Time series modeling and predictive
analytics



« Basic concepts in time series analysis

« Stationarity

* Forecasting with simple time series models
* Feature selection
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A Time Series: US GDP
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Objectives of time series analysis

1.Compact description of data.
2.Interpretation.

3.Forecasting.

4.Control.

5.Hypothesis testing.
6.Simulation.
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Example: Decomposition of US GDP growth

Objectives of time series analysis
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1. Compact description of data.

Example: Classical decomposition: X =T, + S +Y;:.

Example: seasonal adjustment
Example: Predict US GDP

2. Interpretation.
3. Forecasting.
Control.

Hypothesis testing.

S »n kA

Simulation.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A
seasonal-trend decomposition procedure based on loess. Journal of Official
Statistics, 6(1), 3—73.

http://www.jos.nu/Articles/abstract.asp?article=613
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Naive forecasts of adjusted data

Forecasts from STL + Random Walk
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Time series modeling: Chasing stationarity




Typical steps in time series modeling

1. Plot the time series.
Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals are stationary.
(a) Estimate and subtract T}, .S;.
(b) Differencing.

(c) Nonlinear transformations (log, /).

3. Fit model to residuals.
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« If a series is non-stationary, persistence of shocks to the system is
infinite (i.e. they never die away)

« Spurious regressions: If two variables are trending over time, a
regression of one on the other could have a high R? even if the

two series are unrelated

« If variables in a regression model are non-stationary, it can be
shown that the standard assumptions for asymptotic analysis are
not valid --> the usual t-ratios don’t follow t-distribution and we
cannot do any reliable hypothesis tests regarding regression
parameters
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Definition of a time series model

A time series model specifies the joint distribution of the se-
quence { X} of random variables.
For example:

PX; <xy,...,Xt <axlforalltand 1, . .., x¢.

Notation:
X1, Xo,...1s a stochastic process.
x1,Ta,...1s a single realization.
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Simple example: White Noise

Gaussian White Noise

Example: White noise: X; ~ WN (0, 0?).

ie., {X;} uncorrelated, EX; = 0, VarX; = o2.

Example: i.i.d. noise: {X;} independent and identically distributed.

PlXy <mi,..., Xy <@y = P[Xy <m - P[Xy <1l

Not interesting for forecasting:

P[Xt S Zlﬁ't‘Xl, . -;Xt—l] = P[Xt S LUt].

P[Xt < Ll’,‘t] = @(C(Zt) =

L L L L
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It is mathematically equivalent to forecast the given variable or
any monotonic transformation of the variable and lagged values

« E.g., itis equivalent to forecast the level of GDP, its logarithm, or
percentage growth rate

* Given a forecast of one, we can construct the forecast of the other

Statistically, it is best to forecast a transformation which is close

to iid

 For variables such as output and prices, this typically means
forecasting growth rates

 For rates, typically means forecasting changes

A' Aalto University
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Stationarity

Definition
Strict stationarity: distributions are time-invariant.

Definition
Weak stationarity: the first two moments (mean and variance) are
time-invariant.
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Weak stationarity (formally)

Suppose that { X;} is a time series with E[X?] < co.
Its mean function is

MUt = E[Xt]
Its autocovariance function is

vx(s,t) = Cov(Xs, Xy)
= E[(Xs — ps) (Xt — )]

We say that { X} is (weakly) stationary if
1. pq 1s independent of ¢, and
2. For each h, vx (t + h,t) is independent of ¢.
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Weak stationarity (in practice)

* When plotting a time series, we observe that the series varies
around a fixed level within a a finite range!

» The first two moments of the distribution are constants (i.e., mean
and variance do not depend on time index)
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Example: White Noise model

Example: i.i.d. noise, E[X;] = 0, E[X?] = o2. We have 25
o? ifh=0,
’Yx(t+h,t) = er
0  otherwise.

Thus, osr

1. puy = 0 is independent of £.
2. vx(t+ h,t) = vx(h,0) for all ¢.

So { X} is stationary. st

Similarly for any white noise (uncorrelated, zero mean), X; ~ WN (0, 02). 2f

-25
0

-1+
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Example: Moving Average MA(1)-model

MA(1) with 6 = 0.7, = 0.1
Xt = Wt + GWt_l, {Wt} ~ WN(O,O'2).
We have E[X;] = 0, and

vx (t+ h,t) = E(X¢1 1 X3)
= E[(Wisn + OWiin—1)(We + 0Wi_1)]

o2(1+62) ifh=0,

=< 0% if h = +1,
0 otherwise.
| . . | Thus, { X} } is stationary.
20 40 60 80 100
Time
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Example: Random Walk process

Suppose we use coin-flipping to decide whether to walk one step forward or one
step backward. Statistically, we are then following a binary i.i.d model.

