Lecture 6: Particle Filtering

Simo Särkkä

February 13, 2019

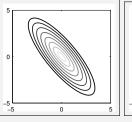
Learning Outcomes

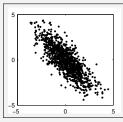
- Summary of the Last Lecture
- Principle of Particle Filter
- Monte Carlo Integration and Importance Sampling
- Sequential Importance Sampling and Resampling
- Particle Filter Properties
- 6 Summary and Demonstration

Summary of the Last Lecture

- Unscented transform (UT) approximates transformations of Gaussian variables by propagating sigma points through the non-linearity.
- In UT the mean and covariance are approximated as linear combination of the sigma points.
- The unscented Kalman filter uses unscented transform for computing the approximate means and covariance in non-linear filtering problems.
- A non-linear transformation can also be approximated with Gaussian moment matching.
- Gaussian filter is based on matching the moments with numerical integration ⇒ many kinds of Kalman filters.
- Gauss-Hermite Kalman filter (GHKF) and Cubature Kalman filter (CKF) are examples of them.

Particle Filtering: Principle





- Particle filter uses Monte Carlo approximation instead of Gaussian approximation of the filtering distribution.
- More specifically, particle filter uses importance sampling for propagating the Monte Carlo samples in time.
- Animation: Kalman vs. Particle Filtering:
 - ► Kalman filter animation
 - ▶ Particle filter animation

Particle Filtering: Principle (cont.)

• Mathematically, particle filter forms a weighted sample (or particle) presentation $(\mathbf{x}^{(i)}, w^{(i)})$ of the filtering distribution:

$$p(\mathbf{x}) \approx \sum_{i=1}^{N} w^{(i)} \, \delta(\mathbf{x} - \mathbf{x}^{(i)}).$$

E.g., mean and covariance can then be approximated as

$$\begin{aligned} \mathsf{E}[\mathbf{x}] &\approx \sum_{i=1}^{N} w^{(i)} \, \mathbf{x}^{(i)} = \mathbf{m}_{PF} \\ \mathsf{Cov}[\mathbf{x}] &\approx \sum_{i=1}^{N} w^{(i)} \, (\mathbf{x}^{(i)} - \mathbf{m}_{PF}) \, (\mathbf{x}^{(i)} - \mathbf{m}_{PF})^{\top} \end{aligned}$$

- Other statistics can be approximated analogously.
- Particle filter samples from the Bayesian filtering equations with sequential importance sampling.

Monte Carlo Integration

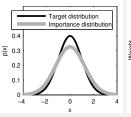
 In Bayesian inference we often want to compute posterior expectations of the form

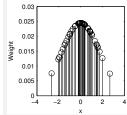
$$\mathsf{E}[\mathbf{g}(\mathbf{x})\,|\,\mathbf{y}_{1:T}] = \int \mathbf{g}(\mathbf{x})\; \rho(\mathbf{x}\,|\,\mathbf{y}_{1:T})\;\mathrm{d}\mathbf{x}$$

- For example, posterior mean and posterior covariance are such expectations.
- Monte Carlo: draw N independent random samples from $\mathbf{x}^{(i)} \sim p(\mathbf{x} \mid \mathbf{y}_{1:T})$ and estimate the expectation as

$$\mathsf{E}[\mathbf{g}(\mathbf{x})\,|\,\mathbf{y}_{1:T}] \approx \frac{1}{N} \sum_{i=1}^{N} \mathbf{g}(\mathbf{x}^{(i)}).$$

Importance Sampling: Basic Version [1/2]





- In practice, we rarely can directly draw samples from the distribution p(x | y_{1:T}).
- In importance sampling (IS), we draw samples from an importance distribution $\mathbf{x}^{(i)} \sim \pi(\mathbf{x} \mid \mathbf{y}_{1:T})$ and compute weights $\tilde{w}^{(i)}$ such that

$$\mathsf{E}[\mathbf{g}(\mathbf{x}) \,|\, \mathbf{y}_{1:T}] \approx \sum_{i=1}^N \tilde{w}^{(i)} \,\mathbf{g}(\mathbf{x}^{(i)})$$

