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d If the attributes are mutually preferentially independent and each
attribute is difference independent of the others, then there exists
an additive value function

V(x)=Xi=1 WinN(xi)

such that
Vix)=2V(y) eox =y
Vi) =VXD =2V V) e x«x) =z 0 <y)

O Decision recommendation: choose the alternative with the highest
overall value V(x)
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U The only meaningful interpretation for attribute weight w;:

The improvement in overall value when attribute a; is changed from its worst
level to its best relative to similar changes in other attributes

O Attribute weights cannot be interpreted without this interpretation
0 Changing the measurement scale changes the weights

O In trade-off weighting, attribute weights are elicited by specifying equally
preferred alternatives (or changes in alternatives), which differ from each
other on at least two attributes

O Use trade-off weighting whenever possible
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O Specifying equally preferred alternatives requires quite an attempt. Do
we need such an exhaustive representation of preferences to produce
defensible decision recommendations?

d Answer: Typically not, we can for example derive decision
recommendations based only on ordinal information— like SWING

without giving the points to the attributes
O But... the simplest of such methods have severe problems

0 Answer?2: Typically not, we learn how to

— Accommodate incomplete preference statements in the decision
model

— Generate robust decision recommendations that are compatible with
such statements
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O The DM is only asked to rank the attributes in terms of their
Importance (i.e., preferences over changing the attributes from the
worst to the best level, cf. SWING)

— R; = 1 for the most important attribute
— R; = n for the least important attribute

O This ranking is then converted into numerical weights such that
these weights are compatible with the ranking
— Wi>Wj@Ri<Rj
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Ordinal weighting methods

e.g. attribute 1 more

_ _ Important
0 Rank sum weights are proportional to the

opposite number of the ranks W, =2—-1+1=2

WiOC(Tl—Ri+1) W2:2—2+1:1

Q Rank exponent weights are relative to some  Normalize to get

power of (n — R; + 1) 5 1
w; < (n— R; +1)* 1=z "273

— Ifz>1(z<1), the power increases (decreases) the
weights of the most important attributes compared
to Rank sum weights.
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Ordinal weighting methods

O Rank reciprocal weights are proportional to the inverse of the ranks

1
.o —
W; Ri

O Centroid weights are in the center of the set of weights that are
compatible with the rank ordering
— Order the attributes such thatw; > w, = --- > w,,.

— Then, the extreme points of the compatible weight set are (1,0,0,0...), (*2, ¥2,0,0,...),
(1/3,1/3,1/3,0,..),... (1/n,...,1/n).

— The average of these extreme points is
_ 12" 1
YT o j=i R;
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Example: centroid weights

2
Wi = — — W
on j=iRi 3

(0,0,1)
9 Rank orderi o \ (533)
ank ordering w; = w, = ws: \\ Wy = W
\
1/ 01 1\ 11 - w,
W1—§ 1+§+§ —1—8~061 wy = w, /"‘)‘6 - o
1/1 1\ 5 ‘ 400
vi=3(z+3) -0 ", i
1 1 1 0,1,0) W1 2 W2 2 W3
- —.—=—=~011
Ws=3'3g~"
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Ordinal weighting methods: example

Q Four attributes {aq, a,, as, a,} in descending order of importance — R, =
1,R, =2, R; =3,R, =4

| 2 ] a5
3 2 1 10

Rank sum 4
weights 0.4 0.3 0.2 0.1 1
Rank exp(z=2) 16 9 4 1 30
weights 0.53 0.30 0.13 0.03 1
Rank reciprocal 1 1/2 1/3 1/4 25/12
weights 0.48 0.24 0.16 0.12 1
Centroid 25/48 13/48 7/48 3/48 1
weights 0.52 0.27 0.15 0.06 1

O Different methods produce different weights!
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Ordinal weighting methods: example
(cont’d)

O Assume that the measurement scale of the most important
attribute a, is changed from [0€,1000€] to [0€,2000£].

