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Lecture 4 overview1

Bayesian Linear Parameter Models (LPMs)

Posterior computation (given fixed hyperparameters)
Determining hyperparameters
Example using radial basis functions

Logistic regression for classification

Laplace approximation

Barber, Ch. 18

1These slides build upon the book Bayesian Reasoning and Machine Learning and
the associated teaching materials. The book and the demos can be downloaded from
www.cs.ucl.ac.uk/staff/D.Barber/brml.
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Example: genetic association studies

Analysis of ∼ 1, 000, 000 genetic polymorphisms in ∼ 50, 000 genomic
regions (Peltola et al., 2012, PLoS ONE ).

Spike-and-slab prior on regression weights
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Regression with Gaussian noise

Data D = {(xi , yi ), i = 1, . . . ,N}
xi : the input
yi : the output

Model:
y = f (w, x)︸ ︷︷ ︸

clean output

+ η︸︷︷︸
noise

, η ∼ N(0, β−1)

In the simplest case

f (w, x)= wT x
= w1x1 + . . .+ wDxD

The parameters wi are also called the weights
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Bayesian linear parameter models

A prior distribution p(w|α) is placed on the weights w.
The posterior distribution p(w|D, Γ) can be computed, and reflects
the uncertainty of the parameters.
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Prior distribution

A Gaussian prior distribution may placed on w:

p(w|α) = N(w|0, α−1I)

=
D

∏
i=1
N(wi |0, α−1) =

( α

2π

) D
2
e−

α
2 ∑i w

2
i

Posterior

log p(w|Γ,D) = −β

2

N

∑
i=1

[
yi −wT xi

]2
− α

2
wTw+ const
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Hyperparameters

α: precision of the regression weights

determines the amount of regularization
large precision → small variance → weights are close to zero

β: precision of the noise

Γ = {α, β} are called the hyperparameters (in the course book...)
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Posterior distribution

Posterior distribution is obtained by completing the square (left as an
exercise):

p(w|Γ,D) = N(w|m, S)
where

S =

(
αI + β

N

∑
i=1
xixi T

)−1
, m = βS

N

∑
i=1
yixi

Mean prediction

ỹ =
∫
wT x×p(w|Γ,D)dw = mT x
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Example, impact of hyperparameters (1/3)

Setup: simulate y = wTtruex+ ε, where ε ∼ N(0, β−1) and β = 1

The goal is to investigate how hyperparameter α affects the posterior
distribution of the parameters w
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Example, impact of hyperparameters (2/3)

Too large α,Var(y − ỹ) = 1.54 (Original Var(y) = 1.75)

Too small α, Var(y − ỹ) = 2.48
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Example, impact of hyperparameters (3/3)

About good α, Var(y − ỹ) = 1.46
A compromise between bias and variance

Other sparse priors (e.g., Laplace, horse-shoe, spike-and-slab):
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Non-linear transformation of the inputs

Select f (w, x) = wT φ(x)
φ(x) are the basis functions
Example

weights drawn from N(w|0, α−1I); β is the noise precision.
w = (− 0.7, 1.1,−0.8,−1.1,−0.8,−0.6,−0.6, 0.2,−0.2, 0.6,−0.9)
for basis functions ordered from left to right (left panel)
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Importance of learning hyperparameters

(a): raw data and 15 radial basis functions
φi (x) = exp

(
−0.5(x − ci )2/λ2

)
with λ = 0.032 and ci spread

evenly over the input space

(b): predictions with β = 100 and α = 1 (severe overfitting)

(c): predictions with ML-II fitted hyperparameter values
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Determining hyperparameters

The hyperparameter posterior distribution is

p(Γ|D) ∝ p(D|Γ)p(Γ)

If p(Γ) ≈ const this is equivalent to

Γ∗ = argmax
Γ
p(D|Γ),

where the marginal likelihood

p(D|Γ) =
∫
p(D|Γ,w)p(w|Γ)dw

Selecting hyperparameters that maximize the marginal likelihood is
called ML-II approach (in the book...)
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ML vs. ML-II

In maximum likelihood, we select parameter values w that maximize
the log-likelihood

log p(y |w, x) =
N

∑
i=1
logN(yi |wT φ(xi ), β−1)

ŵ = argmax
w
{log p(y |w, x)} (does not depend on β)

In ML-II, we select hyperparameter values α and β that maximize the
(log-)marginal likelihood (parameters w integrated out)

p(y |Γ, x) =
∫
p(y |Γ,w, x)p(w|Γ)dw

Γ∗ = argmax
Γ
{log p(y |Γ, x)}
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Hyperparameter optimization in practice

EM-algorithm

using the gradient

compute log-marginal likelihood over a grid of values and choose the
best value

use some standard optimization routine (e.g. fminunc)
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Alternative to ML-II: validation data (1/2)*

Set the hyperparameters Γ to the value that minimizes the prediction
error in the validation data

{Xval ,Yval} =
{
(xvalj , y

val
j ), j = 1, . . . ,M

}
.

