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A Time Series: US GDP
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Objectives of time series analysis

1.Compact description of data.
2.Interpretation.
3.Forecasting.
4.Control.
5.Hypothesis testing.
6.Simulation.
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Example: Decomposition of US GDP growth
Objectives of time series analysisObjectives of Time Series Analysis

1. Compact description of data.
Example: Classical decomposition: Xt = Tt + St + Yt.

2. Interpretation. Example: Seasonal adjustment.

3. Forecasting. Example: Predict sales.

4. Control.

5. Hypothesis testing.

6. Simulation.

17

Example: Predict US GDP

Example: seasonal adjustment

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. J. (1990). STL: A 
seasonal-trend decomposition procedure based on loess. Journal of Official
Statistics, 6(1), 3–73. 
http://www.jos.nu/Articles/abstract.asp?article=613

22.2.2019
Data Science for Business II

5

http://www.jos.nu/Articles/abstract.asp?article=613


Naïve forecasts of adjusted data
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Time series modeling: Chasing stationarity



Typical steps in time series modelingTime Series Modelling

1. Plot the time series.
Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals are stationary.

(a) Estimate and subtract Tt, St.

(b) Differencing.

(c) Nonlinear transformations (log,
√
·).

3. Fit model to residuals.

48
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Why do we need to test for non-stationarity?

• If a series is non-stationary, persistence of shocks to the system is 
infinite (i.e. they never die away)

• Spurious regressions: If two variables are trending over time, a 
regression of one on the other could have a high !" even if the 
two series are unrelated

• If variables in a regression model are non-stationary, it can be 
shown that the standard assumptions for asymptotic analysis are 
not valid --> the usual t-ratios don’t follow t-distribution and we 
cannot do any reliable hypothesis tests regarding regression 
parameters
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Definition of a time series model
Time Series Models

A time series model specifies the joint distribution of the se-
quence {Xt} of random variables.
For example:

P [X1 ≤ x1, . . . , Xt ≤ xt] for all t and x1, . . . , xt.

Notation:
X1, X2, . . . is a stochastic process.
x1, x2, . . . is a single realization.

We’ll mostly restrict our attention to second-order properties only:
EXt,E(Xt1 , Xt2).

29
22.2.2019
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Simple example: White Noise

Gaussian White Noise
Time Series Models

Example: White noise: Xt ∼ WN(0, σ2).
i.e., {Xt} uncorrelated, EXt = 0, VarXt = σ2.

Example: i.i.d. noise: {Xt} independent and identically distributed.

P [X1 ≤ x1, . . . , Xt ≤ xt] = P [X1 ≤ x1] · · ·P [Xt ≤ xt].

Not interesting for forecasting:

P [Xt ≤ xt|X1, . . . , Xt−1] = P [Xt ≤ xt].

30

Gaussian white noise

P [Xt ≤ xt] = Φ(xt) =
1√
2π

∫ xt
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Transformations
It is mathematically equivalent to forecast the given variable or 
any monotonic transformation of the variable and lagged values
• E.g., it is equivalent to forecast the level of GDP, its logarithm, or 

percentage growth rate
• Given a forecast of one, we can construct the forecast of the other
Statistically, it is best to forecast a transformation which is close 
to iid
• For variables such as output and prices, this typically means 

forecasting growth rates
• For rates, typically means forecasting changes
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Stationarity

Stationarity

DeÖnition
Strict stationarity: distributions are time-invariant.

DeÖnition
Weak stationarity: the Örst two moments (mean and variance) are
time-invariant.

What does weak stationarity mean in practise?
Past: when we plot time series frtg we observe that the series varies
around a Öxed level within a Önite range!
Future: the Örst two moments of the future values of rt are the same
as those of the data so meaningful inferences can be made.

The Örst two moments (constants) of the return distribution:
Mean (or expectation) and variance (variability) of returns:

µ = E (rt ) ; Var (rt ) = E
h
(rt # µ)2

i
= s2.

Kahra (HSE) 30E00700 Spring 2008, First Period 5 / 75
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Weak stationarity (formally)Mean and Autocovariance

Suppose that {Xt} is a time series with E[X2
t ] < ∞.

Its mean function is

µt = E[Xt].

