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Grading

Final exam (80%): Written exam Wednesday 20.2., 9-12.

Equipment: Calculator and one sheet (A4) of hand-written notes,
written on one side only.

Homework (20%): Presented orally during the second exercise
session every week. Problems presented on course homepage the
previous friday.

In formulas: If you solve xi ∈ [0, 3] problems during week
i ∈ {2, 3, 4, 5, 6}, and you get y ∈ [0, 24] points on the final exam,
then your total score is

2y +
6∑

i=2

xi − min
2≤i≤6

xi ∈ [0, 60].
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Literature

Sheldon Ross,
Introduction to Probability and Statistics for Engineers and Scientists
https://www.sciencedirect.com/book/9780123948113/

introduction-to-probability-and-statistics-for-

engineers-and-scientists

(free on Aalto network)

Explorative exercises Updated on course homepage every friday.

Slides Updated on course homepage after every lecture.
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Course content

Thinking statistically (week 1)

Collecting data
Representing data

Probability theory (week 1-4)

Random events
Random variables
Probability distributions

Statistics (week 4-6)

Sampling
Estimating
Testing hypotheses
Linear regression

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Course content

Probability is a field of mathematics, which investigates the
behaviour of mathematically defined random phenomena.

Statistics attempts to describe, model and interpret the behaviour
of observed random phenomena.

In this course, we learned probability in order to use it as a
modelling device in statistics.
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Learning outcomes

After passing the course the student knows:

1 the basic concepts and rules of probability

2 the basic properties of one- and two-dimensional discrete and
continuous probability distributions

3 common one- and two-dimensional discrete and continuous
probability distributions and knows how to apply them to simple
random phenomena

4 the basic properties of the bivariate normal distribution

5 the basic methods for collecting and describing statistical data

6 how to apply basic methods of estimation and testing in simple
problems of statistical inference

7 the basic concepts of statistical dependence, correlation and linear
regression.
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Why statistics?

We want to learn something about an entire population, but can not
afford to collect (or store) all the data we would want.

Want to draw as strong conclusions as we can, from limited data.

Perhaps counterintuitively, to get a useful sample, we want to know
as little as possible about the sample, i.e. the sample should be
selected randomly.
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Biased samples

Even if we make an effort to select “typical” samples, we get worse
data than if we choose randomly.

Example

Example: let’s select the 1000 most “typical” Finns (middle age,
medium income, medium height, medium weight) to be interviewed.

Assume a retailer wants to conduct a poll about whether Finns find
it easy or difficult to buy clothes that fit.

The fact that the interviewed individuals are “typical” probably
means that they are the most likely to answer “yes” than people in
general.

Moral: Don’t try to be smart, because Randomness will always be
smarter.
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What is “typical” anyway?

Assume we have a data set S = {x1, . . . , xn} of n numerical
observations.

Three different notions: mean, median and mode

Mean is the “average” value: x̄ = x1+···+xn
n .

Median is the “center” value: order the sample such that
x1 ≤ x2 ≤ · · · ≤ xn.

If n = 2k − 1 is odd, then the median is xk .
If n = 2k is even, then the median is the average of xk and xk+1.

Mode is the most frequent value. (might not be unique.)

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics
Representing data

Mean (or average) value

The mean is useful when outliers play a role.

Require that the numerical values can be added and subtracted
meaningfully.

Example: The average winnings of a lottery ticket is a meaningful
number (usually about half the price of the ticket).

The median and mode winnings are both rather meaningless
numbers (namely 0).
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Mean (or average) value

If a sample is composed of several smaller samples, then the mean of
the whole sample can be computed as a weighted average of the
means of the smaller samples.

Let the sample x consist of r parts x1, x2, . . . , xr , where xi consists
of ni units and n1 + · · · nr = N.

If x̄i denotes the mean of the i :th part, then

x̄ =
n1
N
x̄1 + · · ·+ nr

N
x̄r .

This is not the same as the mean of the averages, because larger
samples must be given larger weight.
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Sample variance

The sample variance s2(x) of a sample x = {x1, . . . , xn} measures
how “spread out” the observations are.

We define

s2(x) =
1

n − 1

n∑
i=1

(xi − x̄)2.

This definition will make much more sense when we start studying
probability distributions.

We define the sample standard deviation s(x) =
√
s2(x).

The standard deviation is measured in the same unit as the
observations themselves.
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Data frames

A data frame is a table of observations, where rows correspond to
different units, and columns correspond to different variables being
measured.

