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Summary of the Last Lecture

Unscented transform (UT) approximates transformations of
Gaussian variables by propagating sigma points through
the non-linearity.
In UT the mean and covariance are approximated as linear
combination of the sigma points.
The unscented Kalman filter uses unscented transform for
computing the approximate means and covariance in
non-linear filtering problems.
A non-linear transformation can also be approximated with
Gaussian moment matching.
Gaussian filter is based on matching the moments with
numerical integration⇒ many kinds of Kalman filters.
Gauss-Hermite Kalman filter (GHKF) and Cubature
Kalman filter (CKF) are examples of them.
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Particle Filtering: Principle
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Particle filter uses Monte Carlo approximation instead of
Gaussian approximation of the filtering distribution.
More specifically, particle filter uses importance sampling
for propagating the Monte Carlo samples in time.
Animation: Kalman vs. Particle Filtering:

Kalman filter animation

Particle filter animation
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Particle Filtering: Principle (cont.)

Mathematically, particle filter forms a weighted sample (or
particle) presentation (x(i),w (i)) of the filtering distribution:

p(x) ≈
N∑

i=1

w (i) δ(x− x(i)).

E.g., mean and covariance can then be approximated as

E[x] ≈
N∑

i=1

w (i) x(i) = mPF

Cov[x] ≈
N∑

i=1

w (i) (x(i) −mPF ) (x(i) −mPF )>

Other statistics can be approximated analogously.
Particle filter samples from the Bayesian filtering equations
with sequential importance sampling.
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Monte Carlo Integration

In Bayesian inference we often want to compute posterior
expectations of the form

E[g(x) |y1:T ] =

∫
g(x) p(x |y1:T ) dx

For example, posterior mean and posterior covariance are
such expectations.
Monte Carlo: draw N independent random samples from
x(i) ∼ p(x |y1:T ) and estimate the expectation as

E[g(x) |y1:T ] ≈ 1
N

N∑
i=1

g(x(i)).
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Importance Sampling: Basic Version [1/2]
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In practice, we rarely can directly draw samples from the
distribution p(x |y1:T ).
In importance sampling (IS), we draw samples from an
importance distribution x(i) ∼ π(x |y1:T ) and compute
weights w̃ (i) such that

E[g(x) |y1:T ] ≈
N∑

i=1

w̃ (i) g(x(i))
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Importance Sampling: Basic Version [2/2]

Importance sampling is based on the identity

E[g(x) |y1:T ] =

∫
g(x) p(x |y1:T ) dx

=

∫ [
g(x)

p(x |y1:T )

π(x |y1:T )

]
π(x |y1:T ) dx

Thus we can form a Monte Carlo approximation as follows:

E[g(x) |y1:T ] ≈ 1
N

N∑
i=1

p(x(i) |y1:T )

π(x(i) |y1:T )
g(x(i))

That is, the importance weights can be defined as

w̃ (i) =
1
N

p(x(i) |y1:T )

π(x(i) |y1:T )

Simo Särkkä Lecture 6: Particle Filtering



Importance Sampling: Weight Normalization

The problem is that we need to evaluate the normalization
constant of p(x(i) |y1:T ) – often not possible.
However, it turns out that we get a valid algorithm if we
define unnormalized importance weights as

w∗(i) =
p(y1:T |x(i)) p(x(i))

π(x(i) |y1:T )

and then normalize them:

w (i) =
w∗(i)∑
j w∗(j)

The (weight-normalized) importance sampling
approximation is then

E[g(x) |y1:T ] ≈
N∑

i=1

w (i) g(x(i))
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Importance Sampling: Algorithm

Importance Sampling

Draw N samples from the importance distribution:

x(i) ∼ π(x |y1:T ), i = 1, . . . ,N.

Compute the unnormalized weights by

w∗(i) =
p(y1:T |x(i)) p(x(i))

π(x(i) |y1:T )
,

and the normalized weights by

w (i) =
w∗(i)∑N
j=1 w∗(j)

.
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Importance Sampling: Properties

The approximation to the posterior expectation of g(x) is

E[g(x) |y1:T ] ≈
N∑

i=1

w (i) g(x(i)).

