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Recap

Stable and unstable limit cycles in 2D.

Qe (\ unstable Qtab]c

limit cycle limit cycle limit cycle

Ways to rule out closed orbits.
Ways to prove existence of closed orbits.

Nonlinear oscillations.

Limit cycles are the basis for a new kind of bifurcation in 2D.



Bifurcations in 2D



Saddle-node bifurcation

Prototypical example in 2D: T = | — z?

In the x-direction: the familiar Y= —y

bifurcation behaviour. After the collision of fixed

In the y-direction: exponential points (+Vy,0), u — =0 a

damping. ghost, or a bottleneck region
remains. (See nonlinear

Time spent in the bottleneck: ¢ o (u — fic) —1/2 ;fﬂﬂatorst}lln
OWS On e

circle.)
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Saddle-node bifurcations

The general case

The fixed points at the
intersections of the
nullclines (ncs) get closer
as the ncs pull away,
collide when ncs become
tangent at = u,, and
disappear when ncs
become detached.




Example I: Genetic control

Model for a genetic control; r=—ar +y

the activity of a gene is 2

directly induced by two _ by

copies of the protein for which Y 1+ x?
it codes. The gene is Nullclines
stimulated by its own T
product, which can lead to y=ar, Yy = b(l i :132) ;
autocatalytic feedback

process. y y=ax
x and y are proportional to )

the concentrations of the y
protein and the messenger
RNA from which it is
translated, respectively.

a, b> 0. x

2




Example I: Genetic control

Tr=—ax +Yy
72 Fixed points = intersections of nullclines:
Yy = 1+ 332 - by 1.2
ar =
b(1+ x)
1 1 — 4a”b?
rx =0, yx =0 and z*x = \/Qab Yk = ax*,

if 1 —4a%b? >0 < 2ab < 1.

The last two FP coalesce when a, = 1/(2b). At this bifurcation x* = 1.



Example I: Genetic control

Determine the vector field starting from the nullclines
(vertical and horizontal fields).

Y

\ . 1 . The Jacobian

PESSCEEEE —a
,"",T A p— < A _b )
¥ AN (T+a7)?

\ 7<0, so all the fixed

x points are either sinks
(essentially, stable) or
saddles depending on
A.



Example I: Genetic control

(0,0) is always a stable FP (we disregard the degenerate case a
=b). For 0 <x* <1 FP is saddle. For x* > 1 FP is always a stable
node. The phase portrait:

y The unstable manifold of the
> saddle is trapped in between

\/ the two nullclines.
RN The stable manifold separates
< the plane into two basins of

attractions of the two sinks.

2N )

Biological interpretation: The system can act as a biochemical
switch, if the mRNA and protein degrade slowly enough, the
decay rates satisfying ab < V2. Then, two steady states: 1. at the

origin the gene is silent and there’s no protein around to turn it

on; 2. for x*, y* large the gene is active and sustained by the high
protein level.




Transcritical and pitchfork
bifurcations

In the same manner, by introducing exponential damping in
the y-direction, we can construct prototypical example
systems of other bifurcations in 2D.

i = uxr — x°,7 = —y (transcritical)

3

T = pux —x°,y = —y (supercritical pitchfork)

i = px + x°,17 = —y (subcritical pitchfork)



Ex.II: supercritical bifurcation

& = pr — x°

Y= -y
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Example III

— uxr + y + gin ¢ Invariance under x =X Y=Y,
so the phase portrait must be

xr — Y symmetric under reflection
through the origin.

S,
|

The origin is a FP for all . The Jacobian at (0,0):

u+1 1 r=pand A=—(u+2) =
A = 1 1 At (0,0) there’s a stable FP if
u<-2and asaddle if g > -2
(and 1 <0).
The symmetry and the change in the stability of (0,0)
suggests a pithfork bifurcation. =» Look for a symmetric pair

of FPs close to the origin for u close to y.=-2.