Importance Sampling: Basic Version [2/2]

Importance sampling is based on the identity

$$E[\mathbf{g}(\mathbf{x}) | \mathbf{y}_{1:T}] = \int \mathbf{g}(\mathbf{x}) \, \rho(\mathbf{x} | \mathbf{y}_{1:T}) \, d\mathbf{x}$$

$$= \int \left[\mathbf{g}(\mathbf{x}) \, \frac{\rho(\mathbf{x} | \mathbf{y}_{1:T})}{\pi(\mathbf{x} | \mathbf{y}_{1:T})} \right] \, \pi(\mathbf{x} | \mathbf{y}_{1:T}) \, d\mathbf{x}$$

• Thus we can form a Monte Carlo approximation as follows:

$$\mathsf{E}[\mathbf{g}(\mathbf{x}) \,|\, \mathbf{y}_{1:T}] \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\rho(\mathbf{x}^{(i)} \,|\, \mathbf{y}_{1:T})}{\pi(\mathbf{x}^{(i)} \,|\, \mathbf{y}_{1:T})} \,\mathbf{g}(\mathbf{x}^{(i)})$$

That is, the importance weights can be defined as

$$\tilde{w}^{(i)} = \frac{1}{N} \frac{\rho(\mathbf{x}^{(i)} | \mathbf{y}_{1:T})}{\pi(\mathbf{x}^{(i)} | \mathbf{y}_{1:T})}$$

Importance Sampling: Weight Normalization

- The problem is that we need to evaluate the normalization constant of $p(\mathbf{x}^{(i)} | \mathbf{y}_{1:T})$ often not possible.
- However, it turns out that we get a valid algorithm if we define unnormalized importance weights as

$$w^{*(i)} = \frac{\rho(\mathbf{y}_{1:T} \mid \mathbf{x}^{(i)}) \, \rho(\mathbf{x}^{(i)})}{\pi(\mathbf{x}^{(i)} \mid \mathbf{y}_{1:T})}$$

and then normalize them:

$$\mathbf{w}^{(i)} = \frac{\mathbf{w}^{*(i)}}{\sum_{j} \mathbf{w}^{*(j)}}$$

 The (weight-normalized) importance sampling approximation is then

$$\mathsf{E}[\mathbf{g}(\mathbf{x})\,|\,\mathbf{y}_{1:T}] \approx \sum_{i=1}^N w^{(i)}\,\mathbf{g}(\mathbf{x}^{(i)})$$

Importance Sampling: Algorithm

Importance Sampling

• Draw *N* samples from the importance distribution:

$$\mathbf{x}^{(i)} \sim \pi(\mathbf{x} \mid \mathbf{y}_{1:T}), \qquad i = 1, \dots, N.$$

Compute the unnormalized weights by

$$w^{*(i)} = \frac{p(\mathbf{y}_{1:T} \mid \mathbf{x}^{(i)}) p(\mathbf{x}^{(i)})}{\pi(\mathbf{x}^{(i)} \mid \mathbf{y}_{1:T})},$$

and the normalized weights by

$$w^{(i)} = \frac{w^{*(i)}}{\sum_{j=1}^{N} w^{*(j)}}.$$

Importance Sampling: Properties

• The approximation to the posterior expectation of $\mathbf{g}(\mathbf{x})$ is

$$\mathsf{E}[\mathbf{g}(\mathbf{x}) \,|\, \mathbf{y}_{1:T}] \approx \sum_{i=1}^N w^{(i)} \,\mathbf{g}(\mathbf{x}^{(i)}).$$

 The posterior probability density approximation can be formally written as

$$p(\mathbf{x} \mid \mathbf{y}_{1:T}) \approx \sum_{i=1}^{N} w^{(i)} \delta(\mathbf{x} - \mathbf{x}^{(i)}),$$

where $\delta(\cdot)$ is the Dirac delta function.

