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Lecture 4 overview!

@ Bayesian Linear Parameter Models (LPMs)

o Posterior computation (given fixed hyperparameters)
e Determining hyperparameters
o Example using radial basis functions

@ Logistic regression for classification
o Laplace approximation

@ Barber, Ch. 18

IThese slides build upon the book Bayesian Reasoning and Machine Learning and
the associated teaching materials. The book and the demos can be downloaded from
www.cs.ucl.ac.uk/staff/D.Barber/brml.
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Example: genetic association studies

@ Analysis of ~ 1,000, 000 genetic polymorphisms in ~ 50,000 genomic
regions (Peltola et al., 2012, PLoS ONE).

@ Spike-and-slab prior on regression weights
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Regression with Gaussian noise

e Data D :{(X,',y;), = 1,...,N}
e X;: the input
e y;: the output
o Model:
y= flwx) + 7, 5~N0OB)
clean output noise
@ In the simplest case

f(w,x)=w'x

= wixy + ...+ wpxp

The parameters w; are also called the weights
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Bayesian linear parameter models

@ A prior distribution p(w|a) is placed on the weights w.

@ The posterior distribution p(w|D,T) can be computed, and reflects
the uncertainty of the parameters.
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Prior distribution

@ A Gaussian prior distribution may placed on w:

p(wla) = N(w|0,a711)

~[Ivolo.a™) = ()

D
2

2
—5 X w;

@ Posterior

log p(w|T', D)

I\JRI.

N 2 ® T
Z[ —w x,] — oW W + const
i=1
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Hyperparameters

(i —s

A.'

@ «: precision of the regression weights

o determines the amount of regularization
o large precision — small variance — weights are close to zero

@ [3: precision of the noise

o I' = {a, B} are called the hyperparameters (in the course book...)
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Posterior distribution

@ Posterior distribution is obtained by completing the square (left as an

exercise):
p(w|l, D) = N(w|m, 5)

where
N -1 N
S={al+BY xixi"| | m=BS) yx
i=1 i=1

@ Mean prediction

y = /waXp(w]F,D)dw =m'x
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Example, impact of hyperparameters (1/3)

o Setup: simulate y = w/ .x + €, where e ~ N(0,871) and B =1

@ The goal is to investigate how hyperparameter a affects the posterior
distribution of the parameters w
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Example, impact of hyperparameters (2/3)

@ Too large ,Var(y —y) = 1.54 (Original Var(y) = 1.75)
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Example, impact of hyperparameters (3/3)

e About good &, Var(y —y) = 1.46
@ A compromise between bias and variance

4 Posterior weights, alpha=20, beta=1 Test set predictions
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@ Other sparse priors (e.g., Laplace, horse-shoe, spike-and-slab):
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Non-linear transformation of the inputs

o Select f(w,x) = w’¢(x)
e ¢(x) are the basis functions
@ Example

o weights drawn from N(w|0,x~11); B is the noise precision.
ew=(—-0711-08,—-1.1,-0.8,—0.6, —0.6,0.2, —0.2,0.6, —0.9)
for basis functions ordered from left to right (left panel)

alpha=1, beta=30 alpha=10, beta=3
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Importance of learning hyperparameters

e (a): raw data and 15 radial basis functions
¢i(x) = exp (—0.5(x — ¢;)?/A?) with A = 0.03% and ¢; spread
evenly over the input space

o (b): predictions with B =100 and & = 1 (severe overfitting)

@ (c): predictions with ML-II fitted hyperparameter values

Xy

M * ﬁ«’A’Vn\,\ /J\L ;,,/.\\
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Determining hyperparameters

@ The hyperparameter posterior distribution is
p(T|D) o< p(D|T)p(T)
e If p(T') = const this is equivalent to
I =arg max p(D|T),
where the marginal likelihood
p(DIT) = [ p(DIT.w)p(w|T)dw

@ Selecting hyperparameters that maximize the marginal likelihood is
called ML-I1 approach (in the book...)
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ML vs. ML-II

@ In maximum likelihood, we select parameter values w that maximize
the log-likelihood

N
log p(y|w,x) = ) log N(yilw"¢(x;), p*)
i=1
w = arg max{log p(y|w,x)} (does not depend on B)
w

@ In ML-II, we select hyperparameter values « and 8 that maximize the
(log-)marginal likelihood (parameters w integrated out)

pUIT %) = [ p(yIT,w, x)p(wir)dw

I = argmax{log p(y|T', x) }
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Hyperparameter optimization in practice

EM-algorithm

using the gradient

compute log-marginal likelihood over a grid of values and choose the
best value

@ use some standard optimization routine (e.g. fminunc)
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Alternative to ML-II: validation data (1/2)*

@ Set the hyperparameters I' to the value that minimizes the prediction
error in the validation data

{Xvat, Yvar } = {( val ijal),j = 1,...,M}.