Example III

The fixed points satisty ¢y = x = (,u + 1) + sinx = 0.

Forasmallx#0, (u+ 1)z +x | O(x5) = (

= p+2—22/6 0= " =~ +/6(u+2)
for p slightly greater than -2.

A supercritical pitchfork bifurcation occurs at x4, = -2, because
the pair of fixed points exist after the origin has become a saddle
for 1> -2. (In other words, the pair of FPs do not exist when the
origin is still a stable FP for x <-2, which would be the case for a
subcritical pitchfork bifurcation.)



Example III

Since the bifurcation is supercritical, the FPs are stable. To
help drawing the phase portrait one can determine the
eigenvectors at the origin at bifurcation. Using the Jacobian
for y=-2, we solve for the eigenvectors as (1,1) and (1 -1).

The phase portrait for u y
slightly greater than -2 \ e
and near the origin. \

Remember that

analyses was made by

linearization: It is valid ) x
only for small x and |
|

u close to u.. Means:
system is close to
bifurcation.




Zero-eigenvalue bifurcations

All the bifurcations up to now have occurred when A =0, i.e.
when one eigenvalue equals zero (A = 1;4;). These zero-
eigenvalue bifurcations always involve collision of two or
more fixed points. They typically have a counterpart in one-
dimensional systems. This is not the case for the following
Hopf bifurcations.



Hopf bifurcations

In what ways can a stable fixed point in a 2D system lose its
stability? The eigenvalues of the Jacobian are the key.

A stable FP must have Re 1 < 0. Destabilization: Re A becomes

positive. Two possibilities:

ImA ImA

——e— ReA

(@ (b)

The previous zero-eigenvalue
bifurcations: a real eigenvalue
passes through 4 =0.

ReA

The new bifurcation: two
complex-conjugate
eigenvalues
simultaneously cross the
imaginary axis into the
right half-plane. A Hopt
bifurcation can occur in
phase spaces of
dimension n = 2.



Supercritical Hopf bifurcation

Suppose a system settles down to equilibrium through
exponentially damped oscillations and the decay rate depends
on a control parameter u. If the decay becomes slower and
slower and finally changes to growth at a critical value g, the
equilibrium state will lose stability. Often a small-amplitude
sinusoidal limit-cycle oscillation about the former steady state
results. These are the characteristics of a supercritical Hopt
bifurcation. In the phase plane: a stable spiral =» an unstable
spiral surrounded by small, nearly elliptical limit cycle.

[\/\/\/\ (@) L < 4,




Supercritical Hopf bifurcation

3
pHr —r Limit cycle at = V.

0 =w -+ br? 4

Example system: T

u controls the

stability of FD,

w = frequency of

infinitesimal

oscillations,

b determines -

the dependence p<o0 ©>0
of frequency on amplitude for larger

amplitude oscillations




Supercritical Hopf bifurcation

To see how the eigenvalues behave during the bifurcation,

rewrite the system in Cartesian coordinates.
0= — e 0 Trick to remember!
T =1cost) —rfsind
= (ur —r®)cos @ — r(w + br?) sin

= [ — (2° + y*)]z — [w + b(a® + y?)]y Similarly,

= ux — wy + cubic terms Y = wx + uy + cubic terms
= A = po = Jacobian at the origin.
w

The eigenvalues cross the

= \ = == 7w  Imaginary axis from left to right as
4 increases from negative to
positive values.




Supercritical Hopf bifurcation
Rules of thumb

1.

The size (radius) of the limit cycle grows continuously
from zero and increases proportional to (u— u.)'/? for p
close to L.

The frequency of the limit cycle ® =Im A at = g (=0). This
is also correct within O(u — 1) for u close to u.. = The
period T'= (2n/Im A) + O(u — ).

However, in Hopf bifurcations encountered in practice:

1.
2

3.

