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Summary of the Last Lecture

@ Unscented transform (UT) approximates transformations of
Gaussian variables by propagating sigma points through
the non-linearity.

@ In UT the mean and covariance are approximated as linear
combination of the sigma points.

@ The unscented Kalman filter uses unscented transform for
computing the approximate means and covariance in
non-linear filtering problems.

@ A non-linear transformation can also be approximated with
Gaussian moment matching.

@ Gaussian filter is based on matching the moments with
numerical integration = many kinds of Kalman filters.

@ Gauss-Hermite Kalman filter (GHKF) and Cubature
Kalman filter (CKF) are examples of them.
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Particle Filtering: Principle

@ Particle filter uses Monte Carlo approximation instead of
Gaussian approximation of the filtering distribution.

@ More specifically, particle filter uses importance sampling
for propagating the Monte Carlo samples in time.

@ Animation: Kalman vs. Particle Filtering:
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Particle Filtering: Principle (cont.)

@ Mathematically, particle filter forms a weighted sample (or
particle) presentation (x(), w()) of the filtering distribution:

N

p(x) =~ > wt 5(x —x).

i=1
@ E.g., mean and covariance can then be approximated as

N
EX] ~ > wi) x) = mpg
i=

Cov[x] ~ ZW (x) —mpg) (x) —mpg) T

@ Other statistics can be approximated analogously.

@ Particle filter samples from the Bayesian filtering equations
with sequential importance sampling.
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Monte Carlo Integration

@ In Bayesian inference we often want to compute posterior
expectations of the form

E[9(X) |ys. r]—/g (x| y1.7) dx

@ For example, posterior mean and posterior covariance are
such expectations.

@ Monte Carlo: draw N independent random samples from
x() ~ p(x|y1.7) and estimate the expectation as

N
Ela(x) [yi.r] ~ 5 D a(x?).
i=1
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Importance Sampling: Basic Version [1/2]

Target distribution
Importance distribution

0.03

0.025

0.02

0.015

Weight

0.01

0.005

@ In practice, we rarely can directly draw samples from the

distribution p(x | y1.7).

@ Inimportance sampling (IS), we draw samples from an
importance distribution x() ~ 7(x | y4.7) and compute

weights w() such that

Elg(x

)1y1.7] =
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Importance Sampling: Basic Version [2/2]

@ Importance sampling is based on the identity
Elg(0)|y1.7] = [ 99 p(x|y1.7) dx

- PXIyrr)]
_/[g(x)w(x|y1:T)] (x|ys.7)dx

@ Thus we can form a Monte Carlo approximation as follows:

E 1 X p(x? | yy.7) (i)
[9(x) [ y1.7] ~ N 2- W (x*)
@ That is, the importance weights can be defined as

a1 p(x"|y1.7)
N =(x(|yi.7)
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Importance Sampling: Weight Normalization

@ The problem is that we need to evaluate the normalization
constant of p(x() | yy.7) — often not possible.

@ However, it turns out that we get a valid algorithm if we
define unnormalized importance weights as

W) — p(y1.7| X(i))P(X(i))
7-(()((’) | y1:T)

and then normalize them:
w*()

) —
TS w0

@ The (weight-normalized) importance sampling
approximation is then

Elg(x) [ y1. T]NZW
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Importance Sampling: Algorithm
Importance Sampling

@ Draw N samples from the importance distribution:

xD ~ 7 (x| y1.7), i=1,...,N.

@ Compute the unnormalized weights by

W) — p(y1.7 | ?((f)) p(x")
m(xD]y1.7)

and the normalized weights by
w()

n-__* "
w() — .
Zjli1 w*0)
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Importance Sampling: Properties

@ The approximation to the posterior expectation of g(x) is

E[g(x)[y1.7] ~ ZW’)Q x?).

@ The posterior probability density approximation can be
formally written as

N
p(X | y1:T) & Z W(I) 5(X - x(i))>
i=1
where §(-) is the Dirac delta function.

@ The efficiency depends on the choice of the importance
distribution.
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Sequential Importance Sampling: Idea

@ Sequential Importance Sampling (SIS) is concerned with
models

Xk ~ P(Xk | Xk—1)
Yk ~ P(Yk | Xk)
@ The SIS algorithm uses a weighted set of particles
(W, x) : i=1,... N} such that

N
Elgxe) |yial =~ > wg(x).
i=1

@ Or equivalently

P(Xk | Y1:k) ZWkI )

where 4(+) is the Dirac delta functlon.
@ Uses importance sampling sequentially.

Simo Sarkka Lecture 6: Particle Filtering



Sequential Importance Sampling: Derivation [1/2]

@ Let’s consider the full posterior distribution of states xg.x
given the measurements y ..