@ Mean squared error (MSE)
M
MSE Z val ~val ,

where

v =mTp(x),  m=E(W|T, Xerain, Verain)
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Alternative to ML-II: validation data (2/2)*

@ Or by maximizing the validation data marginal likelihood

p(yvallrvptrainv‘)(va ) = / P(yval|W:Xval:r)p(W|r: Xtrainvytrain)dw

@ Possible extension: cross-validation
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Learning radial basis function width (1/2)

@ A set of 10 evenly spaced radial basis functions is used
¢i(x) = exp (—0.5(x — ¢;)2/A?)
o I' = («, B) optimized for different width parameters A
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Learning radial basis function width (2/2)

x10

log marginal likelihood

1 0 01 02 03 04 05 06 07
lambda

@ The log marginal likelihood

log p(D|A, a™(A), B*(A))

having optimized « and B using ML-II. These values depend on A.
@ The best model corresponds to A = 0.37.
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Linear parameter models for classification

Binary classification problem: D ={(x;, ¢;),i =1,..., N}, where the
output ¢ € {0,1}.
Let p denote the probability that p(c = 1|x)

Logistic (linear) regression

log P _ w’x
1-p
Or, equivalently
p(c=1[x) = o(w'x),
where o (+) is the so-called logistic sigmoid

e* 1

U(X): 1+ ex - 1+ e X
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Logistic regression for classification

@ When used for classification, the decision boundary is defined by
p(c = 1|x) = p(c = 0|x) = 0.5. This corresponds to a hyperplane

w’'x=0.
Classification rule

wix>0—-c=1
wix<0—c=0
@ Note: x can include a constant term, x = (1,x1, . ,XD), such that
the intercept is automatically included

wa:Wo+W1x1+...+WDxD
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Logistic regression, interpretation of parameters*

log <p> = wp + wix
1-p

R exp(wp + wix)

1-p

@ Interpretation: when x increases by one unit, the odds ﬁ of
belonging in class 1 increases by a factor equal to e".

o If x is binary itself, x € {0, 1}, then e" is the odds ratio between
classes x =1 and x = 0.

e a common term in medical literature, e.g., X="smoking’, C="cancer’.
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Prior for logistic regression

o Gaussian prior
p(wla) = Np(w|0,a7 1) = a

where « is the precision.
e Given D ={(x/,¢;),i =1,..., N} the posterior equals

_pOwplwl) 1

(not of standard form, Laplace approximation is feasible to compute).
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Laplace approximation

@ Gaussian approximation at the mode
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modified from Bishop, Fig. 4.14
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Laplace approximation to the posterior

@ In general,
p(wla, D) o exp(~E(w)), E(w) = — log p(wla, D).
o For logistic regression,

N
E(w) = gWTW -) logor(wh;), h; = (2¢ —1)x,.
i=1

© approximate E(w) by a quadratic function E(w) around the
minimum w

E(w) = E(w) + %(W—W)THW(W—W)

@ obtain a Gaussian approximation g(w|a, D) o exp(—E(w)) to
p(wla, D)
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Laplace approximation in practice

@ In practice:

o Find the minimum W of E(w) analytically (root of the derivative), or
by numerical optimization, e.g. Newton's method:

w'W —w —H,VE

o When converged, compute the Hessian Hy of E(w) at w.
e The posterior approximation is

g(wla, D) = N(wjm,S), m=w, S= H%l.

e Reminder: if f = f(x1,...,xp)

%f 9%f
ax12 0x10xp
Hf =
9%f 9%f
0X,0x1 ox2
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Example

@ Bayesian logistic regression with RBF functions
$1(x) = exp(—A(x— m;)2).

@ m; placed on a subset of training points, A set to 2

@ Hyperparameter « optimized as with the Bayesian linear regression by
maximizing the approximated marginal likelihood (— a = 0.45).

6

25
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Curse of dimensionality

@ In the 1-dimensional example, we used 10 radial basis functions
@ To cover 2D region with same resolution, we would need 102 basis
functions

@ Curse of dimensionality: the number of basis functions required
scales exponentially w.r.t. the dimension
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General comments on usage

@ Curse of dimensionality limits the use of RBFs to low-dimensional
cases

o Possible remedy: place basis functions on observations
o Alternatives: kernel methods, Gaussian processes

@ With sparse priors, standard linear models can be used with very large
D

oy=YP wx +e
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Important points

@ By placing a Gaussian prior on the parameters of linear regression, the
posterior is also Gaussian.

@ In classification, no closed form solution is available for logistic
regression and approximations, e.g., the Laplace approximation, are
needed.

@ Hyperparameters can be set by maximizing the marginal likelihood
(either exact or approximate).

Pekka Marttinen (Aalto University) Advanced probabilistic methods February, 2019 31 /31