1- G669 G669 © O© O (0] (0] o 9 (0] GEo00060009

PlX;=1]=P[X,=—1] =1/2.

-11FO O o O O 66 Good 66O (U] (CaSAY AV 4

I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Ref: www.stat.berkeley.edu/~bartlett/courses/153-fall2010
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Example random walk (2)

Our path or progress is then a sum of the steps that we have
taken ——

Sy =", Xi.

Differences: V.S; = S; — Si—1 = X;.

Data Science for Business I
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Example random walk (3)

What is the mean and variance?

ESt ? VarSt?

10
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Example random walk (4)

Example: Random walk, S; = >'_, X; fori.i.d., mean zero {X;}.

We have E[S;] = 0, E[S?] = to?, and

vs(t + h,t) = Cov(Si4h, St)

h
= Cov St + ZXt+S, St

= COV(St, St)

1. py = 01s independent of ¢, but

2. vs(t + h,t) is not.

So {S;} is not stationary.

s=1

=to”°.

2

10

-10
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Although trend-stationary and difference stationary series are both
trending over time, the correct approach needs to be used each case

Deterministic trend process (e.g., y; = a + St + u;):
* Use detrending

 Differencing trend-stationary series would remove the non-stationarity but as
a result it would introduce MA(1) structure into the errors

Random walk (or stochastic non-stationarity):

« Use "differencing” (e.g., instead of modeling levels, consider rate of change)

» Trying to detrend a series with a stochastic trend will not remove the non-
stationarity

A' Aalto University
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« One way to determine more objectively whether differencing is
required is to use a unit root test.

» These are statistical hypothesis tests of stationarity that are
designed for determining whether differencing is required.
Dickey Fuller (DF) tests
Augmented Dickey Fuller (ADF) tests

Phillips-Perron test
KPSS test

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the
null hypothesis of stationarity against the alternative of a unit root: How sure

are we that economic time series have a unit root? Journal of Econometrics,
54(1-3), 159-178. https://doi.org/10.1016/0304-4076(92)90104-Y
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Forecasting with time series




« v,: time series to forecast

* n:last observation

 n + h: time period to forecast
* h: forecast horizon

« [,: information available at time n to forecaset y,,,;, (e.9., leading
indicators, covariates, historical observations)

A' Aalto University
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When we say that we would like to forecast y,,,;, given [, we
mean that y, . ; is uncertain

* y.+n has a conditional distribution, y,,. 5 | I, ~ F(Vnsn |1,)

* The conditional distribution contains all information about the
unknown y,, .,

A complete forecast of y, ., is the conditional distribution or a
its denSity f(yn+h|1n)

However, F(y,.,|1,) is complicated (distribution), we typically
report low dimensional summaries called forecasts

A' Aalto University
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Point forecast (the most common forecast type)
Variance forecast

Interval forecast

Density forecast

Etc.

A' Aalto University
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 Point forecast f,, ., is “the best guess” for y,, ., given the
distribution F(y,,+n|l,)
« We can measure accuracy by a loss function, which is typically
fore regressions the “squared error”: I(f,y) = (y — f)?
 Therisk is the expected loss:
* The “best” point forecast is defined to be the one with the smallest
risk:
f = argming E((nen — )% |In)
= E(Yn+nlin)

The optimal point forecast is the true conditional expectation.
Point forecasts are estimates of the conditional expectation!

A' Aalto University
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Ex. What function f(x) would predict the fraction of votes
for Donald Trump?

Y, :f(Xi)+gi
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Why estimate 7
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Is there an ideal f?

The ideal or optimal predictor of Y with regard to mean-squared prediction error:

f(x) = E(Y |X = x) is the function that minimizes
E[(Y - g(X))2[X =x]

over all functions g at all points X = x

Aalto University Data Science for Business |l
School of Business 22.2.2019
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Challenge: The conditional distribution and the ideal point forecast

are unknown. They need to be estimated (approximated) from data
using a suitable model.

Estimation involves typically the following issues:
« Approximation of E (y,,41|1,) with a parametric family
* Selecting a model within the parametric family
 Selecting a sample period (window width)

« Estimation of parameters

A' Aalto University
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What features (or variables) should be included in the information
set?