Its autocovariance function is

γX(s, t) = Cov(Xs, Xt)

= E[(Xs − µs)(Xt − µt)].

4

Weak Stationarity

We say that {Xt} is (weakly) stationary if

1. µt is independent of t, and

2. For each h, γX(t + h, t) is independent of t.

In that case, we write
γX(h) = γX(h, 0).

5
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Weak stationarity (in practice)

• When plotting a time series, we observe that the series varies 
around a fixed level within a a finite range!

• The first two moments of the distribution are constants (i.e., mean 
and variance do not depend on time index)

22.2.2019
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Example: White Noise model
Stationarity

Example: i.i.d. noise, E[Xt] = 0, E[X2
t ] = σ2. We have

γX(t + h, t) =

⎧

⎨

⎩

σ2 if h = 0,

0 otherwise.

Thus,

1. µt = 0 is independent of t.

2. γX(t + h, t) = γX(h, 0) for all t.

So {Xt} is stationary.

Similarly for any white noise (uncorrelated, zero mean), Xt ∼ WN(0,σ2).

7

Gaussian white noise

P [Xt ≤ xt] = Φ(xt) =
1√
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Example: Moving Average MA(1)-model
MA(1) with ! = 0.7, ' = 0.1

Stationarity

Example: MA(1) process (Moving Average):

Xt = Wt + θWt−1, {Wt} ∼ WN(0,σ2).

We have E[Xt] = 0, and

γX(t + h, t) = E(Xt+hXt)

= E[(Wt+h + θWt+h−1)(Wt + θWt−1)]

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

σ2(1 + θ2) if h = 0,

σ2θ if h = ±1,

0 otherwise.

Thus, {Xt} is stationary.

11

22.2.2019
Data Science for Business II

17



Example: Random Walk process
Suppose we use coin-flipping to decide whether to walk one step forward or one 
step backward. Statistically, we are then following a binary i.i.d model.

Time Series Models

Example: Binary i.i.d. P [Xt = 1] = P [Xt = −1] = 1/2.
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Time Series Models

Example: Binary i.i.d. P [Xt = 1] = P [Xt = −1] = 1/2.
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Ref: www.stat.berkeley.edu/∼bartlett/courses/153-fall2010
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Example random walk (2)
Our path or progress is then a sum of the steps that we have 
taken

Random walk

St =
∑t

i=1
Xi. Differences: ∇St = St − St−1 = Xt.
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Example random walk (3)
What is the mean and variance? 

Random walk

ESt? VarSt?
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Example random walk (4)
Stationarity

Example: Random walk, St =
∑t

i=1
Xi for i.i.d., mean zero {Xt}.

We have E[St] = 0, E[S2
t ] = tσ2, and

γS(t + h, t) = Cov(St+h, St)

= Cov

(

St +
h
∑

s=1

Xt+s, St

)

= Cov(St, St) = tσ2.

1. µt = 0 is independent of t, but

2. γS(t + h, t) is not.

So {St} is not stationary.

8

Random walk

ESt? VarSt?
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Stationary or non-stationary?

22.2.2019
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Chasing stationarity: choosing the right method
Although trend-stationary and difference stationary series are both 
trending over time, the correct approach needs to be used each case

Deterministic trend process (e.g., !" = $ + &' + ("):
• Use detrending
• Differencing trend-stationary series would remove the non-stationarity but as 

a result it would introduce MA(1) structure into the errors

Random walk (or stochastic non-stationarity): 
• Use "differencing” (e.g., instead of modeling levels, consider rate of change)
• Trying to detrend a series with a stochastic trend will not remove the non-

stationarity

22.2.2019
Data Science for Business II
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Testing for stationarity
• One way to determine more objectively whether differencing is 

required is to use a unit root test.
• These are statistical hypothesis tests of stationarity that are

designed for determining whether differencing is required.
- Dickey Fuller (DF) tests
- Augmented Dickey Fuller (ADF) tests
- Phillips-Perron test
- KPSS test

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the
null hypothesis of stationarity against the alternative of a unit root: How sure 
are we that economic time series have a unit root? Journal of Econometrics, 
54(1-3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y

22.2.2019
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Differencing time series
Facebook stockprice and returns