Different columns can have different type - for example qualitative
and quantitative data can be contained in the same data frame.
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General rules of probability

By additivity of mutually exclusive events:
P(E) = P(I ) + P(II )
P(F ) = P(II ) + P(III )
P(E ∪ F ) = P(I ) + P(II ) + P(III )
P(E ∩ F ) = P(II )

So for any events E and F ,

P(E ∪ F ) = P(E ) + P(F )− P(E ∩ F ).

This is the general sum rule for probabilities.
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Product rule

Example

Three fair 6-sided dice are rolled. What is the probability that at
least one of them shows a 6?

Easier if we “order” the experiment, so we roll one die at a time.

Easier to compute the probability of the complementary event, i.e.
E = {all dice show a number 1, . . . 5}
#E = 53 and #S = 63.

So the probability that at least one die shows a six is

P(E c) = 1− P(E ) = 1− #E

#S
= 1− 53

63
= 1− 125

216
=

101

216

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance

Product rule

Example

Two balls are drawn uniformly at random from a bowl with 6 white
balls and 5 black balls. What is the probability that exactly one
black and one white ball is drawn?

Easier to think if we order the experiment.

Let E = {first ball white, second black} and
F = {first ball black, second white}.
#S = 11 · 10, #E = 6 · 5, #F = 5 · 6
The probability that exactly one ball of each colour is drawn is

P(E ∪ F ) = P(E ) + P(F ) =
#E

#S
+

#F

#S
= 2 · 30

110
=

6

11
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Counting combinations

We can generalize this: How many “combinations” (subsets) of k
elements are there in a set B of n elements?

This number is denoted
(
n
k

)
, and read “n choose k”.

The number of ways to select a set A with k elements and then
order both A and B \ A is

(
n
k

)
· k! · (n − k)!, but it is also n! by the

same argument as on the last slide.

We get (
n

k

)
=

n!

k! · (n − k)!
.
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Conditional probability

If we know that B occured, then only the “probabilities” in the
upper row remain, so we get a new conditional probability of A:

P(A|B) =
P(A ∩ B)

P(A ∩ B) + P(Ā ∩ B)
=

P(A ∩ B)

P(B)
.

If P(B) = 0, then P(A|B) is not defined.
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General product rule

The formula P(A|B) = P(A∩B)
P(B) can be used to compute probabilities

of joint events:
P(A ∩ B) = P(A|B)P(B)

Interpretation: To decide how likely A ∩ B is, first decide how likely
B is, and multiply this with how likely A would be if we knew that B
occured.
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Statistical independence

Events A and B are independent if

P(A ∩ B) = P(A)P(B).

If P(A) 6= 0 and P(B) 6= 0, then this is equivalent to
P(A|B) = P(A) and P(B|A) = P(B)

Interpretation: Whether or not B occurred does not affect the
likelihood that A occurs.
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Formula of total probability

Example

Suppose we know that 75% of the female engineering students and
15% of male engineering students have long hair. We also know that
approximately 27% of all engineering students are women.

What is the probability that a random student is long-haired?

H = {“Student has long hair”}.
N = {“Student is female”}.
M = {“Student is male”}.
N and M decompose the sample space, so the formula of total
probability yields

P(H) = P(N)P(H|N) + P(M)P(H|M)

= 0.27 · 0.75 + 0.73 · 0.15

= 0.312
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Bayes’ formula

Theorem (Bayes’ formula)

If A and B are two events on the same probability space with P(A) 6= 0
and P(A) 6= 0, then

P(B|A) = P(B)
P(A|B)

P(A)
.

Interpretation: P(B) is a prior (latin: previous) probability,
measuring how much we believe that B occurs.

After observing the event A, we update our beliefs to a posterior

(latin: following) probability, by multiplying our prior by P(A|B)
P(A) .
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Bayes’ formula

Example

What is the probability that a random long-haired engineering
student is female, with the same assumptions as in the previous
example?

H = {“Student has long hair”}.
N = {“Student is female”}.
M = {“Student is male”}.
Recall: P(H|N) = 0.75, P(N) = 0.27, P(H) = 0.312.

Bayes’ formula yields

P(N|H) = P(N)
P(H|N)

P(H)
= 0.27 · 0.75

0.312
≈ 65%.
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Random variables

To the same random phenomena one can associate many random
variables.