The posterior probability density approximation can be
formally written as

p(x |y1:T ) ≈
N∑

i=1

w (i) δ(x− x(i)),

where δ(·) is the Dirac delta function.
The efficiency depends on the choice of the importance
distribution.
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Sequential Importance Sampling: Idea

Sequential Importance Sampling (SIS) is concerned with
models

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk )

The SIS algorithm uses a weighted set of particles
{(w (i)

k ,x(i)
k ) : i = 1, . . . ,N} such that

E[g(xk ) |y1:k ] ≈
N∑

i=1

w (i)
k g(x(i)

k ).

Or equivalently

p(xk |y1:k ) ≈
N∑

i=1

w (i)
k δ(xk − x(i)

k ),

where δ(·) is the Dirac delta function.
Uses importance sampling sequentially.
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Sequential Importance Sampling: Derivation [1/2]

Let’s consider the full posterior distribution of states x0:k
given the measurements y1:k .
We get the following recursion for the posterior distribution:

p(x0:k |y1:k ) ∝ p(yk |x0:k ,y1:k−1) p(x0:k |y1:k−1)

= p(yk |xk ) p(xk |x0:k−1,y1:k−1) p(x0:k−1 |y1:k−1)

= p(yk |xk ) p(xk |xk−1) p(x0:k−1 |y1:k−1).

We could now construct an importance distribution
x(i)

0:k ∼ π(x0:k |y1:k ) and compute the corresponding
(normalized) importance weights as

w (i)
k ∝

p(yk |x
(i)
k ) p(x(i)

k |x
(i)
k−1) p(x(i)

0:k−1 |y1:k−1)

π(x(i)
0:k |y1:k )

.
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Sequential Importance Sampling: Derivation [2/2]

Let’s form the importance distribution recursively as
follows:

π(x0:k |y1:k ) = π(xk |x0:k−1,y1:k )π(x0:k−1 |y1:k−1)

Expression for the importance weights can be written as

w (i)
k ∝

p(yk |x
(i)
k ) p(x(i)

k |x
(i)
k−1)

π(x(i)
k |x

(i)
0:k−1,y1:k )

p(x(i)
0:k−1 |y1:k−1)

π(x(i)
0:k−1 |y1:k−1)︸ ︷︷ ︸
∝w (i)

k−1

Thus the weights satisfy the recursion

w (i)
k ∝

p(yk |x
(i)
k ) p(x(i)

k |x
(i)
k−1)

π(x(i)
k |x

(i)
0:k−1,y1:k )

w (i)
k−1
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Sequential Importance Sampling: Algorithm

Sequential Importance Sampling

Initialization: Draw N samples x(i)
0 from the prior

x(i)
0 ∼ p(x0)

and set w (i)
0 = 1/N.

Prediction: Draw N new samples x(i)
k from importance

distributions

x(i)
k ∼ π(xk |x

(i)
0:k−1,y1:k )

Update: Calculate new weights according to

w (i)
k ∝ w (i)

k−1

p(yk |x
(i)
k ) p(x(i)

k |x
(i)
k−1)

π(x(i)
k |x

(i)
0:k−1,y1:k )
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Sequential Importance Sampling: Degeneracy

The problem in SIS is that the algorithm is degenerate
It can be shown that the variance of the weights increases
at every step
It means that we will always converge to single non-zero
weight w (i) = 1 and the rest being zero – not very useful
algorithm.
Solution: resampling!
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Sequential Importance Resampling: Resampling Step

Sequential Importance Resampling (SIR) algorithm adds
the following resampling step to SIS algorithm:

Resampling

Interpret each weight w (i)
k as the probability of obtaining the

sample index i in the set {x(i)
k | i = 1, . . . ,N}.

Draw N samples from that discrete distribution and replace the
old sample set with this new one.