The limit cycle is elliptical, not circular.
The shape of the limit cycle becomes distorted as x moves

away from g.. o
Im A depends on . i

I

Red




Subcritical Hopf bifurcation

Example system: r = Ur —+ 7“ 5

0 = w -+ br?
The crucial difference to the subcritical case: the cubic term is
destabilizing.

Phase portrait:
The unstable cycle K—/
between the stable

EP at the origin

and the stable <0 >0
limit cycle tightens At 4= 4, =0 the unstable cycle engulfs

around the FP as u the origin, which becomes unstable. =»
increases. Large-amplitude oscillations.



Subcritical Hopft bifurcation

Also this subcritical system exhibits hysteresis: once large-
amplitude oscillations have begun, they cannot be turned off by
bringing u back to zero. The large oscillations persist until

1 =-1/4 where the stable and unstable cycles collide and

annihilate. This is a so-called saddle-node bifurcation of cycles
(coming up).

Subcritical Hopf bifurcations occur for example in the
dynamics of nerve cells, in aeroelastic flutter and other
vibrations of airplane wings, and in instabilities of fluid flows.



Identifying Hopf bifurcations

Supercritical, if a small attracting limit cycle appears immediately
after FP goes unstable, and its amplitude shrinks back to zero as
the parameter is reversed (no hysteresis).

Subcritical in most other cases. If hysteresis, then for sure.

Degenerate: For example, changing the damping u from positive
to negative in the damped pendulum Z + px + sinz = 0 turns
FP at the origin from a stable to an unstable spiral. However,
there are no limit cycles on either side of the bifurcation, but a
continuous band of closed orbits surrounding (0,0). This is not a
true Hopf bifurcation. Typically happens when a
nonconservative system becomes conservative at the bifurcation
point: FP becomes a nonlinear centre, not a weak spiral.



Oscillating chem1cal react1ons

The first experimental
observation of Hopf
bifurcations was made in
the early 50’s by the Russian
biochemist Boris Belusow.
He was not believed and
did not get his paper
published.

In 1961 graduate student
Zhabotinsky proved him
right: BZ reactions.
Nowadays oscillations in
chemical reactions are the

prototypical examples of Expanding circular waves of
Hopf bifurcations. oxidation.




Oscillating chemical reactions

The Belousov-Zhabotinsky Oscillating Reaction

https://youtu.be/PpyKSRo8lec

See in the book the construction of trapping region etc. to
prove the existence of oscillations.


https://youtu.be/PpyKSRo8Iec

Global bifurcations of cycles

- involve large regions of the phase plane (instead of just the
neighbourhood of fixed point)

Saddle-node bifurcation of cycles

7o (Exhibits the subcritical Hopt
bifurcation at #=0 as seen in the

: 2
0 =w+br previous section.)

7'“:,wr+fr3—

The radial equation exhibits a saddle-node bifurcation of fixed
points at yc— -1/4. In 2D the FPs correspond to limit cycles.

©
G (
G4



Global bifurcations of cycles

Infinite-period bifurcation y — (1 — TQ)

a) The radial part is of the
same form as the one-

g};nenﬂ.onal supercrljtlflal Radial direction: There’s a FP at
lfurcation system withno .« _ 4 A1l other trajectories

cgntrol Pargmetq (so, mo approach the unit circle (r* = 1)
bifurcation in this alone). :
monotonically as t —» oo.

ézu—sinﬁ, 1> 0.

b) The angular part is of
the same form as a Angular direction: g, =1.If u>1,
nonuniform oscillator. the motion is counterclockwise

everywhere. If ;1< 1, there are
two invariant rays defined by
sin 0= L.



Global bifurcations of cycles

Infinite-period bifurcation

As p = 1* the bottleneck in the limit cycle » = 1 becomes
increasingly severe. At u, =1 the fixed point appears on the
circle and the oscillation period becomes infinite.

