):

$$\begin{split} \mathbf{m}_{i+1|i} &= \mathbf{A}_{i} \, \mathbf{m}_{i|i}, \\ \mathbf{P}_{i+1|i} &= \mathbf{A}_{i} \, \mathbf{P}_{i|i} \, \mathbf{A}_{i}^{\mathsf{T}} + \mathbf{Q}_{i}, \\ \mathbf{G}_{i} &= \mathbf{P}_{i|i} \, \mathbf{A}_{i}^{\mathsf{T}} \, \mathbf{P}_{i+1|i}^{-1}, \\ \mathbf{m}_{i|n} &= \mathbf{m}_{i|i} + \mathbf{G}_{i} \left(\mathbf{m}_{i+1|n} - \mathbf{m}_{i+1|i} \right), \\ \mathbf{P}_{i|n} &= \mathbf{P}_{i|i} + \mathbf{G}_{i} \left(\mathbf{P}_{i+1|n} - \mathbf{P}_{i+1|i} \right) \mathbf{G}_{i}^{\mathsf{T}}, \end{split}$$

The marginal mean and variance can be recovered by:

$$\mathbb{E}[f_i] = \mathbf{H} \, \mathbf{m}_{i|n},$$
$$\mathbb{V}[f_i] = \mathbf{H} \, \mathbf{P}_{i|n} \, \mathbf{H}^{\mathsf{T}}$$

The log marginal likelihood can be evaluated as a by-product of the Kalman update:

$$\log p(\mathbf{y}) = -\frac{1}{2} \sum_{i=1}^{n} \log |2\pi \, \mathbf{S}_i| + \mathbf{v}_i^{\mathsf{T}} \, \mathbf{S}_i^{-1} \mathbf{v}_i$$

Example: GP regression, O(n)

- Number of births in the US
- Daily data between 1969–1988 (n = 7305)
- ► GP regression with a prior covariance function:

$$\begin{split} \kappa(t,t') &= \kappa_{\text{Mat.}}^{\nu=5/2}(t,t') + \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') \\ &+ \kappa_{\text{Per.}}^{\text{year}}(t,t') \, \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\text{Per.}}^{\text{week}}(t,t') \, \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') \end{split}$$

 Learn hyperparameters by optimizing the marginal likelihood

1

Explaining changes in number of births in the US

General likelihoods

Non-Gaussian likelihoods

The observation model might not be Gaussian

$$f(t) \sim \mathsf{GP}(0, \kappa(t, t'))$$
$$\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(t_i))$$

There exists a multitude of great methods to tackle general likelihoods with approximations of the form

$$\mathbb{Q}(\mathbf{f} \mid \mathcal{D}) = \mathsf{N}(\mathbf{f} \mid \mathbf{m} + \mathbf{K}\alpha, (\mathbf{K}^{-1} + \mathbf{W})^{-1})$$

Use those methods, but deal with the latent using state space models

Inference

- Laplace approximation (both inner-loop and outer-loop)
- Variational Bayes
- Direct KL minimization
- Assumed denisty filtering / Single-sweep EP (only requires one-pass through the data)
- Can be evaluated in terms of a (Kalman) filter forward and backward pass, or by iterating them

- Commercial aircraft accidents 1919–2017
- Log-Gaussian Cox process (Poisson likelihood) by ADF/EP
- > Daily binning, n = 35,959
- GP prior with a covariance function:

 $\kappa(t,t') = \kappa_{\mathrm{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\mathrm{Per.}}^{\mathrm{year}}(t,t') \kappa_{\mathrm{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\mathrm{Per.}}^{\mathrm{week}}(t,t') \kappa_{\mathrm{Mat.}}^{\nu=3/2}(t,t')$

 Learn hyperparameters by optimizing the marginal likelihood

Spatio-temporal Gaussian processes

Spatio-temporal GPs

 $f(\mathbf{x}) \sim \mathsf{GP}(0, \kappa(\mathbf{x}, \mathbf{x}'))$ $\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(\mathbf{x}_i))$

$$f(\mathbf{r}, t) \sim \mathsf{GP}(0, \kappa(\mathbf{r}, t; \mathbf{r}', t'))$$
$$\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(\mathbf{r}_i, t_i))$$

Spatio-temporal Gaussian processes

GPs under the kernel formalism

$$f(\mathbf{x}, t) \sim \text{GP}(0, k(\mathbf{x}, t; \mathbf{x}', t'))$$
$$y_i = f(\mathbf{x}_i, t_i) + \varepsilon_i$$

Stochastic partial differential equations

$$\frac{\partial \mathbf{f}(\mathbf{x}, t)}{\partial t} = \mathcal{F} \mathbf{f}(\mathbf{x}, t) + \mathcal{L} w(\mathbf{x}, t)$$
$$y_i = \mathcal{H}_i \mathbf{f}(\mathbf{x}, t) + \varepsilon_i$$

Spatio-temporal GP regression

Spatio-temporal GP regression

Spatio-temporal GP priors

Further extensions

What if the data really is infinite?

Adapting the hyperparameters online

https://youtu.be/myCvUT3XGPc

Gaussian processes 🎔 SDEs

Recap

- Gaussian processes have different representations:
 Covariance function
 Spectral density
 State space
- Temporal (single-input) Gaussian processes
 stochastic differential equations (SDEs)
- Conversions between the representations can make model building easier
- (Exact) inference of the latent functions, can be done in O(n) time and memory complexity by Kalman filtering

Bibliography

The examples and methods presented on this lecture are presented in greater detail in the following works:

- Särkkä, S., Solin, A., and Hartikainen, J. (2013). Spatio-temporal learning via infinite-dimensional Bayesian filtering and smoothing. *IEEE Signal Processing Magazine*, 30(4):51–61.
- Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press. Cambridge, UK.
- Solin, A. (2016). Stochastic Differential Equation Methods for Spatio-Temporal Gaussian Process Regression. Doctoral dissertation, Aalto University.
- Solin, A., Hensman, J., and Turner, R.E. (2018). Infinite-horizon Gaussian processes. Advances in Neural Information Processing Systems (NeurIPS), pages 3490–3499. Montréal, Canada.
- Särkkä, S., and Solin, A. (2019). Applied Stochastic Differential Equations. Cambridge University Press. Cambridge, UK.