Timber Engineering Introduction

The lecture slides gathered in the present document are part of the course Timber Engineering at Aalto University in spring 2019. The current document is at draft stage, meaning that it is only distributed to students and researchers. It shall not be further redistributed nor posted on public web sites.

Timber Engineering?

What engineers are doing?

Plan, design, built, maintain, ...

- Structures
- Infrastructures

...in order to balance

- Associated Risk (simplified the associated failure probability)
- Investments into more safety

Requirements for the (structural) design

Eurocode 0 (EN 1990)

A structure shall be designed to have adequate:

- Structural resistance
- Serviceability
- Durability

Requirements for the (structural) design

Ultimate limit states (ULS)

- Safety of people
- Safety of the structures

Serviceability limit states (SLS)

- Functioning of the structure or structural members under normal use
- Comfort of people
- Appearance of the construction works*

^{*}In the context of serviceability, the term appearance is concerned with such criteria as high deflection and extensive cracking, rather than aesthetics.

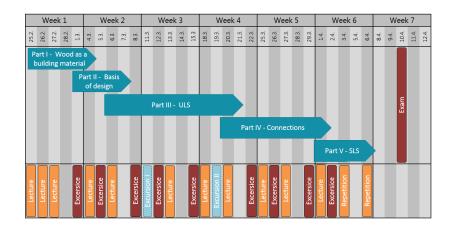
Course Structure

Expected learning outcomes

- Understanding of the structural behaviour of solid timber and engineered wood products
- Understanding the principles for the design of beam type elements (cross-sections subjected to stresses, stability of members, serviceability limits, fire exposure)
- Understanding the principles for the design of connections with metal type fasteners
- Ability to design standard beam type elements and connections with metal type fasteners

Content

Part I – Wood as a building material


Part II - Basis of the design

Part III – Ultimate limit state design of beam type elements Cross-sections, Stability, Fire

Part IV – Connections with metal type fasteners

Part V – Serviceability limit state design

Schedule

Excursion I

Eurofins – Tesing laboratory

■ Date: 11.3.2019

- Structural testing facilities
- Inform me if you can not participate (email) until 4.3.2019

Excursions

Construction site

Date: 19.3.2019

- Lapinmki kindergarten
- Kangaspellontie 6, 00300 Helsinki
- Inform me if you need Safety equipment (helmet, shoes, attention vest) until 11.3.2019
- Inform me if you can not participate (email) until 11.3.2019

Overview
Assignments
Exam
Feedback

Overview

Assignments 25 %

Exam 75 %

Assignments

5 Assignments

Time:

- Uploaded on MyCourses: Friday (after the exercise)
- Deadline: Wednesday (before the lecture)

Grading:

- Perfect, almost perfect (2 points)
- Few small mistakes (1 point)
- Otherwise (0 points)
- Only assignments with correct static will be graded!

Assignments

Quiz:

- Approx. 3 random question to check the static calculations
- Can be repeated multiple times
- Requirement to submit the assignment

Submission:

- Only possible after passing the quiz (to check the static calculations)
- Handwritten
- Reproducible: $A_n = b \cdot h = 80 \cdot 160 = 12800 \text{ mm}^2$
- Uploaded on MyCourses

Exam

Date: 10.4.2019 (Course exam)

(31.5.2019, Make-up exam)

1 A4 page with your own notes!

Key points in the examination guidelines

When registering:

- Course exam (1st exam) can be registered together with course registrations
- Register for either course or make-up exams 7 days before.
- For exceptional cases please register exams two days before to the responsible teachers
- Registered exam cannot be cancelled when the registration period expires

During the exam:

- Only registrants can enter examination hall
- Entry to the exam is not allowed after 30 minutes of the starting
- Leaving from the exam is only allowed after 35 minutes of the starting

When returning:

- Show your official ID (student card, Finnish or EU driving licence with photo ID, official ID certificate or passport)
- Please return all materials you have got (including questions as required)

Feedback

Feedback from **YOU** is appreciated! (during the course)

Support

Contact

Gerhard Fink

gerhard.fink@aalto.fi

Room 268a

Steven Collins

Consultation-hours: Monday & Thursday 16:00-17:00

steven.collins@aalto.fi

Room 222

Support

8 contact hour lessons per week (lecture & exercise)

Be Active! & Ask questions!

Consultation-hour & email

Please ask precise questions!