1" (ILL o MC)_1/2 slow \

For <1 the fixed )

point splits into a

saddle and a node. J )
1 1<

u>



Global bifurcations of cycles

Homoclinic bifurcation (also called saddle-loop bifurcation)

Here, part of a limit cycle approaches a saddle point. At the
bifurcation the cycle touches the saddle point and becomes a
homoclinic orbit.

There is no clear analytic example. Numerical solution of the
system

T =1
2

Y= uy+xr—x°.



Global bifurcations of cycles

Homoclinic bifurcation

15 =4 Numerically: bifurcation
at u.=-0.8645.

)= py+a—a’.

(a) i< u.: a stable limit
cycle passes close to a
saddle point at the |
origin.

(b) pincreases =» the
limit cycle swells.

(€) 1= p.: a homoclinic "] @ " @
orbit is created. \ \1
(d) &> u.: the saddle ——— @ — ,
connection breaks, the / %

loop breaks.

(a)




Global bifurcations of cycles

Scaling laws

Characteristic scaling laws govern the and period of the limit
cycle as the bifurcation is approached. Here, 11 <<1 denotes a
dimensionless measure of the distance from the bifurcation.

Amplitude of
stable limit cycle Period of cycle
Supercritical Hopf ou'?) 0()
g?gc)ilgggode bifurcation 0() 0(1)
Infinite-period o) o)
Homoclinic o) O(ln )




Global bifurcations of cycles

There are exeptions. Consider the van der Pol oscillator:
i+ et(z®—1)+z=0

At £ =0, the eigenvalues at the origin are pure imaginary
(A = *i) suggesting Hopf bifurcation at € =0, but we know
that for 0 < £ < 1 the system has a limit cycle of
amplitude r = 2. The cycle is born full grown, not 0(y/¢).

Explanation: The bifurcation at € =0 is degenerate. The

. .2 .
nonlinear term €xx” vanishes at the same parameter value
as the eigenvalues cross the imaginary axis; a nongeneric
coincidence.



Global bifurcations of cycles
i+ et(x? —1)+x=0
Rescale to remove degeneracy: Write the equation as

1/2

5z§+x+e:c2;ij—ej::0 andletu:6x2$u:e X

— 4+ u+u’t—ew=0.

Now the nonlinear term is not destroyed when the
eigenvalues become pure imaginary.

The limit-cycle solution is (¢, €) ~ 2cost for 0 < e << 1.

In terms of u: u(t, €) & 2v/€ cost.

The amplitude grows like /€ as expected for a Hopf bifurcation!

Mere reparametrisation — a change in dynamics! (?)



Poincare Maps

Governing equation for the Josephson junction
(h/2m)C N h/2m
2e 2e R

In a non-dimensionalised form: ¢// 4+ Oé¢/ -+ sin ¢ =

(¢ is phase difference across junction; differentiation with
respect to scaled time)

+ I.singp = Ip.

-
Y, e'? superconductor #1
weak coupling >< R —~C vV
yfzei¢2 superconductor #2
\




Poincare Maps

Governing equation for the Josephson junction
(h/2m)C N h/2m
2e 2e R

In a non-dimensionalised form: ¢// 4+ Oé¢/ -+ sin ¢ =

(¢ is the phase difference across junction; differentiation with
respect to scaled time)

¢ =y
y =1 —sing — ay.

+ I.singp = Ip.

—

The phase space is a cylinder, since ¢ is an angular variable
and y € R.



Poincare Maps
¢ =y
y =1 —sin¢ — ay.

Josephson junction

Fixed points satisty y* = 0 and sin¢™ = I — two FPs on the
cylinder if I < 1, and none if I > 1. When FPs exist, one is a
saddle and other is a sink.

: B 0 1
Jacobian A = ( _cosd* —a )

T=—-a<0and A =cos¢p™ = £v1 — 12

Stable node if 7% — 4A = o® — 4\/1 — 12 > 0.
Otherwise the sink is a stable spiral.