O Because w; « v;(x}) — v1(x?), the weight of attribute a, should be
even larger.

O Yet,

— Ranking among the attributes remains the same — rank-based weights
remain the same

— The alternatives’ normalized scores on attribute a, become smaller —
attribute a; has a smaller impact on the decision recommendation
O Avoid using ordinal methods, which produce a "point estimate”
weight

,, Aalto University
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O Two modes of weighting

Hierarchical: all weights are elicited

and then multiplied vertically

o0 Problem: elicitation questions for the higher-
level attributes are difficult to interpret:

Wy =wytwy o (0 (x7)-v1(x7)) +(v2(x3)-v2(x3))

A’, Aalto University

— Avoid!

Non-hierarchical: weights are only
elicited for the twig-level attributes

Ideal car

wy; =0.22 w, =0.78
Economy Driving
I I
I | [ I
Price Expenses Acceleration Top speed
0.45 0.55 0.50 0.50
w; =0.22-045=0.10 w, =012 w3 = 0.39 w, =0.39
Ideal car
Economy Driving
I I
I | | |
Price Expenses Acceleration Top speed
wy; =0.10 w, = 0.12 w3 = 0.39 w, =0.39
0.22 0.78




Recap: elements of MAVT

O Elements of MAVT:
— Alternatives X = {x1,...,x™}
— Attributes A = {ay,...,a,}
— Attribute weightsw = [wy, ..., w,,] € R"
— Attribute-specific (normalized) values v € R™", v;; = v (x) € [01]

— Overall values of alternatives V(x/,w,v) = ¥, w;v;;, j=1,...m

,, Aalto University
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O Defining equally preferred alternatives / changes between
alternatives leads on a linear equation on the weights

— E.g., "All else being equal, a change 150 — 250 km/h in top speed is
equally preferred to a change 14 — 7 s in acceleration time” =

wyvY (250) + wyvd (14) + wavd (x3) + wyvd (x,) — V(150,14, x5 x4) =
w1 v (150) + wyovd (7) + wi vl (x3) + wyuvl (x4) V(150 14, x4 x4) =
w; vl (250) — wy v (150) = wyvd (7) — wyv) (14)

O Question: What if the DM finds it difficult or even impossible to define
such alternatives / changes?

— E.g., she can only state that a change 150 — 250 km/h in top speed is
preferred to a change 14 — 7 s in acceleration time?
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Incomplete preference statements

0 Set the performance levels of two
imaginary alternatives x and y such that a,: Top speed (km/h) [150, 250]
XFzy=> a,: Acceleration time (s) [7, 14]

N( )+ e+ N( ) -
w11 (X1 WnVUn (Xn as: CO, emissions (g/km) [120, 150]
N N
= W1l (Y1) + oWy (yn) a,: Maintenance costs (€/year) [400,600]

O For instance, a change 150 — 250 km/h in top speed is preferred to
a change 14 — 7 s in acceleration time:
w1vl (250) + wovl (14) + wavd (x3) + wavd (x,) — V(150,14, x5 x, ) =
w1vY (150) + wyvd (7) + wavd (x3) + wyv (x,) — V(150,14, x5 x4 )
S wp =Wy
O Incomplete preference statements result in linear inequalities
between the weights

,, Aalto University
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Incomplete preference statements:
example

O Consider attributes
— CO, emissions a3 € [120g,1509]
— Maintenance costs a, € [400€ ,600€]

1 Preferences are elicited with SMARTS:

— Q:”If the change 600€ — 400€ in maintenance costs is worth 10 points,
how valuable is change 150g — 120g in CO, emissions?”
— A:"Between 15 and 20 points”
1.5w,[vY (400) — v (600)] < w5 [vY (120) — v (150)] < 2w, [v¥ (400) — vV (600)]
= 15w, < w3z < 2w,
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Incomplete preference statements:
example

L Preferences are elicited with trade-off methods:

— Q: ”"Define an interval for x such that 600€ — 400€ in maintenance costs is
as valuable as 150 g — x g in CO, emissions.”

