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Motivation: Temporal models

/ One-dimensional problems
(the data has a natural ordering)

/ Spatio-temproal models
(something developing over time)

/ Long / unbounded data
(sensor data streams, daily observations, etc.)

Explaining changes in number of births in the US
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Three views into GPs
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Kernel (moment) representation

f (t) ∼ GP(µ(t), κ(t , t ′)) GP prior

y | f ∼
∏

i

p(yi | f (ti )) likelihood

I Let’s focus on the GP prior only.
I A temporal Gaussian process (GP) is a random function f (t), such that

joint distribution of f (t1), . . . , f (tn) is always Gaussian.
I Mean and covariance functions have the form:

µ(t) = E[f (t)],

κ(t , t ′) = E[(f (t)− µ(t))(f (t ′)− µ(t ′))T].

I Convenient for model specification, but expanding the kernel to a
covariance matrix can be problematic (the notorious O(n3) scaling).
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Spectral (Fourier) representation

I The Fourier transform of a function f (t) : R→ R is

F [f ](iω) =

∫
R

f (t) exp(−iω t) dt

I For a stationary GP, the covariance function can be written in terms of
the difference between two inputs:

κ(t , t ′) , κ(t − t ′)

I Wiener–Khinchin: If f (t) is a stationary Gaussian process with
covariance function κ(t) then its spectral density is S(ω) = F [κ].

I Spectral representation of a GP in terms of spectral density function

S(ω) = E[̃f (iω) f̃ T(−iω)]



Gaussian processes – theory and applications
Arno Solin

7/37

State space (path) representation [1/3]

I Path or state space representation as solution to a linear time-invariant
(LTI) stochastic differential equation (SDE):

df = F f dt + L dβ,

where f = (f , df/dt , . . .) and β(t) is a vector of Wiener processes.
I Equivalently, but more informally

df(t)
dt

= F f(t) + L w(t),

where w(t) is white noise.
I The model now consists of a drift matrix F ∈ Rm×m, a diffusion matrix

L ∈ Rm×s, and the spectral density matrix of the white noise process
Qc ∈ Rs×s.

I The scalar-valued GP can be recovered by f (t) = H f(t).
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State space (path) representation [2/3]

I The initial state is given by a stationary state f(0) ∼ N(0,P∞) which
fulfills

F P∞ + P∞ FT + L Qc LT = 0

I The covariance function at the stationary state can be recovered by

κ(t , t ′) =

{
P∞ exp((t ′ − t)F)T, t ′ ≥ t
exp((t ′ − t)F) P∞ t ′ < t

where exp(·) denotes the matrix exponential function.
I The spectral density function at the stationary state can be recovered by

S(ω) = (F + iω I)−1 L Qc LT (F− iω I)−T
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State space (path) representation [3/3]
I Similarly as the kernel has to be evaluated into covariance matrix for

computations, the SDE can be solved for discrete time points {ti}n
i=1.

I The resulting model is a discrete state space model:

fi = Ai−1 fi−1 + qi−1, qi ∼ N(0,Qi ),

where fi = f(ti ).
I The discrete-time model matrices are given by:

Ai = exp(F ∆ti ),

Qi =

∫ ∆ti

0
exp(F (∆ti − τ)) L Qc LT exp(F (∆ti − τ))T dτ,

where ∆ti = ti+1 − ti
I If the model is stationary, Qi is given by

Qi = P∞ − Ai P∞ AT
i
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Three views into GPs
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Example: Exponential covariance function

I Exponential covariance function (Ornstein-Uhlenbeck
process):

κ(t , t ′) = exp(−λ |t − t ′|)
I Spectral density function:

S(ω) =
2

λ+ ω2/λ

I Path representation: Stochastic differential equation (SDE)

df (t)
dt

= −λ f (t) + w(t),

or using the notation from before:
F = −λ, L = 1, Qc = 2, H = 1, and P∞ = 1.
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Applicable GP priors
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Applicable GP priors

I The covariance function needs to be Markovian (or
approximated as such).

I Covers many common stationary and non-stationary
models.

I Sums of kernels: κ(t , t ′) = κ1(t , t ′) + κ2(t , t ′)
• Stacking of the state spaces
• State dimension: m = m1 + m2

I Product of kernels: κ(t , t ′) = κ1(t , t ′)κ2(t , t ′)
• Kronecker sum of the models
• State dimension: m = m1 m2
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Example: GP regression, O(n3)
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Example: GP regression, O(n3)

I Consider the GP regression problem with input–output
training pairs {(ti , yi)}ni=1:

f (t) ∼ GP(0, κ(t , t ′)),

yi = f (ti) + εi , εi ∼ N(0, σ2
n)

I The posterior mean and variance for an unseen test input
t∗ is given by (see previous lectures):

E[f∗] = k∗ (K + σ2
n I)−1 y,

V[f∗] = k∗ (K + σ2
n I)−1 kT

∗

I Note the inversion of the n × n matrix.
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Example: GP regression, O(n3)
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Example: GP regression, O(n)
I The sequential solution (goes under the name ‘Kalman filter’) considers

one data point at a time, hence the linear time-scaling.
I Start from m0 = 0 and P0 = P∞ and for each data point iterate the

following steps.
I Kalman prediction:

mi|i−1 = Ai−1 mi−1|i−1,

Pi|i−1 = Ai−1 Pi−1|i−1 AT
i−1 + Qi−1.