Set all weights to the constant value w (i)
k = 1/N.

There are many algorithms for implementing this –
stratified resampling is optimal in terms of variance.
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Sequential Importance Resampling: Effective Number
of Particles

A simple way to do resampling is at every step – but every
resampling operation increases variance.
We can also resample at, say, every K th step.
In adaptive resampling, we resample when the effective
number of samples is too low (say, N/10):

neff ≈
1∑N

i=1

(
w (i)

k

)2 ,
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Sequential Importance Resampling: Algorithm

Sequential Importance Resampling

Draw samples x(i)
k from the importance distribution:

x(i)
k ∼ π(xk | x

(i)
0:k−1,y1:k ), i = 1, . . . ,N.

Calculate new weights

w (i)
k ∝ w (i)

k−1

p(yk | x
(i)
k ) p(x(i)

k | x
(i)
k−1)

π(x(i)
k | x

(i)
0:k−1,y1:k )

, i = 1, . . . ,N,

and normalize them to sum to unity.
If the effective number of particles is too low, perform
resampling.
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Sequential Importance Resampling: Bootstrap filter

In bootstrap filter we use the dynamic model as the
importance distribution

π(x(i)
k | x

(i)
0:k−1,y1:k ) = p(x(i)

k | x
(i)
k−1)

and resample at every step:

Bootstrap Filter

Draw samples x(i)
k from the dynamic model:

x(i)
k ∼ p(xk | x(i)

k−1), i = 1, . . . ,N.

Calculate new weights

w (i)
k ∝ p(yk | x(i)

k ), i = 1, . . . ,N,

and normalize them to sum to unity.

Perform resampling.
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Sequential Importance Resampling: Optimal
Importace Distribution

The optimal importance distribution is

π(x(i)
k | x

(i)
0:k−1,y1:k ) = p(x(i)

k | x
(i)
k−1,yk )

Then the weight update reduces to

w (i)
k ∝ w (i)

k−1 p(yk | x
(i)
k−1), i = 1, . . . ,N.

The optimal importance distribution can be used, for
example, when the state space is finite.
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Sequential Importance Resampling: Importace
Distribution via Kalman Filtering

We can also form a Gaussian approximation to the optimal
importance distribution:

p(x(i)
k | x

(i)
k−1,yk ) ≈ N(x(i)

k | m̃
(i)
k , P̃(i)

k ).

by using a single prediction and update steps of a
Gaussian filter starting from a singular distribution at x(i)

k−1.
We can also replace above with the result of a Gaussian
filter N(m(i)

k−1,P
(i)
k−1) started from a random initial mean.

A very common way seems to be to use the previous
sample as the mean: N(x(i)

k−1,P
(i)
k−1).

A particle filter with UKF proposal has been given name
unscented particle filter (UPF) – you can invent new PFs
easily this way.
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Particle Filter: Advantages

No restrictions in model – can be applied to non-Gaussian
models, hierarchical models etc.
Global approximation.
Approaches the exact solution, when the number of
samples goes to infinity.
In its basic form, very easy to implement.
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Particle Filter: Disadvantages

Computational requirements much higher than of the
Kalman filters.
Problems with nearly noise-free models, especially with
accurate dynamic models.
Good importance distributions quite tricky to implement.
Very hard to find programming errors (i.e., to debug).
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Summary

Particle filters can be used for approximate filtering in
general probabilistic state-space models.
Particle filters use weighted set of samples (particles) for
approximating the filtering distributions.
Sequential importance resampling (SIR) is the general
framework and bootstrap filter is a simple special case of it.
EKF, UKF and other Gaussian filters can be used for
forming good importance distributions.
The optimal importance distribution is the minimum
variance importance distribution.
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Particle Filter: Demo

The discretized pendulum model:(
x1

k
x2

k

)
=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1) ∆t

)
︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )︸ ︷︷ ︸

h(xk)

+rk ,

⇒ Matlab demonstration
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