22.2.2019
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Forecasting with time series



Notation

• !": time series to forecast
• #: last observation
• # + ℎ: time period to forecast
• ℎ: forecast horizon
• '(: information available at time n to forecaset !()* (e.g., leading 

indicators, covariates, historical observations)

22.2.2019
Data Science for Business II

27



Forecast distribution

When we say that we would like to forecast !"#$ given %", we 
mean that !"#$ is uncertain
• !"#$ has a conditional distribution, !"#$ %" ∼ ' !"#$ %"
• The conditional distribution contains all information about the 

unknown !"#$
A complete forecast of !"#$ is the conditional distribution or a 
its density ((!"#$|%")
However, '(!"#$|%") is complicated (distribution), we typically 
report low dimensional summaries called forecasts

22.2.2019
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Different types of forecasts

Point forecast (the most common forecast type)
Variance forecast
Interval forecast
Density forecast
Etc.

22.2.2019
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Point forecasts
• Point forecast !"#$|" is “the best guess” for &"#$ given the 

distribution '(&"#$|)")
• We can measure accuracy by a loss function, which is typically 

fore regressions the “squared error”: , !, & = & − ! 0

• The risk is the expected loss: 
• The “best” point forecast is defined to be the one with the smallest 

risk:
! = argmin7 8 &"#$ − ! 0 )"))
= 8(&"#$|)")

The optimal point forecast is the true conditional expectation. 
Point forecasts are estimates of the conditional expectation!

• 22.2.2019
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Ex. What function f(x) would predict the fraction of votes 
for Donald Trump?

iii fY e+= )(X

22.2.2019
Data Science for Business II

31



Why estimate f?

2.1 What Is Statistical Learning? 17
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FIGURE 2.2. The Income data set. Left: The red dots are the observed values
of income (in tens of thousands of dollars) and years of education for 30 indi-
viduals. Right: The blue curve represents the true underlying relationship between
income and years of education, which is generally unknown (but is known in
this case because the data were simulated). The black lines represent the error
associated with each observation. Note that some errors are positive (if an ob-
servation lies above the blue curve) and some are negative (if an observation lies
below the curve). Overall, these errors have approximately mean zero.

In essence, statistical learning refers to a set of approaches for estimating
f . In this chapter we outline some of the key theoretical concepts that arise
in estimating f , as well as tools for evaluating the estimates obtained.

2.1.1 Why Estimate f?

There are two main reasons that we may wish to estimate f : prediction
and inference. We discuss each in turn.

Prediction

In many situations, a set of inputs X are readily available, but the output
Y cannot be easily obtained. In this setting, since the error term averages
to zero, we can predict Y using

Ŷ = f̂(X), (2.2)

where f̂ represents our estimate for f , and Ŷ represents the resulting pre-
diction for Y . In this setting, f̂ is often treated as a black box, in the sense
that one is not typically concerned with the exact form of f̂ , provided that
it yields accurate predictions for Y .

22.2.2019
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Is there an ideal f?
The ideal or optimal predictor of Y with regard to mean-squared prediction error: 

f(x) = E(Y |X = x) is the function that minimizes 

E[(Y − g(X))2|X = x]

over all functions g at all points X = x 

22.2.2019
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Estimation

Challenge: The conditional distribution and the ideal point forecast 
are unknown. They need to be estimated (approximated) from data 
using a suitable model.

Estimation involves typically the following issues:
• Approximation of !(#$%&|($) with a parametric family
• Selecting a model within the parametric family
• Selecting a sample period (window width)
• Estimation of parameters

22.2.2019
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Choice of information set

What features (or variables) should be included in the information 
set?

Past lags of the target variable?

Past observations of some other variables, “leading indicators”, 
covariates, dummy indicators?

!" = (%", %"'(, … )

22.2.2019
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Caution: Use of features in predicting
• It is not clear what the actual future values would be for the 

features (variables used as indicators)
• If the features are predictable (i.e., have some patterns that can be 

modeled), you can create a forecast for each of the features 
separately. However, remember that using these predicted values 
as features propagates their forecast errors to the target variable, 
which may further increase errors or produce biased forecasts

• A pure time series model (i.e., one that uses only past records of 
the target variable) may have similar or even better performance 
than a model that uses features

22.2.2019
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Markov approximation

• The conditional expectation depends on infinite past: ! "#$% &# =
!("#$%|*#, *#,%, … )

• Rather than attempting to grasp the inifinte past, we can typically
replace it with Markov (finite memory) approximation

• For some /: ! "#$% *#, *#,%, … ≈ !("#$%|*#, … , *#,1)

22.2.2019
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How to estimate f?