 The efficiency depends on the choice of the importance distribution.

Sequential Importance Sampling: Idea

 Sequential Importance Sampling (SIS) is concerned with models

$$\mathbf{x}_k \sim p(\mathbf{x}_k \mid \mathbf{x}_{k-1})$$

 $\mathbf{y}_k \sim p(\mathbf{y}_k \mid \mathbf{x}_k)$

• The SIS algorithm uses a weighted set of particles $\{(w_k^{(i)}, \mathbf{x}_k^{(i)}) : i = 1, ..., N\}$ such that

$$\mathsf{E}[\mathbf{g}(\mathbf{x}_k) \,|\, \mathbf{y}_{1:k}] \approx \sum_{i=1}^N w_k^{(i)} \mathbf{g}(\mathbf{x}_k^{(i)}).$$

Or equivalently

$$\rho(\mathbf{x}_k \mid \mathbf{y}_{1:k}) \approx \sum_{i=1}^N w_k^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)}),$$

where $\delta(\cdot)$ is the Dirac delta function.

Uses importance sampling sequentially.

Sequential Importance Sampling: Derivation [1/2]

- Let's consider the full posterior distribution of states $\mathbf{x}_{0:k}$ given the measurements $\mathbf{y}_{1:k}$.
- We get the following recursion for the posterior distribution:

$$\begin{aligned} \rho(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k}) &\propto \rho(\mathbf{y}_k \mid \mathbf{x}_{0:k}, \mathbf{y}_{1:k-1}) \, \rho(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k-1}) \\ &= \rho(\mathbf{y}_k \mid \mathbf{x}_k) \, \rho(\mathbf{x}_k \mid \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}) \, \rho(\mathbf{x}_{0:k-1} \mid \mathbf{y}_{1:k-1}) \\ &= \rho(\mathbf{y}_k \mid \mathbf{x}_k) \, \rho(\mathbf{x}_k \mid \mathbf{x}_{k-1}) \, \rho(\mathbf{x}_{0:k-1} \mid \mathbf{y}_{1:k-1}). \end{aligned}$$

• We could now construct an importance distribution $\mathbf{x}_{0:k}^{(i)} \sim \pi(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k})$ and compute the corresponding (normalized) importance weights as

$$w_k^{(i)} \propto \frac{p(\mathbf{y}_k \,|\, \mathbf{x}_k^{(i)}) \, p(\mathbf{x}_k^{(i)} \,|\, \mathbf{x}_{k-1}^{(i)}) \, p(\mathbf{x}_{0:k-1}^{(i)} \,|\, \mathbf{y}_{1:k-1})}{\pi(\mathbf{x}_{0:k}^{(i)} \,|\, \mathbf{y}_{1:k})}.$$

Sequential Importance Sampling: Derivation [2/2]

 Let's form the importance distribution recursively as follows:

$$\pi(\mathbf{x}_{0:k} \mid \mathbf{y}_{1:k}) = \pi(\mathbf{x}_k \mid \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k}) \, \pi(\mathbf{x}_{0:k-1} \mid \mathbf{y}_{1:k-1})$$

• Expression for the importance weights can be written as

$$w_k^{(i)} \propto \frac{p(\mathbf{y}_k \,|\, \mathbf{x}_k^{(i)}) \, p(\mathbf{x}_k^{(i)} \,|\, \mathbf{x}_{k-1}^{(i)})}{\pi(\mathbf{x}_k^{(i)} \,|\, \mathbf{x}_{0:k-1}^{(i)}, \mathbf{y}_{1:k})} \underbrace{\frac{p(\mathbf{x}_{0:k-1}^{(i)} \,|\, \mathbf{y}_{1:k-1})}{\pi(\mathbf{x}_{0:k-1}^{(i)} \,|\, \mathbf{y}_{1:k-1})}}_{\propto w_{k-1}^{(i)}}$$