In probability theory, one studies the behaviour of random variables,
when one knows the probability distribution P on the sample space S

In statistics, one aims at drawing conclusions about P from
observations of random variables on S .
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Binomial distribution

Example

Flip a biased coin N times, and let p be the probability that it comes
up “heads”. Let X be the number of times it comes up “heads”.

Then

P{X = n} =

(
N

n

)
pn(1− p)N−n.

This is the binomial distribution Bin(n, p).

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance

Random variables

To any random event E corresponds an indicator variable IE given

by IA =

{
1 if E occurs
0 otherwise

Many random variables can be meaningfully rewritten as sums of
indicator variables.

Example

Let X be the number of rainy days in a year.

Let Ai be the event that the i th day of the year is rainy.

Then

X =
365∑
i=1

IAi .
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Uniform random variables

Example

For any interval [A,B] ⊆ R, a random variable X is uniformly
distributed on [A,B] if

P{a < X < b} =
b − a

B − A

for all A ≤ a ≤ b ≤ B.
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Distribution functions

Any random variable can be described by its (cumulative)
distribution function (CDF) F : R→ [0, 1]:

F (x) = P{X ≤ x}.

The CDF is more useful than the probability mass function
p(x) = P(X = x), because it is defined for both discrete and
continuous random variables.

With the CDF, we can compute the probability that X lies in any
interval:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = F (b)− F (a).
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Distribution functions

If X is a discrete random variable, then its CDF F (x) is a “step
function”, and its “jumps” are given by the probability mass
function p(x).
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Distribution functions

If X is a not discrete, we can hope that its CDF F is at least
differentiable.
If it is, then X is said to be continuous, and f (x) = d

dx F (x) is its
probability density function (PDF).
All random variables in this course, and almost all that occur in
practice, are either discrete or continuous.

Example (Uniform distribution)

Left: The CDF of the uniform distribution on [a, b].

Right: The corresponding PDF.
Ragnar Freij-Hollanti MS-A0503
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Exponential distribution

Memoryless property:

P(X ≤ y + x |X > y) = P(X ≤ x) for all x ≥ 0

The only memoryless distribution functions on [0,∞) are

F (t) = 1− e−λt .

A random variable with CDF

F (t) = 1− e−λt

is said to be exponentially distributed with rate λ.
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Expected value

If X is a continuous random variable with probability density
function f , then we define

E (X ) =

∫
R
xf (x)dx .

If X is a discrete random variable with probability mass function p,
then we define

E (X ) =
∑
i

aip(ai ).
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Linearity of expected value

If X and Y are random variables, then E (X + Y ) = E (X ) + E (Y ).

If a ∈ R is a constant, then E (aX ) = aE (X ).

In algebraic terms, this means that the expected value E is a linear
function on the vector space of random variables.
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Linearity of expected value

Example (Binomial variable)

Let X ∼ Bin(n, p). What is E (X )?

X counts how many of the independent events A1,A2, . . . ,An occur,
if each of them occur with probability p.

So X =
∑n

i=1 IAi .

We get

E (X ) =
n∑

i=1

E (IAi ) =
n∑

i=1

P(Ai ) = np.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance

Expected value

Example (Exponential distribution)

Let X be exponentially distributed with rate λ.

Recall that this means that

F (t) =

{
1− e−λt if t ≥ 0
0 if t < 0

E (X ) =

∫ ∞
0

1− F (t)dt

=

∫ ∞
0

e−λtdt =
−1

λ

[
e−λt

]∞
0

=
−1

λ
(0− 1) =

1

λ
.
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Variance

The variance of a random variable X is the (deterministic) number

σ2 = Var(X ) = E ((X − µ)2),

where µ = E (X ).

We can also write

Var(X ) = E ((X − µ)2) = E (X 2 + µ2 − 2µX )

= E (X 2) + µ2 − 2µE (X )

= E (X 2)− µ2.
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Variance

The variance
Var(X ) = E ((X − µ)2)

satisfies the following properties for any random variable X and any
constant a:

Var(aX ) = a2Var(X )
Var(a) = 0
Var(X + a) = Var(X )

Var(X ) is zero if and only if P(X 6= µ) = 0.

In such case, we say that X is an almost sure constant.
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Variance

Pro: The variance

Var(X ) = E ((X − µ)2)

is very convenient to work with mathematically.

Con: It can not be meaningfully added or subtracted to X , because
it is measured in different units.

If X is the height of a random person (in meters), then the variance
is measured in m2.

Therefore, statistically it is often more useful to study the standard
deviation σ =

√
Var(X )
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Covariance

What is the variance of a sum X + Y of random variables?