• We will assume we have observed a set of training data:

• We must then use the training data and a statistical method to 
estimate f.

• Perhaps the most common approach is to use linear regression
• Although linear models are almost never correct, they serve as a 

good and interpretable approximation to the unknown true function 
f(X)

)},(,),,(),,{( 2211 nn YYY XXX !

22.2.2019
Data Science for Business II

38



Simple regression

Note: in general, normality assumption is not required

22.2.2019
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Linear approximation and forecasting 
model
• The true !(#$%&|($, … , ($+,) is unknown and possibly non-linear
• However, in practice, linear approximations give a solid baseline 

model which often performs surprisingly well even in the presence 
of unknown non-linearities:

! #$%& ($, … , ($+, ≈ /0 + /&2($ + ⋯+ /,2 ($+, = /2($
• The model error is defined as the difference between the actual 

observation #$%& and the linear forecast
5$%& = #$%& − /2($

• As a result, we obtain  the following linear point forecasting model: 
#$%& = /2($ + 5$%&

22.2.2019
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In Matrix Form: y = Xb + e
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Least squares fit

22.2.2019
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Example: univariate autoregression

• Suppose !" = (%", %"'(, … , %"'*+()
• A linear forecasting model is given by

%"+( = -. + -(%" + -0%"'( + ⋯+ -*%"'*+( + 2"+(

• This model is known as kth order autoregression AR(k)

Least Squares Estimation

bb =

 
n−1

Â
t=0

xtx0t

!−1  n−1
Â
t=0

xt yt+1

!

byn+1|n = bfn+1|n = bb
0
xn

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 26 / 105
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GDP exampleGDP Example

yt = D log(GDPt ), quarterly
AR(4) (reasonable benchmark for quarterly data)

yt+1 = b0 + b1yt + b2yt−1 + b3yt−2 + b4yt−3 + et+1

bb s(bb)
Intercept 1.54 (0.45)
D log(GDPt ) 0.29 (0.09)
D log(GDPt−1) 0.18 (0.10)
D log(GDPt−2) −0.05 (0.08)
D log(GDPt−3) 0.06 (0.10)

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 37 / 105
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GDP example (2)

One step-ahead forecast using AR(4) model

Uses the information from the last 4 quarters 2011:2 – 2012:1 to 
predict the unknown observation 2012:2 which is not included in 
the original dataset
Do we trust the obtained forecast?

Point Forecast - GDP Growth

AR(4)

Actual Forecast
2011:1 0.36
2011:2 1.33
2011:3 1.80
2011:4 2.91
2012:1 1.84
2012:2 2.59

Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 38 / 105
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Forecast selection
• The choice of AR(4) model was arbitrary!

• Should we have considered an autoregression with 

different number of lags?

• Forecasts can be quite sensitive to these choices

• The goal is to produce accurate forecasts that 

minimize the empirical risk (low MSFE)

• Finding the true model is not relevant as this maybe 

a model with infinite number of parameters

Forecast Selection
We used (arbitrarily) an AR(4) for GDP,
and an AR(12) for the 10-year rate
The forecasts will be sensitive to this choice
GDP Example

Model Forecast
AR(0) 2.99
AR(1) 2.59
AR(2) 2.65
AR(3) 2.68
AR(4) 2.59
AR(5) 2.83
AR(6) 2.83
AR(7) 2.83
AR(8) 2.78
AR(9) 2.87
AR(10) 2.87
AR(11) 2.91
AR(12) 3.45Bruce Hansen (University of Wisconsin) Forecasting July 23-27, 2012 41 / 105

Model selection problem!