Past lags of the target variable?

Past observations of some other variables, “leading indicators”,
covariates, dummy indicators?

I = (X, Xp-1, )

A' Aalto University
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|t is not clear what the actual future values would be for the
features (variables used as indicators)

 |If the features are predictable (i.e., have some patterns that can be
modeled), you can create a forecast for each of the features
separately. However, remember that using these predicted values
as features propagates their forecast errors to the target variable,
which may further increase errors or produce biased forecasts

« A pure time series model (i.e., one that uses only past records of
the target variable) may have similar or even better performance
than a model that uses features

A' Aalto University
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« The conditional expectation depends on infinite past: E(y,,+1|,,) =
E(yn+1 |xn' Xn—1s = )

« Rather than attempting to grasp the inifinte past, we can typically
replace it with Markov (finite memory) approximation

* For some p: E(yn+1|xn: Xn—1, ) R E(n+1lxn, ---:xn—p)

A' Aalto University
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* We will assume we have observed a set of training data:

(X, 1), (X5, 15),0 (X, X, ) 3

 We must then use the training data and a statistical method to
estimate f.

* Perhaps the most common approach is to use linear regression

« Although linear models are almost never correct, they serve as a

good and interpretable approximation to the unknown true function
f(X)

A' Aalto University
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Simple regression

Ely] = po + p1z
Yy~ N(;BO + ﬂlmaam)

Note: in general, normality assumption is not required
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* Thetrue E(yn+1lxn, ..., Xp—p) is Uunknown and possibly non-linear

 However, in practice, linear approximations give a solid baseline
model which often performs surprisingly well even in the presence
of unknown non-linearities:

E(Yn+1|xn» ---:xn—p) ~ By + ,B{xn + o+ ﬁzloxn—p = B'xy
« The model error is defined as the difference between the actual
observation y, ., and the linear forecast

€n+1 = Yn+1 — ﬁ’xn
« As a result, we obtain the following linear point forecasting model:

— 4
VYn+1 = B Xp + €41

A' Aalto University
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In Matrix Form: y=Xg+¢

/?Jl\
Y2

0./
(yl\

Y2

\yEn/

(1 r11 I12 ... r1i; ... xlp\
1 21 oo ... Z2j ‘e T2p
\1 mnl mnz PR mnj P mnp)

(ﬁo + f1z11 + Pazin + - + 6pm1p\
Bo + Piz21 + Paxaz + - - + Bpxap

\;BO + ﬁlxnl + ;825;773,2 + -+ /Bpxnp)

(1)

e,/

Aalto University
School of Business
[ |

Data Science

for Business |l
22.2.2019
41



Least squares fit

minimize the residual sum of squares

N
RSS(B) = > (yi—f(=:))”
i=1
N p 5
= (yz —Bo— %‘!35)
i=1 =1
fX0) =Po+)_Xif;

y=X3=XX'X)"XTy
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Example: univariate autoregression

* Suppose x; = (Vi Ve—1s - Ye—k+1)
» Alinear forecasting model is given by

Ver1 = Bo + B1ye + B2Ye-1 + -+ BeVe-k+1 + €41
* This model is known as kth order autoregression AR(k)

R n—1 1
p = (th’é) <;)Xt)/t+1>

Yn+iln = n—|—1|n ,an

' Aalto University Data Science for Business |l
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GDP example

y: = Alog(GDP;), quarterly
AR(4) (reasonable benchmark for quarterly data)

Yir1 = By + Biyt + Boye—1 + Bsyr—2 + Baye—3 + erv1

colour

u/ — AR(4)
n l" = GDP growth

o
1

B s(B)

Intercept 1.54 (0.45)
Alog(GDP;) 0.29 (0.09) *
Alog(GDP;_1) 0.18 (0.10)
Alog(GDP;_5) —0.05 (0.08) .
-10-
1970 1980 1990 2000 2010
time
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One step-ahead forecast using AR(4) model

Uses the information from the last 4 quarters 2011:2 — 2012:1 to
predict the unknown observation 2012:2 which is not included in
the original dataset

Do we trust the obtained forecast? Actual Forecast
2011:1  0.36
20112  1.33
2011:3  1.80
2011:4 2091
2012:1 1.84
2012:2 2.59

A' Aalto University
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« The choice of AR(4) model was arbitrary!

« Should we have considered an autoregression with
different number of lags?