Thus the weights satisfy the recursion

$$w_k^{(i)} \propto \frac{p(\mathbf{y}_k \,|\, \mathbf{x}_k^{(i)}) \, p(\mathbf{x}_k^{(i)} \,|\, \mathbf{x}_{k-1}^{(i)})}{\pi(\mathbf{x}_k^{(i)} \,|\, \mathbf{x}_{0:k-1}^{(i)}, \mathbf{y}_{1:k})} \, w_{k-1}^{(i)}$$

Sequential Importance Sampling: Algorithm

Sequential Importance Sampling

• Initialization: Draw N samples $\mathbf{x}_0^{(i)}$ from the prior

$$\mathbf{x}_0^{(i)} \sim p(\mathbf{x}_0)$$

and set $w_0^{(i)} = 1/N$.

Prediction: Draw N new samples x_k⁽ⁱ⁾ from importance distributions

$$\mathbf{x}_{k}^{(i)} \sim \pi(\mathbf{x}_{k} \,|\, \mathbf{x}_{0:k-1}^{(i)}, \mathbf{y}_{1:k})$$

• Update: Calculate new weights according to

$$w_k^{(i)} \propto w_{k-1}^{(i)} rac{
ho(\mathbf{y}_k \,|\, \mathbf{x}_k^{(i)}) \,
ho(\mathbf{x}_k^{(i)} \,|\, \mathbf{x}_{k-1}^{(i)})}{\pi(\mathbf{x}_k^{(i)} \,|\, \mathbf{x}_{0:k-1}^{(i)}, \mathbf{y}_{1:k})}$$

Sequential Importance Sampling: Degeneracy

- The problem in SIS is that the algorithm is degenerate
- It can be shown that the variance of the weights increases at every step
- It means that we will always converge to single non-zero weight w⁽ⁱ⁾ = 1 and the rest being zero – not very useful algorithm.
- Solution: resampling!

Sequential Importance Resampling: Resampling Step

 Sequential Importance Resampling (SIR) algorithm adds the following resampling step to SIS algorithm:

Resampling

- Interpret each weight $w_k^{(i)}$ as the probability of obtaining the sample index i in the set $\{\mathbf{x}_k^{(i)} \mid i = 1, ..., N\}$.
- Draw *N* samples from that discrete distribution and replace the old sample set with this new one.
- Set all weights to the constant value $w_k^{(i)} = 1/N$.
- There are many algorithms for implementing this stratified resampling is optimal in terms of variance.

Sequential Importance Resampling: Effective Number of Particles

- A simple way to do resampling is at every step but every resampling operation increases variance.
- We can also resample at, say, every Kth step.
- In adaptive resampling, we resample when the effective number of samples is too low (say, N/10):

$$n_{\text{eff}} pprox rac{1}{\sum_{i=1}^{N} \left(w_k^{(i)}\right)^2},$$

Sequential Importance Resampling: Algorithm

Sequential Importance Resampling

• Draw samples $\mathbf{x}_k^{(i)}$ from the importance distribution:

$$\mathbf{x}_{k}^{(i)} \sim \pi(\mathbf{x}_{k} \mid \mathbf{x}_{0:k-1}^{(i)}, \mathbf{y}_{1:k}), \qquad i = 1, \dots, N.$$

Calculate new weights

$$w_k^{(i)} \propto w_{k-1}^{(i)} \frac{\rho(\mathbf{y}_k \mid \mathbf{x}_k^{(i)}) \ \rho(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{k-1}^{(i)})}{\pi(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{0:k-1}^{(i)}, \mathbf{y}_{1:k})}, \qquad i = 1, \dots, N,$$

and normalize them to sum to unity.

 If the effective number of particles is too low, perform resampling.