22.2.2019
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Long-term prediction

Long-term prediction means predicting further into the future

Choices to implement or use the regression model in prediction:
• Recursive Prediction Strategy
• Direct Prediction Strategy
• And variants

22.2.2019
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Recursive Prediction Strategy

Predictions are made one step ahead at the time

Benefits: Only one prediction model f to estimate
Disadvantages: Accumulation of errors in each step

22.2.2019
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Direct prediction strategy

Predictions are made k steps ahead at once:

Benefits: The problem of k steps ahead prediction is solved directly
Disadvantages: Must train a model fk for each k

22.2.2019
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Long-term prediction

• What is long-term prediction depends on the context!
• Interesting phenomena vary from milliseconds to centuries
• Prediction further into the future is more difficult
• Direct Prediction Strategy is preferred if long-term prediction is the main 

interest

22.2.2019
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Review questions

• What makes a time series analysis different from classification
problems?

• What role does stationarity have in time series analysis?
• What is the definition of point forecast in this context?
• Describe one example of an autoregressive time series model

22.2.2019
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Testing vs. model selection
Our next topic will be to discuss the forecast selection problem further!
Historically, it has been common to use statistical tests to select empirical 
models, but more recent discussions suggest that use of statistical tests 
may not be a good idea when choosing forecasts
• Tests answer scientific questions (e.g., hypothesis regarding model parameters 

such as is some coefficient of interest zero)
• Tests are not designed to answer the question: Which estimate yields better 

forecast
• Standard errors are appropriate for measuring estimation precision but not 

the goodness of forecasts
For model selection, we want something different than the classical tests!

22.2.2019
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Model selection



What is a model? What is a good
model?
• Why are we building models? Models are useful, because they

help us to answers questions about the reality
• Models are abstractions of reality: some details are forgotten (or

must be forgotten), example: describe your day!
• The modeler is always faced with a trade-off with fidelity to data 

and the level of abstraction
• Generalization was earlier defined as the ability to model (or

predict) future, unseen data!

22.2.2019
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Model selection criteria

• If two models have the same error, which one is better?
• One approach is to use the simpler model, that is ”fewer parts”
• Model selection crtieria are used to give a number for model

complexity, for instance ”number of parts in the model”
• Using more data in training results in better models usually
• Parts mentioned are usually model parameters, or coefficients
• Introduce model selection criteria that penalize for model

complexity

22.2.2019
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Criteria for model selection
d = number of predictors

22.2.2019
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AIC and BIC
• Both AIC and BIC are relative measures for selecting models
• AIC leads to the following model selection ”rules of thumb”:

i. If two models have the same error, select the one with less
parameters (simpler)

ii. If two models have the same number of parameters, select the
one with smaller error

• BIC leads to the following model selection ”rules of thumb”:
i. If the models have the same number of parameters and error, use 

the one learned from more data

22.2.2019
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AIC vs. BIC minimizationA MULTIOBJECTIVE EXPLORATORY PROCEDURE FOR REGRESSION MODEL SELECTION 167

Min. AIC
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Figure 3. AIC value function (minimization) on the two objective plane.

number of iterations: i = 500, crossover probability: pc = 0.9, mutation probability: pm =
1/K , no. of offspring: λ = N .

The algorithm produces a Pareto-frontier of models with complexities varying from
1 to 100. A part of the frontier produced by the algorithm is shown in Figure 5 for a
dataset. We have performed a comparative study, where we examine the performance of
our method against the Lasso (Tibshirani 1996) scheme. The Lasso frontier is generated by
solving a number of single objective optimization problems with different parameter values4

. Figure 5 also shows the frontier obtained from the Lasso scheme using the same dataset. To
evaluate the validity of the Pareto-optimal frontier obtained using MOGA-VS, we compare
it with an exhaustive branch-and-bound search. An exhaustive branch-and-bound search
was performed for complexities 1 to 25, and the results are shown in the same figure. One
finds that the models obtained using MOGA-VS correspond to the models obtained using
an exhaustive search.

Next, we evaluate the performance of the approaches in terms of number of correct or
incorrect variables included in the various suggested models. We assign a value to each
model as a difference of number of correct and incorrect variables included. For instance,
the true model in this case will be assigned a value of 10, as it contains 10 correct and 0
incorrect variables. Any other model will have a value less than 10. Based on this, Figure 6
provides a plot of the difference values assigned to the models along the MOGA-VS and
Lasso frontiers.