« Forecasts can be quite sensitive to these choices

« The goal is to produce accurate forecasts that
minimize the empirical risk (low MSFE)

* Finding the true model is not relevant as this maybe
a model with infinite number of parameters

Model selection problem!

A' Aalto University
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Long-term prediction means predicting further into the future

Choices to implement or use the regression model in prediction:
* Recursive Prediction Strategy

» Direct Prediction Strategy

 And variants

A' Aalto University
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Recursive Prediction Strategy

Predictions are made one step ahead at the time
Xer1 = f(Xt, Xt—1y Xt—2, - - -Xt—d—l—l)

Xt4+2 = f(Xt+1> Xty Xt—1y Xt—2, - - ~Xt—d)

Benefits: Only one prediction model f to estimate
Disadvantages: Accumulation of errors in each step
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Direct prediction strategy

Predictions are made k steps ahead at once:

)?t—l—k = fk(Xt, Xt—1y Xt—2, -+ Xt—d—|—1)|

Benefits: The problem of k steps ahead prediction is solved directly
Disadvantages: Must train a model f, for each k

' Aalto University Data Science for Business |l
School of Business 22.2.2019
[ |

49



« What is long-term prediction depends on the context!
 Interesting phenomena vary from milliseconds to centuries
* Prediction further into the future is more difficult

« Direct Prediction Strategy is preferred if long-term prediction is the main
interest

A' Aalto University
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« What makes a time series analysis different from classification
problems?

« What role does stationarity have in time series analysis?
* What is the definition of point forecast in this context?
« Describe one example of an autoregressive time series model

A' Aalto University
|



Our next topic will be to discuss the forecast selection problem further!

Historically, it has been common to use statistical tests to select empirical
models, but more recent discussions suggest that use of statistical tests
may not be a good idea when choosing forecasts

« Tests answer scientific questions (e.g., hypothesis regarding model parameters
such as is some coefficient of interest zero)

» Tests are not designed to answer the question: Which estimate yields better
forecast

« Standard errors are appropriate for measuring estimation precision but not
the goodness of forecasts

For model selection, we want something different than the classical tests!

A' Aalto University
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Model selection




« Why are we building models? Models are useful, because they
help us to answers questions about the reality

* Models are abstractions of reality: some details are forgotten (or
must be forgotten), example: describe your day!

 The modeler is always faced with a trade-off with fidelity to data
and the level of abstraction

» Generalization was earlier defined as the ability to model (or
predict) future, unseen data!

A' Aalto University
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« If two models have the same error, which one is better?
* One approach is to use the simpler model, that is "fewer parts

« Model selection crtieria are used to give a number for model
complexity, for instance "number of parts in the model”

« Using more data in training results in better models usually
« Parts mentioned are usually model parameters, or coefficients

* Introduce model selection criteria that penalize for model
complexity

7
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Criteria for model selection

C, = l (RSS 1 Qdé‘rz) d = number of predictors

T

AlIC =

(RSS + 2d57)

no?

BIC = - (RSS + log(n)ds?)

RSS/(n—d—1)
 TSS/(n—1)

Adjusted R* =1

alto University Data Science for Business |l
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« Both AIC and BIC are relative measures for selecting models
« AIC leads to the following model selection "rules of thumb”:

I. If two models have the same error, select the one with less
parameters (simpler)

ii. If two models have the same number of parameters, select the
one with smaller error

« BIC leads to the following model selection rules of thumb”:

I. If the models have the same number of parameters and error, use
the one learned from more data

A' Aalto University
|



MSE
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« Goodness of models can be judged from many perspectives

» Model can have good predictive accuracy, in a validation set. This does not
guarantee good generalization into the future

« Relative merit of two models can be estimated using model selection criteria,
like Akaike’s Information criterion (AIC), or Bayesian Information Criterion
(BIC). In addition to predictive error, the model complexity and effective
sample size determine what is good

 Business considerations can also be used a criterion to select the model!

A' Aalto University
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Feature selection
(review from DSFB-1)




Feature selection with learning in the loop
“Wrapper perspective”
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* Subset selection
« E.g., best subset selection, stepwise selection methods

« Identifying a subset of all p predictors X that we believe to be related to the
response Y, and then fitting the model using this subset

« Shrinkage
« Involves shrinking the estimates coefficients towards zero
« This shrinkage reduces the variance

* Dimension reduction
« E.g. Principle Components and Factor Analysis

« Involves projecting all p predictors into an M-dimensional space where M
< p, and then fitting linear regression model

A' Aalto University
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Forward search

Forward-stepwise selection is a greedy algorithm, producing a nested
sequence of models.