Let µ = E (X ) and ν = E (Y )

Var(X + Y ) = E ((X + Y )2)− E (X + Y )2

= E (X 2 + Y 2 + 2XY )− (µ+ ν)2

= E (X 2) + E (Y 2) + 2E (XY )− µ2 − ν2 − 2µν

= Var(X ) + Var(Y ) + 2(E (XY )− µν).

We call the quantity

Cov(X ,Y ) = E (XY )− E (X )E (Y )

the covariance of X and Y .
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Covariance

The covariance Cov(X ,Y ) = E (XY )− E (X )E (Y ) satisfies:

Cov(X ,Y ) = Cov(Y ,X )
If a and b are constants, then
Cov(aX + bY ,Z) = aCov(X ,Z) + bCov(Y ,Z).
Cov(X ,X ) = Var(X ).

If µ = E (X ) and ν = E (Y ), then

Cov(X ,Y ) = E [(X − µ)(Y − ν)] .

Independent random variables have covariance
E (XY )− E (X )E (Y ) = 0.
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Covariance

We saw that

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y ).

In particular, if X and Y are independent, then

Var(X + Y ) = Var(X ) + Var(Y ).

More generally, if X1,X2, . . .Xn are independent, then

Var(
∑
i

Xi ) =
∑
i

Var(Xi ).
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Variance

Example (Exponential random variable)

E (X ) = 1
λ .

E (X 2) = 2
λ2 .

Var(X ) = E (X 2)− E (X )2 =
2

λ2
− 1

λ2
=

1

λ2
.
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Variance

Example (Binomial)

Let X ∼ Bin(n, p). What is E (X )?

X =
∑n

i=1 IAi , where A1,A2, . . . ,An are independent events with
probability p.

Var(X ) =
n∑

i=1

Var(IAi ) = np(1− p).
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Central limit theorem

Theorem (Central limit theorem, original version)

There exists a probability distribution N (0, 1), called the standard normal
distribution, such that the following holds:

Let X be a random variable (with E (X r ) <∞ for all r ≥ 0),
E (X ) = µ and Var(X ) = σ2.

Let X1,X2,X3, . . . be independent samples of X , and let

Yn =

∑n
i Xi − nµ√

nσ
.

If Z ∼ N (0, 1), then

P(a < Yn < b)→ P(a < Z < b)

for every t.
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Central limit theorem

In words: The variable

Yn =

∑n
i Xi − nµ√

nσ

is distributed like Z ∼ N (0, 1) if n is large.

Interpretation: The mean X̄ =
∑

Xi

n of n iid samples with mean µ
and standard deviation σ is distributed like

σ√
n
Z + µ ∼ N (µ,

σ2

n
).

The distribution N (µ, σ2) is a fixed distribution, not depending on
the distribution of X !
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The normal distribution

The standard normal distribution N (0, 1) is explicitly given by its
PDF

f (x) =
1√
2π

e−x
2/2,

and thus has CDF

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

Values of Φ(x) are tabulated in Mellin’s tables.
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The normal distribution

For normally distributed random variables, the proportion of the
population within a given number of standard variations from the
mean can be seen in the figure below.
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The normal distribution

Examples of normally (or almost normally) distributed variables in
practice:

Most importantly, in statistics:

Any average or sum of observations of a (nice) random variable.

By physical considerations:

Velocity (in any direction) of a molecule in a gas.
Measure error of a physical quantity
Height of a person

By design:

IQ.
Grades in some academic systems (nb: not in this course).
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Sample mean

In a certain sense, X̄ is the best possible estimate of E (X ).

This remains true even if some information of the distribution of X
is given.

For example, if we know that X is: normal, exponential, binomial...

By CLT, X̄ has approximate distribution N (µ, σ
2

n ).
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Sample mean

Example

An astronomer wants to measure the
distance d from her observatory to a
distant star.

Each time she measures, she gets a
random result, with mean d and
standard deviation 2 light years.

She wants to keep measuring until she
is reasonably sure (95%) that she can
estimate d reasonably well (error < 0.5
light years).
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Sample mean

Example

Measurements X1, . . .Xn have expected value d .

Sample mean X̄ ∼ N
(
d , 2√

n

2
)

approximately.