— A:"xis between 130 and 140 g”
a,: Top speed (km/h) [150, 250]

For x>140, the change in maintenance as Accelerationiime)(s) 7. 14]

costs Is more valuable az: CO, emissions (g/km) [120, 150]

For x<130, the change in COZ2 emissions
/s more valuable

ws v} — v (150)] < w,[vl (400) — vY (600)] < w;[vY — v} (150)]

= v (140)w; < w, < vY (130)w;

a4 Maintenance costs (€/year) [400,600]

1 2 . . - .
= W3 S W, < owy, if v is linear and decreasing.

,, Aalto University
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Modeling iIncomplete informaation

U Incomplete information about attribute weights is modeled as set S
of feasible weights that are consistent with the DM’s preference
statements:

n
SQSO:{WERnlz w; =1w; =20 Vi}
i=1

,, Aalto University
School of Science 14.2.2019

17



Modeling incomplete information

O Linear inequalities on weights can
correspond to

1. Weak ranking w; = w;
2. Strictrankingw; —w; = a

3. Ranking with multiples w; = aw;

(equivalent to incompletely defined
weight ratios w;/w; = a)

4. Intervalforma <w;<a+¢
5. Ranking of differences w; —w; = w;, — w;,

14.2.2019
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Overall value intervals

U Due to incompletely specified weights,
the alternatives’ overall values are

VA
Intervals: I I /V(xz)//

: il
V(ix,w,v) € [rur)elg V(x,w,v), max V(x,w, v)] (xh) V)
Value
intervals
3 Note: linear functions obtain their minima "
and maxima at an extreme point of S . 0.4 0.7
2
— Eg.,S={weS°cR?|04<w; <07}> 0.6 0.3
ext(S) = {(0.4,0.6),(0.7,0.3)} wp,=1-w,

,, Aalto University
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U Preference over interval-valued alternatives can be established through a
dominance relation

A Definition: x* dominates x/ in S, denoted x* > x/, iff

V(x*k,w,v)=V(x/,w,v) forallwe s
V(x*,w,v) >V(x/,w,v) forsomew € S

i.e., iff the overall value of x* is greater than or equal to that of x/ for all
feasible weights and strictly greater for some.

,, Aalto University
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Non-dominated alternatives

[ An alternative is non-dominated if no other alternative dominates it
O The set of non-dominated alternatives is
Xyp = {x* € X|2j suchthat x/ >¢ x*}

O Xyp contains all good decision recommendations

— l.e., alternatives compared to which no other alternative has at least as high
value for all feasible weights and strictly higher for some

,, Aalto University
School of Science 14.2.2019

21



Non-dominated alternatives

x¥ is non-dominated if no other alternative has 4

higher value than x* for all feasible weights

VA
« Alternative x! dominates x3 /
ey
V(x3)
o Alternatives x! and x? are non-dominated

Value
intervals
1141
0.4 0.7
W»
0.6 0.3

wi=1—-w,

,, Aalto University
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Non-dominated vs. potentially optimal
alternatives

0 A non-dominated alternative is not necessarily N V.

optimal forany w € S ,
V(x1) V
— x1,x?% and x2 are all non-dominated
— Only x! and x? are potentially optimal in that they maximize V ; V(x?)
forsomew € S

—  Still, neither of them can be guaranteed to be better than x3

0.4 0.7

0.6 0.3
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Properties of dominance relation

_______________________________________________

Non-dominated

A Transitive | alternatives

— |If Adominates B and B
dominates C, then A dominates
C

O Asymmetric
— If A dominates B, then B does
not dominate A
Q Irreflexive

— A does not dominate itself Dominance relations
expressed with a directed

arc: B dominates D

,, Aalto University
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Computing dominance relations