Sequential Importance Resampling: Bootstrap filter

 In bootstrap filter we use the dynamic model as the importance distribution

$$\pi(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{0:k-1}^{(i)}, \mathbf{y}_{1:k}) = p(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{k-1}^{(i)})$$

and resample at every step:

Bootstrap Filter

• Draw samples $\mathbf{x}_k^{(i)}$ from the dynamic model:

$$\mathbf{x}_k^{(i)} \sim p(\mathbf{x}_k \mid \mathbf{x}_{k-1}^{(i)}), \qquad i = 1, \dots, N.$$

Calculate new weights

$$w_k^{(i)} \propto p(\mathbf{y}_k \mid \mathbf{x}_k^{(i)}), \qquad i = 1, \ldots, N,$$

and normalize them to sum to unity.

Perform resampling.

Sequential Importance Resampling: Optimal Importace Distribution

• The optimal importance distribution is

$$\pi(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{0:k-1}^{(i)}, \mathbf{y}_{1:k}) = p(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{y}_{k})$$

• Then the weight update reduces to

$$w_k^{(i)} \propto w_{k-1}^{(i)} \, p(\mathbf{y}_k \mid \mathbf{x}_{k-1}^{(i)}), \qquad i = 1, \dots, N.$$

 The optimal importance distribution can be used, for example, when the state space is finite.

Sequential Importance Resampling: Importace Distribution via Kalman Filtering

 We can also form a Gaussian approximation to the optimal importance distribution:

$$p(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{y}_k) \approx \mathsf{N}(\mathbf{x}_k^{(i)} \mid \tilde{\mathbf{m}}_k^{(i)}, \tilde{\mathbf{P}}_k^{(i)}).$$

by using a single prediction and update steps of a Gaussian filter starting from a singular distribution at $\mathbf{x}_{k-1}^{(i)}$.

- We can also replace above with the result of a Gaussian filter $N(\mathbf{m}_{k-1}^{(i)}, \mathbf{P}_{k-1}^{(i)})$ started from a random initial mean.
- A very common way seems to be to use the previous sample as the mean: $N(\mathbf{x}_{k-1}^{(i)}, \mathbf{P}_{k-1}^{(i)})$.
- A particle filter with UKF proposal has been given name unscented particle filter (UPF) – you can invent new PFs easily this way.

Particle Filter: Advantages

- No restrictions in model can be applied to non-Gaussian models, hierarchical models etc.
- Global approximation.
- Approaches the exact solution, when the number of samples goes to infinity.
- In its basic form, very easy to implement.

Particle Filter: Disadvantages

- Computational requirements much higher than of the Kalman filters.
- Problems with nearly noise-free models, especially with accurate dynamic models.
- Good importance distributions quite tricky to implement.
- Very hard to find programming errors (i.e., to debug).

Summary

- Particle filters can be used for approximate filtering in general probabilistic state-space models.
- Particle filters use weighted set of samples (particles) for approximating the filtering distributions.
- Sequential importance resampling (SIR) is the general framework and bootstrap filter is a simple special case of it.
- EKF, UKF and other Gaussian filters can be used for forming good importance distributions.
- The optimal importance distribution is the minimum variance importance distribution.

Particle Filter: Demo

• The discretized pendulum model:

$$\begin{pmatrix} x_k^1 \\ x_k^2 \end{pmatrix} = \underbrace{\begin{pmatrix} x_{k-1}^1 + x_{k-1}^2 \, \Delta t \\ x_{k-1}^2 - g \, \sin(x_{k-1}^1) \, \Delta t \end{pmatrix}}_{\mathbf{f}(\mathbf{x}_{k-1})} + \begin{pmatrix} 0 \\ q_{k-1} \end{pmatrix}$$

$$y_k = \underbrace{\sin(x_k^1)}_{\mathbf{h}(\mathbf{x}_k)} + r_k,$$

→ Matlab demonstration