P(|X̄ − d | < 0.5) = P(−0.25
√
n <

X̄ − d

2/
√
n
< 0.25

√
n)

≈ Φ(0.25
√
n)− Φ(−0.25

√
n)

= 2Φ(0.25
√
n)− 1.
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Example

Astronomer wants

P(|X̄ − d | < 0.5) ≥ 0.95,

so

2Φ(0.25
√
n)− 1 ≥ 0.95

Φ(0.25
√
n) ≥ 0.975

0.25
√
n ≥ 1.96

n ≥ 62.
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Sample variance

We get

E (s2) =
1

N − 1
E

(
N∑
i=1

X 2
i − NX̄ 2

)

=
1

N − 1

(
NE (X 2)− NE (X̄ 2)

)
=

1

N − 1

(
(N − 1)E (X 2)− (N − 1)E (X )2

)
= E (X 2)− E (X )2

= Var(X ).

So s2 is an unbiased estimator of the variance σ2.
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Distribution of sampling statistics

If λ̂ is a statistic that is meant to estimate a parameter λ of a
random distribution, it is not enough to know E (λ̂).

To know that P(|λ− λ̂| ≥ ε) is small, we would ideally like to know
the distribution of λ̂.

At the very least, would like to know Var(λ̂), so we could use
Chebyshev’s inequality.

Observe, that the probability

P(|λ− λ̂| ≥ ε)

will depend on λ!
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Sampling normal variables

The exact (or even approximate) distribution of estimators can not
be easily described if the distribution of X is unknown.

What if X ∼ N (µ, σ2)?

Clearly, then X̄ ∼ N (µ, σ
2

N ) exactly.

What is the distribution of s2?
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Sampling normal variables

Denote the distribution of the sum of n independent χ2
1 variables by

χ2
n.

We call this the chi-squared distribution with n degrees of freedom.

Silly name. Live with it.

So
X 2
1 + · · ·+ X 2

n ∼ χ2
n

We saw that, if s2 was the sample variance of N observations of
N (0, 1), then

(N − 1)s2 ∼ χ2
N−1.
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Sampling normal variables

X 2
1 + · · ·+ X 2

n ∼ χ2
n

Funny (but usually useless) fact: χ2
2 = exp( 1

2 ).
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Sampling normal variables

Let s2 be the sample variance of normal (but not necessarily
standard)

X1, . . . ,XN ∼ N (µ, σ2)

Then

s2 ∼ σ2

N − 1
χ2
N−1

s2 is an unbiased estimate of the variance σ2.

X̄ = µ̂ and s2 = σ̂2 are independent random variables!
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Likelihood function

Stochastic model for the data source: the components of (x1, . . . xn)
are i.i.d. and fθ-distributed variables (X1, . . .Xn).

For a discrete distribution,

P (X1 = x1, . . . ,Xn = xn) = fθ(x1) · · · fθ(xn).

For a continuous distribution,

P
(
X1 = x1 ±

ε

2
, . . . ,Xn = xn ±

ε

2

)
≈ εnfθ(x1) · · · fθ(xn).

The likelihood function

L(θ) = fθ(x1) · · · fθ(xn)

is the probability to observe (approximately) the given values, as a
function of θ.
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Maximum likelihood estimate

The likelihood function

L(θ) = fθ(x1) · · · fθ(xn)

is the probability to observe (approximately) the given values, as a
function of θ.

“The larger L(θ) is, the better the model fθ explains our
observations”.

The maximal likelihood estimate (MLE) θ̂ = θ̂(x) is the value that
maximizes the likelihood function.
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Binomial distributions

Example (Estimating the proportion of faulty products)

A production line produces components, of which the proportion p is
faulty, independent of each other.

Of 200 inspected items, 22 were found to be faulty. Estimate p

The number N of faulty components has the distribution

fp(x) = P(N = x |p) =

(
200

x

)
px(1− p)200−x .

For which value of p is

L(p) =

(
200

22

)
p22(1− p)178

maximized?
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Binomial distributions

Example (Estimating the proportion of faulty products (Continued))

L(p) =

(
200

22

)
p22(1− p)178

is maximized when l(p) = log L(p) is maximized.

`(p) = log

(
200

22

)
+ 22 log p + 178 log(1− p).
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Binomial distributions

Example (Estimating the proportion of faulty products (Continued))

`(p) = log

(
200

22

)
+ 22 log p + 178 log(1− p).

`′(p) =
22

p
− 178

1− p

is zero precisely when

22

p
=

178

1− p
⇐⇒ p =

22

200
.