Q If x*¥ dominates x/:
1 v(x*wv)=V(x/,w,v)forallwes
& Mrpelgl[V(ka v)-V(x/wv)|=0e Mrpeigl[Z?=1 wi (Vg — V) | =0
2. V(x*w,v)>V(x),w,v)for somew € S
e max|[V(x* w,v) - V(x/ wv)]>0e wgsx[z?ﬂ wi (Vg — ;) | >0

WES

d Dominance relations between two alternatives can thus be
established by comparing their minimum and maximum value
differences

,, Aalto University
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Computing dominance relations:
example

O Consider three cars with normalized attribute-specific values:
x! 0.7 0.5 1 1
x2 0.75 0.75 0.33 0.5

x3 0.87 0.95 0 0

O Incomplete preference statements have resulted in feasible set of

weights S:
S={weSs’cR*w; =w, =3wsz, wz=w, =01}

14.2.2019
26
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Computing dominance relations:

example

Values=[0.7 0.5 1 1; 0.75 0.75 0.33 0.5; 0O.87 0.895 0 0O]:
A=[0 -1 3 0;0 0 -1 1;0 0 O -1]1:

b=[0;0:-0.1]:

Beg=[1 -1 0 O0;1 1 1 17;

beg=[0:1]:

MinValueDiff=zeros (3,3);

MaxValueDiff=zero= (3, 3);

for i=1:3
for j=i+l:3

[wW,fval]=linprog( (Values=s (i, :)-Value=(j,:)) "', A, b, Aeg, beg);

MinValueDiff (i, j)=fval:;

[w, £fwval]=linprog((Values(j,:)-Values(i,:)) ",&, b, Aeq, bedq):

MaxValueDiff (i, j)=—Lfwval:

MinValueDiff(j,i)=-Ma=xValueDiff(i,j):

HaxValueDiff (j,i)=-MHinValueDiff(i,j):

if MinValueDiff(i,j)>=0 && MaxValueDiff(i,j)=>0
dizp(['ARlternative " numZstr(i) " dominates " numZstr(j)

eglseif MinValueDiff(j,i)>»=0 &£& HaxValueDiff(j,i)>0
disp(['"Alternative " num2str(j) ' dominates " numZstr (i)

end

end

end

1)

-1

Matlab function
linprog(f,A,b,Aeq,beq)
solves the optimization
problem:

min fTx such that
X

A-x<b
Aeq - x = beq

14.2.2019
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Computing dominance relations:
example

O Minimum and maximum value differences

\I;VnEI? [V(xl,w,v) - V(XZ,W,U)] =-0.003<0 — Nelther Xl nor XZ
W&X[V(xl,w, v) — V(x? w,v)] =0.0338 >0 dominate the other

\TEIQ [V(x? w,v) = V(3w v)]=-0045<0
m&x[V(xz,W, v) —V(x3 w,v)] = -0.0163 <0

— x3 dominates x?

min[V (!, w,v) = V(x®,w, v)] = —0.048 <0 — Neither x nor x3
measx[V(xl,w, v) = V(x3,w,v)] =0.0175 >0 dominate the other

Q Xyp = {x, x3}

,, Aalto University
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Computing dominance relations:

example

L Note: because value differences are linear
in w, minimum and maximum value
differences are obtained at the extreme
points of set S:

wl=(0404010.1)
2 (20279 1 ~ (0.386,0.386,0.129,0.10
w= = 70170170110 ~( : y M r Ve )

s (3311Y_ 0.375,0.375,0.125,0.125
W—8181818 _( 1 v P )

W3

wl w?
v(x')-v(x*) 0.0204

v(x*)-v(x*) | -0.031
v(x')-v(*) | -0.0106

-0.0163

0.0338

0.0175

Aalto University
School of Science
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Additional information

