1. We consider a GaAs-pin-photodiode, with an intrinsic layer thickness of $1.0 \mu \mathrm{~m}$ and a surface of $10^{-4} \mathrm{~cm}^{2}$. The detector is illuminated at a wavelength of 775 nm with a light intensity of $0.1 \mathrm{~W} \mathrm{~cm}^{-2}$. The absorption coefficient of the active region is $10^{4} \mathrm{~cm}^{-1}$ at the wavelength of interest. Calculate the induced current under the assumption that photons are absorbed only in the active region.

Generation of charge carriers in active region is $G(x)=\alpha J_{p h}(x)$, where $J_{p h}(x)$ is photon density. Photon density flux will decrease as a function of depth $x J_{p h}(x)=J_{p h, 0} e^{-\alpha x}$, where the photon flux in the surface (one assumes that the absorption on top of the active region is small) is $J_{p h, 0}=\frac{I_{0}}{\omega}=\frac{I_{0}}{h c} \lambda$. Induced current is $I_{L}=A e \int_{0}^{W} G(x) d x=A e \int_{0}^{W} \alpha J_{p h}(x) d x=$ $=\frac{A e \alpha \lambda I_{0}}{h c} \int_{0}^{W} e^{-\alpha x} d x=\frac{A e \lambda I_{0}}{h c}\left[1-e^{-\alpha W}\right]=3.95 \mu \mathrm{~A}$.
2. Estimate the bandwidth of a GaAs pin-photodiode, when the detector surface is $1 \mathrm{~mm}^{2}$ and the thickness of the active region is $1.0 \mu \mathrm{~m}$. The dielectric constant of GaAs is 12.3, the saturation velocity for holes is $3 \times 10^{6} \mathrm{~cm} / \mathrm{s}$ and the detector load is 50Ω.

Detector frequency response may be limited either by electrical RC-circuit or drift time of charges. Frequency response's maximum angular frequency ω_{m}, m_{d} 1. Drifting time from the center of the active region towards edges is $\tau_{d}=\frac{d / 2}{v_{s}}=\frac{0.5 \cdot 10^{-6} \mathrm{~m}}{3 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1}} \approx 17 \mathrm{~ns}$, and then the maximum frequency is $f_{m}=\frac{1}{2 \pi \tau_{d}} \approx 9 \mathrm{MHz}$. Diode junction capacitance is $C_{j}=\frac{A \varepsilon_{r} \varepsilon_{0}}{d}=1.1 \cdot 10^{-10} \mathrm{~F}$ and in this case $\omega_{m}=\frac{1}{R C_{j}} \Rightarrow f_{m}=\frac{1}{2 \pi R C_{j}}=29 \mathrm{MHz}$.
3. The active region of a p-i-n-fotodiode (silicon) is circular in shape with a diameter of 0.4 mm . At the wavelength of 700 nm and intensity $0.1 \mathrm{~mW} / \mathrm{cm}^{2}$ light induces a 56.6 nA current. Calculate the responsivity of the photodiode and the quantum efficiency at this wavelength.

Incident light power

$$
P_{i n c}=I_{i n c} \cdot A=I_{\text {inc }} \cdot \pi r^{2}=0.1 \mathrm{~mW} / \mathrm{cm}^{2} \cdot \pi \cdot(0.02 \mathrm{~cm})^{2} \approx 126 \mathrm{nW} .
$$

Responsivity

$$
R=\frac{I_{p h}}{P_{i n c}}=\frac{56.6 \mathrm{nA}}{126 \mathrm{nW}} \approx 0.45 \frac{\mathrm{~A}}{\mathrm{~W}}
$$

Quantum efficiency

$$
\eta=R \cdot \frac{h \cdot c}{q \cdot \lambda}=0.45 \frac{A}{W} \cdot \frac{6.626 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \cdot 3 \cdot 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}}{1.6 \cdot 10^{-19} \mathrm{~A} \cdot \mathrm{~s} \cdot 700 \cdot 10^{-9} \mathrm{~m}}\left(\approx R \cdot \frac{1.24}{\lambda(\mu m)}\right) \approx 0.80
$$