Mean squared error (MSE)

MSE(Γ) =
1
M

M

∑
j=1
(y valj − ỹ valj )2,

where

ỹ valj = mT φ(xvalj ), m =E (w|Γ,Xtrain,Ytrain)
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Alternative to ML-II: validation data (2/2)*

Or by maximizing the validation data marginal likelihood

p(Yval |Γ,Dtrain,Xval ) =
∫
w
p(Yval |w,Xval , Γ)p(w|Γ,Xtrain,Ytrain)dw

Possible extension: cross-validation
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Learning radial basis function width (1/2)

A set of 10 evenly spaced radial basis functions is used
φi (x) = exp

(
−0.5(x − ci )2/λ2

)
Γ = (α, β) optimized for different width parameters λ
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Learning radial basis function width (2/2)

The log marginal likelihood

log p(D|λ, α∗(λ), β∗(λ))

having optimized α and β using ML-II. These values depend on λ.

The best model corresponds to λ = 0.37.
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Linear parameter models for classification

Binary classification problem: D ={(xi , ci ), i = 1, . . . ,N}, where the
output c ∈ {0, 1}.
Let p denote the probability that p(c = 1|x)
Logistic (linear) regression

log
p

1− p = w
T x

Or, equivalently
p(c = 1|x) = σ(wT x),

where σ(·) is the so-called logistic sigmoid

σ(x) =
ex

1+ ex
=

1
1+ e−x
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Logistic regression for classification

When used for classification, the decision boundary is defined by
p(c = 1|x) = p(c = 0|x) = 0.5. This corresponds to a hyperplane

wT x = 0.

Classification rule

wT x > 0→ c = 1

wT x < 0→ c = 0

Note: x can include a constant term, x = (1, x1, . . . , xD ), such that
the intercept is automatically included

wT x = w0 + w1x1 + . . .+ wDxD
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Logistic regression, interpretation of parameters*

log
(

p
1− p

)
= w0 + w1x

⇔ p
1− p = exp(w0 + w1x)

Interpretation: when x increases by one unit, the odds p
1−p of

belonging in class 1 increases by a factor equal to ew1 .

If x is binary itself, x ∈ {0, 1}, then ew1 is the odds ratio between
classes x = 1 and x = 0.

a common term in medical literature, e.g., X=’smoking’, C=’cancer’.
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Prior for logistic regression

Gaussian prior

p(w|α) = ND (w|0,α−1I) = α
D
2 (2π)−

D
2 e−

α
2w

Tw

where α is the precision.

Given D ={(xi , ci ), i = 1, . . . ,N} the posterior equals

p(w|α,D) = p(D|w, α)p(w|α)
p(D|α) =

1
p(D|α)p(w|α)

N

∏
i=1
p(ci |xi ,w)

(not of standard form, Laplace approximation is feasible to compute).
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Laplace approximation

Gaussian approximation at the mode

modified from Bishop, Fig. 4.14
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Laplace approximation to the posterior

In general,

p(w|α,D) ∝ exp(−E (w)), E (w) = − log p(w|α,D).

For logistic regression,

E (w) =
α

2
wTw−

N

∑
i=1
log σ(wT hi ), hi ≡ (2ci − 1)xi .

1 approximate E (w) by a quadratic function Ẽ (w) around the
minimum w

Ẽ (w) = E (w) +
1
2
(w−w)THw(w−w)

2 obtain a Gaussian approximation q(w|α,D) ∝ exp(−Ẽ (w)) to
p(w|α,D)

Pekka Marttinen (Aalto University) Advanced probabilistic methods February, 2019 26 / 31



Laplace approximation in practice

In practice:

Find the minimum w of E (w) analytically (root of the derivative), or
by numerical optimization, e.g. Newton’s method:

wnew = w−H−1w ∇E

When converged, compute the Hessian Hw of E (w) at w.
The posterior approximation is

q(w|α,D) = N(w|m,S), m =w, S = H−1w .

Reminder: if f ≡ f (x1, . . . , xn)

Hf =


∂2f
∂x 21

· · · ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x 2n


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Example

Bayesian logistic regression with RBF functions
φi (x) = exp(−λ(x−mi )2).
mi placed on a subset of training points, λ set to 2
Hyperparameter α optimized as with the Bayesian linear regression by
maximizing the approximated marginal likelihood (→ α = 0.45).
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Curse of dimensionality

In the 1-dimensional example, we used 10 radial basis functions

To cover 2D region with same resolution, we would need 102 basis
functions

Curse of dimensionality: the number of basis functions required
scales exponentially w.r.t. the dimension
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General comments on usage

Curse of dimensionality limits the use of RBFs to low-dimensional
cases

Possible remedy: place basis functions on observations
Alternatives: kernel methods, Gaussian processes

With sparse priors, standard linear models can be used with very large
D

y = ∑Di=1 wi xi + ε
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Important points

By placing a Gaussian prior on the parameters of linear regression, the
posterior is also Gaussian.

In classification, no closed form solution is available for logistic
regression and approximations, e.g., the Laplace approximation, are
needed.

Hyperparameters can be set by maximizing the marginal likelihood
(either exact or approximate).
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