O If information set S results in too many non-dominated alternatives, additional
preference statements (i.e., linear constraints) can be elicited

O New information set S’ c S preserves all dominance relations and usually
yields new ones — X, p stays the same or becomes smaller

X
S'c S, ri(S)nS' # o: N
HS) { Xxp(S) 2 Xup(S")

where ri(S) is the relative interior of S.
- ri(S) nS" # @: S is not entirely on the “border” of S

,, Aalto University
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Additional information: example

O No weight information

2 A A
S:SOZ{WEIRzl wi:1,wi20}
i=1 @
d Dominance relations ®
1. B dominates D ©
2. Cdominates D
© ®,
O Non-dominated alternatives © ®
— AB,CE @
w; =0 wy; =1
W2 1 WZ O

,, Aalto University
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Additional information: example (2/3)

O Ordinal weight information
S ={w € S%\w; = w,} 4 N

d Dominance relations ® — ®
1. B dominates D
_ ©
2. Cdominates D
3. E dominates D @ @
4. B dominates A
5. Cdominates A @ @
O Non-dominated alternatives . —_o_ _____ V; 05 Wy =1
1 = 1 — Y-
— B,C,E w, = 1 w, = 05 Wy = 0

,, Aalto University
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Additional information: example (3/3)

O More information
S={weSw, <w; <2w,}

O Dominance relations
1. B dominates D ® . ®
2. Cdominates D ©
3. E dominates D
4. B dominates A © ®)
5. Cdominates A /><
6. B dominatesC ®) ®@
7. Bdominates E G A I
w; =0 w; =05w, =067 w;=1
O Non-dominated alternatives: B w, =1 w,=05w,=033 w;=0

,, Aalto University
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Value intervals Contral values

Maximax
Maximin

Can value intervals be used in deriving
decision recommendations?

Some suggestions for “decision rules” from
literature:

« Maximax: choose the alternative with the
highest maximum overall value over the
feasible weights

e Maximin: choose the alternative with the

highest lowest overall value over the feasible i\ﬂlﬁms
weights s

e Central values: choose the alternative with the W, 0.4 0.7
highest sum of the maximum and minimum 0.6 0.3

values wi=1-w,

,, Aalto University
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...more decision rules Domain criterion

Minimax regret

« Minimax regret: choose the v, : A
alternative with the smallest maximum '
. V(x?

regret (= value difference compared to }//

any other alternative) 1/:

« Domain criterion: choose the %
alternative which is favored by the |
largest set of weights

,, Aalto University
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L DM asks 2 experts to compare fruit baskets (x;,X,) containing
apples x, and oranges X,

Q Linear attribute-specific value functions v, and v,

d DM: (2,0) >~ (0,1) and (0,2)>~(1,0)

O One orange is not preferred to 2 apples, one apple is not preferred to 2 oranges

O Fruit baskets (1,2) and (2,1) do not dominate each other

J What do the decision rules recommend?

A’, Aalto University



Expert 1: Expert 2:

x°=(0,0), x*=(2,4) xO:(o 0), x*:(4 2)
W 00) =703 () =22 W) = 2R () = 2
V(2,0)>V(0,1) < V(2,0)>V(0,1) &
§W1+0W2 20W1+%W2 2%(1—W1)<:>W12% %Wl > %Wz — l(l_ w,) e w, > %
V(0,2)2V(1,0) = V (0,2) 2V (1,0) &
EW :l(l—w)>lw < W 1 =1 > L <4
42 2 1—21 1—2 W2— _Wl_ZW1©W1_§



)(1 X2 X2
VIX)=w| —-=—" |+
(x) 1(2 4 ) 4
VL2 =w2-2 |+2=2
2 4) 4 2
V(2,1)=w, z 4 +1=§W1Jri
2. 4) 4 4" 4
,,,,,,,,,,,,, w2
0.6 o
21/15<1/6 f
6& ‘ 0.125 L.