We have performed a simulation study where we execute each of the methods (MOGA-
VS and Lasso) on 10 different datasets to observe the precision and accuracy. Figure 7
shows the results obtained from 10 sample runs of both the methods. It is easy to observe
that the MOGA-VS scheme offers a high accuracy and precision, as the frontiers always
pass close to the true model. Most of the models produced by Lasso are far away from the

4The Lasso parameter was incremented from 0 in steps of 0.01, and a singe objective optimization problem was
solved for each parameter until a model is obtained which includes all the variables.
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BIC Contours
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Figure 4. BIC value function (minimization) on the two objective plane.

frontier. However, it should be noted that Lasso is not expected to produce models on the
Pareto-optimal front.

The results produced by MOGA-VS on this simulated example demonstrates its ability
to explore the Pareto-optimal frontier consisting of tradeoff models. It is noteworthy that

0 5 10 15 20 25
0

20

40

60

80

100

120

140

Number of Variables

M
S

E

Exhaustive

MOGA−VS

Lasso

True Model

Figure 5. A part of the MOGA-VS frontier and a part of the Lasso frontier obtained using the simulated dataset
from a sample run. The true model is also plotted.

D
ow

nl
oa

de
d 

by
 [A

al
to

-y
lio

pi
st

on
 k

irj
as

to
] a

t 0
8:

45
 1

8 
M

ar
ch

 2
01

6 

Source: Sinha et al. (2015): A multiobjective exploratory procedure for regression model selection
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Recap: predictive accuracy and model
selection
• Goodness of models can be judged from many perspectives
• Model can have good predictive accuracy, in a validation set. This does not

guarantee good generalization into the future
• Relative merit of two models can be estimated using model selection criteria, 

like Akaike’s Information criterion (AIC), or Bayesian Information Criterion
(BIC). In addition to predictive error, the model complexity and effective
sample size determine what is good

• Business considerations can also be used a criterion to select the model!
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Feature selection
(review from DSFB-1)



Feature selection with learning in the loop 
“Wrapper perspective”
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Suggested solutions

• Subset selection
• E.g., best subset selection, stepwise selection methods
• Identifying a subset of all p predictors X that we believe to be related to the 

response Y, and then fitting the model using this subset
• Shrinkage

• Involves shrinking the estimates coefficients towards zero
• This shrinkage reduces the variance

• Dimension reduction
• E.g. Principle Components and Factor Analysis
• Involves projecting all p predictors into an M-dimensional space where M 

< p, and then fitting linear regression model
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Stepwise selection routines



Forward search
Forward-stepwise selection is a greedy algorithm, producing a nested 
sequence of models.
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Backward search
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Stepwise solutions as approximations
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Comments

• Forwards / backward stepwise methods can be used when the 
number of variables p is too large for best subsets method

• Forward / backward methods are heuristics and are not 
guaranteed to find the best model containing a subset of 
predictors

• Backward selection requires that n >> p à full model can be fitted
• Forward selection can also be used when n < p. In fact, it is the 

only viable subset method for large p
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Regularization techniques
(aka ”shrinkage methods”)



Why shrinkage might be considered?

• OLS is good when the relationship between Y and X is linear and 
the number of observations n is way bigger than the number of 
predictors p i.e., n > p

• But, when p is almost as large as n, then the least squares fit can 
have high variance and may result in overfitting and poor 
estimates on unseen observations, 

• And, when  n < p, then the variability of the least squares fit 
increases dramatically, and the variance of these estimates in 
infinite (unique estimate doesn’t exist!)
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Ridge regression

• As with least squares, ridge regression seeks coefficient estimates 
that fit the data well, by making the RSS small.

• The second term is a penalty that shrinks the coefficients towards 
zero

• Though not immediately obvious, shrinking can help to reduce 
variance

Ridge estimates are found by minimizing:

22.2.2019
Data Science for Business II

70



Problem with Ridge regression

• Unlike subset selection, which will generally select models 
that involve just a subset of the variables, ridge regression 
will include all p predictors in the final model!

22.2.2019
Data Science for Business II

71



The Lasso Estimator

• Similar to ridge regression, but the key difference in behavior follows 
from penalty
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Why Lasso is good?