Forward Search
o Let F =1}

@ While not selected desired number of features

@ For each unused feature f:

@ Estimate model’s error on feature set F | Jf (using cross-validation)

@ Add f with lowest error to F

Aalto University Data Science for Business |l
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Backward search

Backward Search
o Let F = {all features}

@ While not reduced to desired number of features

@ For each feature f € F:

@ Estimate model’s error on feature set F\f (using cross-validation)

@ Remove f with lowest error from F

' Aalto University Data Science for Business |l
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Stepwise solutions as approximations

~

El|6(k) — Bl|*
0.80

090 0.95

0.85

0.70 0.75

065

Best Subset

Forward Stepwise
Backward Stepwise
Forward Stagewise

I
10

I [
15 20

Subset Size k&

I
25

30 Data Science for Business ||
22.2.2019
66



* Forwards / backward stepwise methods can be used when the
number of variables p is too large for best subsets method

* Forward / backward methods are heuristics and are not
guaranteed to find the best model containing a subset of
predictors

« Backward selection requires that n >> p - full model can be fitted

» Forward selection can also be used when n < p. In fact, it is the
only viable subset method for large p

A' Aalto University
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Regularization techniques

(aka "shrinkage methods”)



 OLS is good when the relationship between Y and X is linear and
the number of observations n is way bigger than the number of
predictors pi.e.,n>p

« But, when p is almost as large as n, then the least squares fit can

have high variance and may result in overfitting and poor
estimates on unseen observations,

 And, when n < p, then the variability of the least squares fit
increases dramatically, and the variance of these estimates in
infinite (unique estimate doesn’t exist!)

A' Aalto University
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Ridge estimates are found by minimizing:

9
T

p - p p
=1 =1

i=1 j=1

« As with least squares, ridge regression seeks coefficient estimates
that fit the data well, by making the RSS small.

« The second term is a penalty that shrinks the coefficients towards
Zero

« Though not immediately obvious, shrinking can help to reduce
variance

A' Aalto University
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Problem with Ridge regression

* Unlike subset selection, which will generally select models
that involve just a subset of the variables, ridge regression
will include all p predictors in the final model!
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The Lasso Estimator
) 1 N p " P
plasse = ﬂTE;ﬂiﬂ{E D (wi—Bo— ziB) +AY |.-'3j|}
: i=1 =1 j=l1

« Similar to ridge regression, but the key difference in behavior follows
from penalty

Aalto University Data Science for Business |l
School of Business 22.2.2019
[ |

72



 Ability to force some coefficients exactly to zero -
performs variable selection

A model is called “sparse” when it involves only a subset
of variables

« (Can even be used when p > n, a situation where OLS fails
completely!

« Computationally efficient: for any given “lambda”, we only
need to fit one model and the computations turn out to be
very simple
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Lasso vs. Ridge

LASSO: 5
n P P
minimize E yi — Bo — E B subject to E Bil < s
B i=1 j=1 J=1
Ridge:
2
n p P
Co : 2
minimize E y; — Bo — E Bjzij subject to E 57 <s
7 i=1 j=1 J=1
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Lasso vs. Ridge

Figure 2.2 FEstimation picture for the lasso (left) and ridge regression (right). The
solid blue areas are the constraint regions |B1|+|B2| < t and Bi+55 < 2, respectively,
while the red ellipses are the contours of the residual-sum-of-squares function. The
point 3 depicts the usual (unconstrained) least-squares estimate.
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Example

Table 2.1 Crime data: Crime rate and five predictors, for N = 50 U.S. cities.

city | funding hs not-hs college college4 <crime rate
1 40 74 11 31 20 478
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 71 11 25 19 341
5 67 72 9 29 24 773
50 66 67 26 18 16 940
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 The standard OLS estimates are scale equivariant: multiplying a
variable by constant “c” just leads to scaling of estimated

coefficients by factor of “1/c” [i.e. scaling doesn’t matter]

» In ridge regression, coefficient estimates can change substantially
when multiplying a given predictor by a constant, due to the sum
of squared coefficients term in the penalty part of the ridge
regression objective function
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Choice regularization coefficient

« Consider use of information criteria

1
AIC = — (RSS + 2d5°)
BIC = % (RSS + log(n)ds?)

Choose the model with best performance in
training/validation set
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