> 04

0.3

0.2

V\ Y
1/6

(2,1) is the maximax solution
(1,2) is the maximin solution
1(2,1) is the minimax regret solution

0.1

0.

(2,1) is the domain criterion solution

2 0.25 0.3 0.35 0.4 0.45

Wy

0.5

V(x)=w1();1—)(22)+);2

V(1 2) =—%w1+1

o= 2/15<1/6
0125 " A

(1,2) is the maximax solution
0.3

(2,1) is the maximin solution

0.

N

- (1,2) is the minimax regret solution
(1,2) is the domain criterion solution

0.1

> 04r 1/6 “

0.65 0.7

Wy

0.5 0.55 0.6 0.75

0.8



O A common problem for all of the above decision rules: changing
the measurement scales [x°,x*] can change the recommendations

O Different attribute weightings w and w* represent value functions V
and V* — they cannot be compared

O IfV represents the DM’s preferences, so do all its positive affine transformations,
too

0 How to choose one of the value functions which all represent the same
preferences?

O Avoid using measures which compare overall values across
different value functions (i.e. attribute weightings)

A’, Aalto University



Rank (sensitivity) analysis

1 V (x?)

_/

U For any weights, the alternatives can
be ranked based on their overall

values \ Voo

1
O This ranking is not influenced by V(x)
normalization (i.e., positive affine W .
transformations of V) w. 04 0.7,
0.6 0.3
O How do the rankings of alternatives
change when attribute weights vary? ranks x x
minimum 1 1 1
maximum 3 2 3

,, Aalto University
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Computation of rank intervals

The minimum ranking of xk is
r; (X)) =1+ min [{x' e X [V (x',w,v) >V (X*,w,v)}|

(w,v)eS

which is obtaiped as a solution to the mixed integer LP

min J
(w,v)eS Zl y
yigony 17

V(x!,wv) <V (XSwv)+y' M j=1...,m
y =1

Maximum rankings with a similar model

,, Aalto University
School of Science
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Rank analysis — example (1/5)

O Academic ranking of world universities 2007
L 508 universities

O Additive multi-attribute model
O 6 attributes
d Attribute weights (denoted by w”) and scores
O Universities ranked based on overall values

,, Aalto University
School of Science
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Rank analysis — example (2/5)

Criteria Indicator Code Weight

Quality of Education | Alummi of an institution winning Nobel Prizes and Fields Medals Ahimni 10%

!
Staff of an institution winning Nobel Prizes and Fields Medals Award 20%

Quality of Faculty
Highly cited researchers in 21 broad subject categories HiCi 20%
Articles published in Nature and Science* N&S 20%

Research Output

Articles in Science Citation Indes-expanded, Social Science Citation Index SCI 20%
Size of Institution  Academic performance with respect to the size of an institution Size 10%
Total 100%




Rank analysis —
example (3/5)

Scores (some of them)

,, Aalto University
School of Science

World Institution Score on|Score on | Score on|Score on| Score on|Score on| Total
Rank Alumni | Award HiCi N&S SCT Size Score