`′′(x) < 0, so the critical point p̂ = 22
200 is indeed a maximum of `(p).
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Uniform continuous distributions

Example

A data source generates independent random numbers from the
uniform distribution Unif[0, θ].

Observations (1.2, 4.5, 8.0). What is the ML estimate of θ?

The observations have density function

fθ(x) =

{
1
θ , x ∈ [0, θ]
0, otherwise

The likelihood function becomes

L(θ) = fθ(1.2)fθ(4.5)fθ(8.0) =

{
θ−3, θ ≥ max{1.2, 4.5, 8.0}
0, otherwise
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Uniform continuous distributions

Example

The likelihood function becomes

L(θ) = fθ(1.2)fθ(4.5)fθ(8.0) =

{
θ−3, θ ≥ max{1.2, 4.5, 8.0}
0, otherwise

Clearly, L is maximized at θ̂ = max{1.2, 4.5, 8.0} = 8.0.
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Properties of ML estimators

For indicator variables, the ML estimator p̂ = X̄ is unbiased and
consistent.

For continuous uniform variables Unif[a, b], the ML estimators
â = minXi and b̂ = maxXi are biased, because we known for a fact
that

a ≤ â b̂ ≤ b,

and typically the inequalities are strict.
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Exponential distribution

Let x1, . . . xn be samples of an exponential random variable with
parameter λ.

Then
L(λ) =

∏
i

λe−λxi = λne−λ
∑

i xi .

Maximized when

0 = L′(λ) =

(
−λn

∑
i

xi − nλn−1

)
e−λ

∑
i xi ,

i.e. when
λ =

n∑
i xi

.

So the ML estimator for λ is λ̂ = n∑
i xi

.
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Normal distributions
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Interval estimates

What does this mean?

“With confidence 95%, the parameter θ is contained in the interval
a ≤ θ ≤ b”.

It means:

“The numbers a and b are computed from some random data
x1, . . . xn, in such a way that, with probability at least 95%, the

random interval [a, b] contains θ.”

The interval [a, b] is random, but θ is not!
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2′)

Recall that, for normal samples, (n−1)S2

σ2 ∼ χ2
n−1.

So

95% = P

(
χ2
0.975,n−1 <

(n − 1)S2

σ2
< χ2

0.025,n−1

)
= P

(
(n − 1)S2

χ2
0.025,n−1

< σ2 <
(n − 1)S2

χ2
0.975,n−1

)
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Table of Chi-squared values

https://www.medcalc.org/manual/chi-square-table.php

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Sampling statistics
Maximum likelihood estimators
Interval estimates
Hypothesis testing
Covariance and correlation

Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2′)

We computed the sample variance S2 ≈ 187.96, and have n = 10.

So a 95% confidence interval for σ2 is[
(n − 1) · S2

χ2
0.025,n−1

,
(n − 1) · S2

χ2
0.975,9

]
=

[
9 · 187.96

19.023
,

9 · 187.96

2.700

]
≈ [88.9, 626.5]

This is called a two-sided confidence interval, as we are bounding σ2

both from above and below.

A two-sided 95% confidence interval for σ is[√
88.9,

√
626.5

]
=
[√

88.9,
√

626.5
]
≈ [9.4, 25.0]
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Roadmap to a statistical test.

Choose a null hypothesis H0 and a counterhypothesis H1.

H0: “the suspect is not guilty”.
H0: “the medicine is not better than placebo”
H0: “the octopus can not predict the future”

Choose a test statistic T .

Compute the distribution function of T , assuming that H0 is true.

Check if the observations are exceptional or not, according to this
distribution.

Not exceptional data → accept null hypothesis.
Exceptional data → reject null hypothesis, accept counterhypothesis.
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Error types

The significance level α indicates the probability of rejection error
(before seeing the data).

The significance level says nothing about the probability of an
acceptance error.
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Testing the mean value

Example (Coffee machine)
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Testing the mean value

Example (Coffee machine (Continued))
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Testing the mean value

Example (Coffee machine (Continued))
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Testing the mean value

Example (Coffee machine (Continued))
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Testing equality

Example (Week 6, Exploratory problem 1)
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Testing equality

Example (Week 6, Exploratory problem 1 (Continued))
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Testing equality

Example (Week 6, Exploratory problem 1 (Continued))
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Testing equality

Example (Week 6, Exploratory problem 1 (Continued))
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Testing equality

Example (Week 6, Exploratory problem 1 (Continued))
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Sample covariance
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Sample covariance
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Sample covariance
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Joni Virta

Jonas Töllä
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