MyCourses

Literature

Recommendations for interested students

Slides (lecture notes)

Codes & standards (selection):

- EN 1990 (2002). Eurocode 0: Basis of structural design
- EN 1995-1-1 (2004). Eurocode 5: Design of timber structures Part 1-1: General Common rules and rules for buildings
- EN 1194 (1999). Timber structures Glued laminated timber strength classes and determination of characteristic values
- EN 14080 (2013). Timber structures Glued laminated timber and glued laminated solid timber Requirements
- EN 1912 (2012). Structural timber Strength classes Assignment of visual grades and species
- EN 338 (2010). Structural timber Strength classes
- EN 14375 (2004). Timber structures Structural laminated veneer lumber Requirements

Literature

Recommendations for interested students

Further recommended literature (selection):

- Kollmann F.F.P., Cote Jr W.A. & et al. (1968). Principles of wood science and technology. I. Solid wood.
 George Allen & Unwin Ltd.
- Madsen B. & et al. (1992). Structural behavior of timber. Timber Engineering Ltd
- Madsen B. & et al. (2000). Behavior of timber connections. Timber Engineering Ltd
- Thelandersson S., Larsen H. & et al. (2003). Timber engineering. Wiley West Sussex, England
- Melchers R.E. (1999). Structural reliability analysis and prediction. John Wiley & Son Ltd
- JCSS (2001). Probabilistic Model Code Part I Basis of Design.
 http://www.jcss.byg.dtu.dk/Publications/Probabilistic_Model_Code
- JCSS (2006). Probabilistic Model Code Part III Resistance Models (3.05 Timber).
 http://www.jcss.byg.dtu.dk/Publications/Probabilistic_Model_Code
- Blass H.J. & et al. (1995). Timber Engineering, STEP, Volumes 1 & 2, Centrum Hout, Netherlands
- Ross, R.J. (2010). Wood handbook: wood as an engineering material. Centennial ed. General technical report FPL; GTR-190. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf
- Swedish Forest Industries Federation. (2016). Design of timber structures, volumes 1-3.
 http://www.svenskttra.se/publikationer/publikationer/design-of-timber-structures/

Literature

Recommendations for interested students

Further recommended literature (selection, in Finnish):

- Suomen Rakennusinsinrien Liitto RIL ry. (2009). RIL 205-1-2009, Puurakenteiden suunnitteluohje eurokoodi EN 1995-1-1
- Suomen Rakennusinsinrien Liitto RIL ry. (2017). RIL 205-1-2017, Puurakenteiden suunnitteluohje eurokoodi EN 1995-1-1
- Suomen Liimapuuyhdistys ja Puuinfo Oy. (2014). Liimapuuksikirja, osa 1 http://www.puuinfo.fi/suunnitteluohjeet/liimapuukasikirja
- Suomen Liimapuuyhdistys ja Puuinfo Oy. (2015). Liimapuuksikirja, osat 2-3 http://www.puuinfo.fi/suunnitteluohjeet/liimapuukasikirja
- Puuinfo Puurakenteiden suunnittelu, Lyhennetty suunnitteluohje

Further Education in Timber Engineering

Timber Engineering – CE:

- ✓ CIV-E4110 Timber Engineering
- X CIV-E4120 Timber structures
- X CIV-E4030 Engineering Design Exercises
- X Special Assignment
- X Master thesis: possible topics

Timber Structures

Expected learning outcomes

- Understanding the structural behavior of beam type elements with varying cross-section or curved shape, notches and holes
- Understanding the structural behavior of reinforcements (e.g. screws, glues in rods)
- Understanding of the structural behavior of plate elements (cross laminated timber, timber concrete composites)
- Ability to design timber structures for multistory buildings, halls and bridges

Timber Structures – Content

ULS of beam type elements

Varying cross-sections, curved beams, holes & notches

Reinforcements

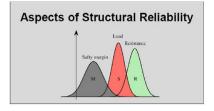
Plane elements (CLT, TCC)

Performance

(Fire, Durability, NDT, Robustness)

Structural Solutions

(Residential buildings, Halls, Timber bridges)


Selection of other courses

- CHEM E2105 Wood and Wood Products
- CHEM E2115 Wood Products: Application and performance.
- ARK-E4000 Wood in Architecture and Construction
- Puu-28.5010 Industrial Wood Construction