1 Harvard Univ 100 100 100 100 100 73 100
2 Stanford Unsv 42 78.7 86.1 696 703 65.7 73.7
3 Univ California - Berkelev 72.5 77.1 67.9 729 §9.2 52.6 71.9
4 Univ C:qmbridge 836 815 54 582 654 65.1 7.6
5 Massachusents [nst Tech (MIT) 74.6 80.6 65.9 654 61.7 534 70.0
6 California Inst Tech 553 69.1 84 676 50.3 100 66.4
7 Columbia Univ 76 65.7 36.5 43 §9.6 40.4 $3.2
8 Princeton Univ 62.3 80.4 393 429 465 389 59.5
2 Univ Chiczgo 70.8 80.2 50.8 428 541 413 8.4
10 Univ Oxford 60.3 579 46.3 523 654 447 56.4
11 Yale Univ 30.9 3.6 57.9 572 §3.2 48.9 55.9
12 Comell Univ 436 513 545 514 65.1 399 543
13 Univ Celifornia - Los Angeles 25.6 4238 574 491 759 35.5 52.6
14 Univ California - San Diego 16.6 34 583 355 646 46.6 504
15 Univ Pernsvivania 333 344 56.9 403 08 38.7 150
16 Unty Washington - Seatle 27 318 524 49 41 274 482
17 Univ Wiscon Em.’;ﬁ.w;,ms}.m 403 355 529 431 67.2 28.6 £8.0
18 Univ California _folow. Clickand hold t 0 6.8 54 537 598 46.7 46.8
19 Jokns Hoplkns Univ 481 278 413 509 679 247 6.1
2 Tokyo Univ 333 14.1 419 527 809 34 459
2 Univ ).[ichig:m - Ann Arbor 403 0 0.7 408 77.1 30.7 0
22 Kvote Univ 37.2 334 38.5 35.1 68.0 30.6 §3.1
2 Imgcxia] Col London 19.5 174 40.6 397 622 194 430
23 Univ Toronto 263 19.3 39.2 Atd 176 4.4 43.0
25 Uhiv Coﬂlong 288 122 385 429 632 138 4238
2 Univ [lknois - Urbana Champaign 39 36.6 44,5 6.4 57.6 26.2 £2.7
2 Swiss Fed Inst Tech - Zurich 37.7 356.3 355 99 184 50.5 39.9
28 Washington Univ - St. Louis 23.5 26 392 432 534 393 39.7
29 Northwestern Univ 204 189 46.9 342 57 3169 382
30 New York Univ 35.8 245 41.3 44 539 259 38.0
30 Rockefeller Univ 212 58.6 21.7 456 332 37.8 38.0
32 Duke Unrv 19.5 0 46.9 436 62 39.2 374
33 Univ Mnnesota - Twin Citles 333 1] 486 355 67 235 37.0
34 Univ Colorade - Boulder 15.6 0.8 329 388 457 30 36.6
35 Univ Cakifornia - $anta Barbara 0 353 426 362 427 351 358
36 Univ British Columbia 195 18.9 314 31 63.1 36.3 354
37 Umniv Maryland - Coll Park 243 20 40.6 312 533 259 350
38 Univ Texas - Austn 204 16.7 46.9 28 548 213 44
39 Univ Texas Southwestern Med Center 223 33.2 306 335 EH) E 338



Rank analysis — example (4/5)

Incomplete weight information

QRelative intervals: we{wesS, |1-a)w <w <(1+a)w }
4 For «=0.1,0.2,0.3
deg. o=0.2,w*=0.20: 0.16<w <0.24

Qincomplete ordinal: we{weS, |w >w, >0.02Vie{2,3,4,5} k e{1,6}}

Q Consistent with initial weights and lower bound b = 0.02

QOnly lower bound: we{we S, |w, >0.02Vi=1,...,6}

- - - 0
ONo weight information: wesS,
P sieottiscene

14.2.2019
45



Rank analysis — example

Harvard finiv

Stanford Univ

Univ California - Berkeley

Univ Cambridge

Massachusetts Inst Tech (MIT)
California Inst Te
Columbia U

Princeton Univ

Univ Chicago

Univ Oxford

Yale Univ
Comell Univ |

Univ California - Los Angele
Univ California - San Diego
Univ Pennsylvania

Univ Washington - Seattle
Univ Wisconsin - Madison
Univ California - San Francisco
Johns Hopkins Univ

ki icligam - Ao b = s 1.1, Different weighting would
ol London | — I likely yield a better ranking”