4. A pin-photodiode has a responsivity of $0.6 \mathrm{~A} W$ at a wavelength of $0.8 \mu \mathrm{~m}$. The dark current value is 1 nA , the bandwidth is 10 MHz and the load resistance is 100Ω a) Calculate the signal-to-noise ratio when the input optical signal has a power of $1.0 \mu \mathrm{~W}$. b) What is the NEP of the detector?
a) Responsivity $R=I_{p h} / P(\omega)$, where $P(\omega)=P_{i n c} e^{j o t}$ is light power. Hence $i_{p h, r m s}=R \frac{P_{i n c}}{\sqrt{2}}$.

Signal-to-noise- ratio

$$
\left(\frac{S}{N}\right)_{\text {power }}=\frac{i_{p h}^{2} R_{e q}}{\left[\bar{i}_{S}^{2}+\bar{i}_{J}^{2}\right] R_{e q}}=\frac{\frac{1}{2}\left(R P_{i n c}\right)^{2}}{\left[2 q\left(I_{p h}+I_{B}+I_{D}\right) B+\frac{4 k_{B} T B}{R_{e q}}\right]}=109 \approx 40.7 \mathrm{db} \quad\left(I_{B}=0\right) .
$$

b) $N E P=\left(P_{i n c}\right)_{\min }$, when $\frac{S}{N}=1$ and $B=1 \mathrm{~Hz}$.
$\Rightarrow \quad\left(\frac{S}{N}\right)_{\text {power }}=1=\frac{\frac{1}{2}\left(R P_{\text {inc }}\right)^{2}}{\left[2 q\left(I_{p h}+I_{B}+I_{D}\right) B+\frac{4 k_{B} T B}{R_{\text {eq }}}\right]}$

$$
N E P=P_{\text {inc }}(S / N=1, B=1 \mathrm{~Hz}) \approx \frac{\sqrt{2}}{R}\left[2 q I_{D} B+\frac{4 k_{B} T B}{R_{e q}}\right]^{1 / 2}=3.0 \times 10^{-11} \mathrm{~W} .
$$

5. The quantum efficiency of an InGaAsP/InP avalanche detector is 0.8 at a wavelength of $1.3 \mu \mathrm{~m}$. When the detector is illuminated with a power if $1.0 \mu \mathrm{~W}$, a current of $20 \mu \mathrm{~A}$ is measured from the detector. The thickness of the multiplication region is $1.5 \mu \mathrm{~m}$. a) What is the multiplication coefficient of the photodiode? b) How large is the ionisation coefficient if we suppose that only electrons multiply themselves?
a) The current $I_{p h}$ generated by the light:

$$
\eta=\frac{I_{p h}}{q} \cdot \frac{h \nu}{P_{i n c}} \Rightarrow I_{p h}=\eta \frac{q \lambda}{h c} P_{i n c}=0.839 \mu \mathrm{~A} .
$$

Avalanche amplification is $M_{e}=\frac{J_{e o}(W)}{J_{e i}}=\frac{I_{o}}{I_{p h}}=23.8$, where $I_{0}=20 \mu \mathrm{~A}$.
b) Current density increases within distance Δx by $\Delta J_{e}=J_{e} \alpha_{e} \Delta x$

From here one gets a differential equation $\frac{d J_{e}}{d x}=J_{e} \alpha_{e}$, which can be integrated

$$
\int_{J_{e i}}^{J_{e o}(W)} \frac{d J_{e}}{J_{e}}=\int_{0}^{W} \alpha_{e} d x \Rightarrow \ln \frac{J_{e o}(W)}{J_{e i}}=\ln M=\alpha_{e} W .
$$

Impact ionization coefficient $\alpha_{e}=\frac{\ln M}{W}=2.1 \cdot 10^{4} \frac{1}{\mathrm{~cm}}$.