I Kalman update:

vi = yi − H mi|i−1,

Si = Hi Pi|i−1 HT + σ2
n ,

Ki = Pi|i−1 HT S−1
i ,

mi|i = mi|i−1 + Ki vi ,

Pi|i = Pi|i−1 − Ki Si KT
i .
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Example: GP regression, O(n)
I To condition all time-marginals on all data, run a backward sweep

(Rauch–Tung–Striebel smoother):

mi+1|i = Ai mi|i ,

Pi+1|i = Ai Pi|i AT
i + Qi ,

Gi = Pi|i AT
i P−1

i+1|i ,

mi|n = mi|i + Gi (mi+1|n −mi+1|i ),

Pi|n = Pi|i + Gi (Pi+1|n − Pi+1|i ) GT
i ,

I The marginal mean and variance can be recovered by:

E[fi ] = H mi|n,

V[fi ] = H Pi|n HT

I The log marginal likelihood can be evaluated as a by-product of the
Kalman update:

log p(y) = −1
2

n∑
i=1

log |2π Si |+ vT
i S−1

i vi
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Example: GP regression, O(n)



Gaussian processes – theory and applications
Arno Solin

20/37

Example

I Number of births in the US
I Daily data between 1969–1988 (n = 7305)
I GP regression with a prior covariance function:

κ(t , t ′) = κ
ν=5/2
Mat. (t , t ′) + κ

ν=3/2
Mat. (t , t ′)

+ κ
year
Per. (t , t

′)κ
ν=3/2
Mat. (t , t ′) + κweek

Per. (t , t ′)κν=3/2
Mat. (t , t ′)

I Learn hyperparameters by optimizing the marginal
likelihood

Explaining changes in number of births in the US
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General likelihoods
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Non-Gaussian likelihoods

I The observation model might not be Gaussian

f (t) ∼ GP(0, κ(t , t ′))

y | f ∼
∏

i

p(yi | f (ti ))

I There exists a multitude of great methods to tackle general likelihoods
with approximations of the form

Q(f | D) = N(f | m + Kα, (K−1 + W)−1)

I Use those methods, but deal with the latent using state space models
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Inference

I Laplace approximation
(both inner-loop and outer-loop)

I Variational Bayes

I Direct KL minimization

I Assumed denisty filtering / Single-sweep EP
(only requires one-pass through the data)

I Can be evaluated in terms of a (Kalman) filter forward and
backward pass, or by iterating them
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Example

I Commercial aircraft accidents 1919–2017
I Log-Gaussian Cox process (Poisson likelihood) by ADF/EP
I Daily binning, n = 35,959
I GP prior with a covariance function:

κ(t , t ′) = κ
ν=3/2
Mat. (t , t ′) + κyear

Per. (t , t ′)κν=3/2
Mat. (t , t ′) + κweek

Per. (t , t ′)κν=3/2
Mat. (t , t ′)

I Learn hyperparameters by optimizing the marginal
likelihood
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Spatio-temporal
Gaussian processes
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Spatio-temporal GPs

f (x) ∼ GP(0, κ(x,x′))

y | f ∼
∏

i

p(yi | f (xi))

f (r, t) ∼ GP(0, κ(r, t ; r′, t ′))

y | f ∼
∏

i

p(yi | f (ri , ti))
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Spatio-temporal Gaussian processes

GPs under the kernel formalism

f (x, t) ∼ GP(0, k(x, t ; x′, t ′))

yi = f (xi , ti ) + εi

Stochastic partial differential equations

∂f(x, t)
∂t

= F f(x, t) + Lw(x, t)

yi = Hi f(x, t) + εi

Location
(x) Ti

m
e
(t
)

f
(x

,
t)

Covariance
k(x, t; x′, t′)

Location
(x) Ti

m
e
(t
)

f
(x

,
t)

The state at time t
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Spatio-temporal GP regression
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Spatio-temporal GP regression
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Spatio-temporal GP priors
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Further extensions
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What if the data really is infinite?
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Adapting the hyperparameters online

https://youtu.be/myCvUT3XGPc

https://youtu.be/myCvUT3XGPc
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Recap
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Gaussian processes ♥ SDEs

GPs under the kernel formalism

f (t) ∼ GP(0, κ(t , t ′))

y | f ∼
∏

i

p(yi | f (ti ))

Stochastic differential equations

df(t) = F f(t) + L dβ(t)

yi ∼ p(yi | hTf(ti ))

Flexible model
specification

Inference /
First-principles
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Recap

I Gaussian processes have different representations:
• Covariance function • Spectral density • State space

I Temporal (single-input) Gaussian processes
⇐⇒ stochastic differential equations (SDEs)

I Conversions between the representations can
make model building easier

I (Exact) inference of the latent functions, can be done in
O(n) time and memory complexity by Kalman filtering
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