- 20 % interval

30 % interval

ty

Iversl

incompl. ordinal

Imperial Coll London

Univ Toronto

Univ Call London

Univ lllinois - Urbana Champaign
Swiss Fed Inst Tech - Zurich
Washington Univ - St. Louis

no information

Un

New York Univ
Rockefeller Univ
Duke Univ
Univ Minnesota - Twin Cities

Univ Colorado - Boulder

Univ California - Santa Barbara

Univ British Columbia

Univ Maryland - Coll Park

Univ Texas - Austin

Univ Texas Southwestern Med Center
Univ Paris 06

Vanderbilt Univ

Univ Utrecht

-
-
-
-
-
-
K
K
4
K

Score on | Score on | Score on | Score on | Score on | Score on

Institution Alumni | Award | HiCi | N&S | SCI | Size

Pennsylvania State Univ - Univ Park
Univ California - Davis
Univ California - Irvine

New York Univ 35.8 243 413 34.4 539 259

Univ Copenhagen
Rutgers State Univ - Mew Brunswick
Univ Manchester

Rockefeller Univ 21.2 (58.6)1qth 27.7 456 03.2)442nd7.8

Univ Pittsburgh - Pittsburgh
Univ Southern California
Univ Florida

TTTTTTTTTTT

Duke Univ 19.5 N 46.9 436 ki 39.2

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 311 321 331 341 351 361 371 381 391 401 411 421 431 441 451 461 471 481 491 50608

Ranking



Example: prioritization of innovation
ideas’

O 28 "innovation ideas” evaluated by several people on a scale from
1 — 7 with regard to novelty, feasibility and relevance
O Innovation ideas described by the 3 averages of these evaluations
L No preference information about the relative values of the
attributes

 "Which 10 innovation ideas should be selected for further
development?”
O Sets of ideas called portfolios

O The value of a portfolio is the sum of its constituent projects

,, Aalto University . . .
A SchoolofSeience — * KHnnola et al. (Technological Forecasting & Social Change, 2007) 1.2.2019



Example: prioritization of innovation
ideas

O Robust Portfolio Modeling” method was used to compute non-
dominated portfolios of 10 ideas and discriminate between
O Core ideas that belong to all non-dominated portfolios
O Borderline ideas that belong to some non-dominated portfolios
O Exterior ideas that do not belong to any non-dominated portfolio

O How do ranking intervals compare with this division?
O If the ranking of an idea cannot be worse than 10, is it a core project?
O If the ranking of an idea cannot be better than 11, is it an exterior project?

A’, Aalto University
School of Science . .. ] . 14.2.2019
* Liesio, Mild, Salo (European Journal of Operational Research, 2007) 48



QOO WN =

Ranking intervals vs. core, borderline

and exterior ideas

|

L
5] I |

 E— —— 1 1 T T 1 1 1 1 i i i i T 7  ——
#24 #18 #25 #3 #8 #4 H#7 #26 #12 #13 #2 #22 #5 #16 #1 #23 #6 #10 #15 #17 #28

Innovation idea

: : — 2
#11 #27 #9 #21 #14 #20 #19

Ranking intervals divide the innovation ideas into core, borderline and exterior ideas
among potentially optimal portfolios




Rationales for using incomplete
Information

O Limited time and effort can usually be devoted to preference
elicitation

0 Complete preference specification may not even be needed to reach
a decision

O DM'’s preferences may evolve during the analysis — iteration can be
helpful

O Experts / stakeholders may have conflicting preferences

O Take-it-or-leave-it solutions may be resented in group decision
settings — results based on incomplete information leave room for
negotiation

,, Aalto University
School of Science 14.2.2019
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0 Complete specification of attribute weights is often difficult
— Trade-off methods take time and effort
— SWING and SMARTS are prone to biases

U Incomplete preference statements can be modeled by linear inequalities on
the weights — alternatives’ overall values become intervals

L Preference over interval-valued alternatives can be established through
dominance relations

O Non-dominated alternatives are good decision recommendations

O Avoid methods which compare numerical values of different value functions

,, Aalto University
School of Science