At ] = 1 stable node & saddle coalesce in saddle-node bifurcation.



Poincare Maps
¢ =y
y' =1 —sin¢g — ay.

Josephson junction

When I > 1 there are no more FPs available.

Claim: All trajectories are attracted to a unique, stable limit cycle.

The first step to prove this is to show that a periodic solution
exists. For this we need a Poincare map.

Nullcline y

y =0 : )’:}’2"""\\: ----- k--u
y/ =— a—l(l — sin ¢) / \\ﬂ/ y=o"'(I-sing)
All trajectories enter the 7= ;Z' o //-(- ---------
strip y; < y < y, and stay there. s




Poincare Maps

Josephson junction

Since ¢ = 0 and ¢ = 2m are equivalent on the cylinder, we
investigate the rectangular box 0 < ¢ < 2mand y, <y < y,.

Y=y \\ Trajectory starts at a height y on
N YD the left side and intersects the
right side at height P(y).
Y=M" //

The mapping from y to P(y) is
0 2 called the Poincaré map or the
first-return map.

The Key: If we can show that there’s a point y such that P(y" )=y,
then the corresponding trajectory will be a closed orbit.



Poincare Maps

Josephson junction
To show that y" exists, we need to know
® what the graph roughly looks like.
- AN .

. TN For a trajectory that starts at
P 1" y=y1, ¢ = 0:Ply1) > .
S— P(y) N For a trajectory that starts at
I il B 0 27 ¢y=3’2/¢=03P(YZ)<YZ-
k . . . .

=0 Solutions of differential equations depend

(mod 27) continuously on initial conditions, if the vector

field is smooth: P(y) is a continuous function.

Uniqueness, two trajectories cannot cross: P(y) is a monotonic
function.



Poincare Maps

P(y) is continuous and monotonic —

y(27) Intermediate value theorem or

P(y) common sense: P(y) must cross
the 45° diagonal somewhere; this
is the point y".

y(0) — There exists a closed orbit.

N y* Y2

To exclude the possibility of P(y) = y on some interval,
uniqueness must be proven using AE = 0 when ¢: 0 — 2.



Poincare Maps

Poincareé maps are useful studying swirling flows, e.g. flow near
a periodic orbit or flow in some chaotic system.

General definition of a Poincaré map in an n-dimensional system
x = f(x)

Let S be an -1 dimensional
surface of section that is
transverse to the flow.

S

The Poincaré map is a mapping
from S to itself, obtained by following
trajectories from one intersection with S to
the next. If x; € S denotes the kth intersection,

then then the Poincaré map is defined by x 11 = P(Xg).



Poincare Maps

Now, suppose that x" is fixed point of P, i.e., P(X') =x.
A trajectory starting at x returns to x after some time T, and is
therefore a closed orbit.

The Poincaré map converts difficult problems about closed
orbits into much easier problems about fixed points of a
mapping. (Although finding P may be impossible.)



Poincare Maps

Example. Vector field in polar coordinates
r=r(l—r?)
0=1

Let S be the positive x-axis. Compute the Poincare map and

show that the system has a unique periodic orbit and classify
its stability.

Solution: Let ry be an initial condition on S. The first return to
S occurs after a time of flight t = 2 (because 6 = 1).

1 1 d 27
—> 1 = P(TO) / —dT — / (1 TTQ) — / dt = 2.
o 0

=r; = |1+ 6_47T(7“O 2 1)]_1/2




Poincare Maps

P(r) =[1+e ** (2 —-1)]"Y2 Tteration: 1,4, = 1, n € N.

[teration of the map graphically by constructing a cobweb.

A fixed point occurs at
r =1 that is the intersection
point of P(r) and the 45° line.

P(r)
The cobweb
construction is often h = P(r) -
the only doable way ? l
get an idea of no= () -

chaotic dynamics
(for example, to o 1 =l
map out strange

attractors).

Next time: Chaos — Lorenz equations.