• Ability to force some coefficients exactly to zero à
performs variable selection

• A model is called “sparse” when it involves only a subset 
of variables

• Can even be used when p > n, a situation where OLS fails 
completely!

• Computationally efficient: for any given “lambda”, we only 
need to fit one model and the computations turn out to be 
very simple
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Lasso vs. Ridge
LASSO:

Ridge:
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Lasso vs. Ridge

THE LASSO ESTIMATOR 11
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Figure 2.1 Left: Coe�cient path for the lasso, plotted versus the ¸1 norm of the
coe�cient vector, relative to the norm of the unrestricted least-squares estimate —̃.
Right: Same for ridge regression, plotted against the relative ¸2 norm.
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Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The
solid blue areas are the constraint regions |—1|+|—2| Æ t and —2

1 +—2
2 Æ t2, respectively,

while the red ellipses are the contours of the residual-sum-of-squares function. The
point ‚— depicts the usual (unconstrained) least-squares estimate.
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Example

10 THE LASSO FOR LINEAR MODELS

algorithms for finding its solutions. More details are given in Exercises (2.3)
and (2.4).

As an example of the lasso, let us consider the data given in Table 2.1, taken
from Thomas (1990). The outcome is the total overall reported crime rate per

Table 2.1 Crime data: Crime rate and five predictors, for N = 50 U.S. cities.

city funding hs not-hs college college4 crime rate
1 40 74 11 31 20 478

2 32 72 11 43 18 494

3 57 70 18 16 16 643

4 31 71 11 25 19 341

5 67 72 9 29 24 773

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

50 66 67 26 18 16 940

one million residents in 50 U.S cities. There are five predictors: annual police
funding in dollars per resident, percent of people 25 years and older with four
years of high school, percent of 16- to 19-year olds not in high school and not
high school graduates, percent of 18- to 24-year olds in college, and percent
of people 25 years and older with at least four years of college. This small
example is for illustration only, but helps to demonstrate the nature of the
lasso solutions. Typically the lasso is most useful for much larger problems,
including “wide” data for which p ∫ N .

The left panel of Figure 2.1 shows the result of applying the lasso with
the bound t varying from zero on the left, all the way to a large value on
the right, where it has no e�ect. The horizontal axis has been scaled so that
the maximal bound, corresponding to the least-squares estimates —̃, is one.
We see that for much of the range of the bound, many of the estimates are
exactly zero and hence the corresponding predictor(s) would be excluded from
the model. Why does the lasso have this model selection property? It is due
to the geometry that underlies the ¸1 constraint Î—Î1 Æ t. To understand this
better, the right panel shows the estimates from ridge regression, a technique
that predates the lasso. It solves a criterion very similar to (2.3):

minimize
—0,—

Y
]

[
1

2N

Nÿ

i=1
(yi ≠ —0 ≠

pÿ

j=1
xij—j)2

Z
^

\

subject to
pÿ

j=1
—2

j Æ t2.

(2.7)

The ridge profiles in the right panel have roughly the same shape as the lasso
profiles, but are not equal to zero except at the left end. Figure 2.2 contrasts
the two constraints used in the lasso and ridge regression. The residual sum
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Figure 2.1 Left: Coe�cient path for the lasso, plotted versus the ¸1 norm of the
coe�cient vector, relative to the norm of the unrestricted least-squares estimate —̃.
Right: Same for ridge regression, plotted against the relative ¸2 norm.
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Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The
solid blue areas are the constraint regions |—1|+|—2| Æ t and —2

1 +—2
2 Æ t2, respectively,

while the red ellipses are the contours of the residual-sum-of-squares function. The
point ‚— depicts the usual (unconstrained) least-squares estimate.
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Variable scales

• The standard OLS estimates are scale equivariant: multiplying a 
variable by constant “c” just leads to scaling of estimated 
coefficients by factor of “1/c” [i.e. scaling doesn’t matter]

• In ridge regression, coefficient estimates can change substantially 
when multiplying a given predictor by a constant, due to the sum 
of squared coefficients term in the penalty part of the ridge 
regression objective function
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Choice regularization coefficient

• Consider use of information criteria

• Choose the model with best performance in 
training/validation set
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