@ We get the following recursion for the posterior distribution:

P(Xo:k | Y1:k) o< P(Yk | X0:k5 V1:k—1) P(Xo:k | Y1:k—1)
= P(Yk | Xk) P(Xk | X0:k—1, Y1:k—1) P(X0:k—1 | Y1:k—-1)
= p(Yk | Xk) P(Xk | Xk—1) P(X0:k—1 | Y1:k—1)-

@ We could now construct an importance distribution

xg’)k ~ m(Xo:k | Y1:k) and compute the corresponding

(normalized) importance weights as

() o P(Yk |x5(’))p(xf(’) Ix(k’),1)p(Xé’:)k,1 | Y1:k-1)

7 (x) y1.4)
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Sequential Importance Sampling: Derivation [2/2]

@ Let’s form the importance distribution recursively as
follows:

T(Xo:k | Y1:k) = T(Xk | Xo:k—1, V1:k) T(X0:k—1 | Y1:k—1)

@ Expression for the importance weights can be written as

wl) (yk|x(i)) px (i)|x(i)— ) P(xol)k 11 Y1k-1)
m(Xi) | X0k_1: Y1) TOXGk_y [ Yik1)

‘XW}?) 1

@ Thus the weights satisfy the recursion

(DY (x| %)
. X X, ;
W) o P(Yk [ Xi”) P(X5” [ Xy ” 1) )

a(x1x0 L yik)
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Sequential Importance Sampling: Algorithm
Sequential Importance Sampling

@ Initialization: Draw N samples x(()i) from the prior

X5 ~ p(Xo)

and set w0 =1/N.

@ Prediction: Draw N new samples xf(i) from importance
distributions

XS(I) ~ 7T(Xk | xg)i;)kf17y1:k)

@ Update: Calculate new weights according to
() 0 POKIXD) pg) %))

Wy pa
%8y
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Sequential Importance Sampling: Degeneracy

@ The problem in SIS is that the algorithm is degenerate

@ It can be shown that the variance of the weights increases
at every step

@ It means that we will always converge to single non-zero
weight w() = 1 and the rest being zero — not very useful
algorithm.

@ Solution: resampling!
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Sequential Importance Resampling: Resampling Step

@ Sequential Importance Resampling (SIR) algorithm adds
the following resampling step to SIS algorithm:

Resampling

o Interpret each weight w,ﬁ") as the probability of obtaining the
sample index i in the set {xﬁ(’) [i=1,...,N}.

e Draw N samples from that discrete distribution and replace the
old sample set with this new one.

o Set all weights to the constant value w{) = 1/N.

@ There are many algorithms for implementing this —
stratified resampling is optimal in terms of variance.
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Sequential Importance Resampling: Effective Number

of Particles

@ A simple way to do resampling is at every step — but every
resampling operation increases variance.

@ We can also resample at, say, every Kth step.

@ In adaptive resampling, we resample when the effective
number of samples is too low (say, N/10):
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Sequential Importance Resampling: Algorithm
Sequential Importance Resampling

@ Draw samples xf(i) from the importance distribution:

R S P

@ Calculate new weights

i Pk | x) p(xg) | x{) ;)

(i) .
w,’ x W : : i=1,....N,
O @ XD,y

and normalize them to sum to unity.

@ If the effective number of particles is too low, perform
resampling.
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Sequential Importance Resampling: Bootstrap filter

@ In bootstrap filter we use the dynamic model as the
importance distribution

(k) [ X Yr) = P06 [ %
and resample at every step:

Bootstrap Filter

e Draw samples xf(i) from the dynamic model:

(’Np(xk|x ) i=1,...,N.

o Calculate new weights

w,Ei)ocp(yk|x§(i)), i=1,...,N,

and normalize them to sum to unity.

e Perform resampling.
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Sequential Importance Resampling: Optimal

Importace Distribution

@ The optimal importance distribution is
() | x4y v = PO | X4,y
@ Then the weight update reduces to
wy) o p(yi | X (), i=1,. N,

@ The optimal importance distribution can be used, for
example, when the state space is finite.
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Sequential Importance Resampling: Importace

Distribution via Kalman Filtering

@ We can also form a Gaussian approximation to the optimal
importance distribution:

PO [ x4 yi) = NOxi | ), BRY).
by using a single prediction and update steps of a
Gaussian filter starting from a singular distribution at x(’)
@ We can also replace above with the result of a Gau53|an
filter N(mE() 1,P()_ ) started from a random initial mean.
@ A very common way seems to be to use the previous
sample as the mean: N(xf(")_1 , PE(")_1).
@ A particle filter with UKF proposal has been given name

unscented particle filter (UPF) — you can invent new PFs
easily this way.
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Particle Filter: Advantages

@ No restrictions in model — can be applied to non-Gaussian
models, hierarchical models etc.

@ Global approximation.

@ Approaches the exact solution, when the number of
samples goes to infinity.

@ In its basic form, very easy to implement.
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Particle Filter: Disadvantages

@ Computational requirements much higher than of the
Kalman filters.

@ Problems with nearly noise-free models, especially with
accurate dynamic models.

@ Good importance distributions quite tricky to implement.
@ Very hard to find programming errors (i.e., to debug).
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@ Particle filters can be used for approximate filtering in
general probabilistic state-space models.

@ Particle filters use weighted set of samples (particles) for
approximating the filtering distributions.

@ Sequential importance resampling (SIR) is the general
framework and bootstrap filter is a simple special case of it.

@ EKF, UKF and other Gaussian filters can be used for
forming good importance distributions.

@ The optimal importance distribution is the minimum
variance importance distribution.
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Particle Filter: Demo

@ The discretized pendulum model:

()~ (e oot o) o)
2] =\ 2 4y +
Xk Xi1 — g sin(xg_4) At k1

N~

f(Xk—1)
Vi = sin(X,l) +r,
——
h(xk)

@ = Matlab demonstration
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