A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory

Lecture 12: Randomised Computation

Aalto University
School of Science
Department of Computer Science

Spring 2019

Agenda

@ Modelling randomised computation
@ Probabilistic complexity classes
@ Example: Polynomial identity testing

@ Error reduction

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science Department of Computer Science
2/27

Solving Hard Problems: Randomness

@ There are intractable problems that we don’t know how to
solve in polynomial time

» How to deal with such problems in practice?

@ One possible approach: Allow random choices

» Basic idea: allow the program to flip coins
» When does this this help? (Or does it help at all?)

School of Science epartment of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
D
3/27

Randomised Computation

@ Real world contains random phenomena
» Randomness is not captured by deterministic Turing machines

@ What happens if we add randomness to Turing machines?
» Randomness is widely used in computation, e.g. simulations
» Random algorithms can be simpler and more efficient for some
problems
» However, in many (most? all?) cases it turns out that randomness
can be eliminated by some derandomisation technique

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
A School of Science Department of Computer Science
a7

Probabilistic Turing Machines

@ A probabilistic Turing machine M is a Turing machine with
following special features:

» M has two transition functions &, and &,
» M always outputs 1 (accept) or 0 (reject)

@ An execution of a probabilistic Turing machine M:

» Start from the starting state as normal
» At each step, apply 8; with probability 1/2 and &, with probability
1/2

@ The output M(x) € {0, 1} is a random variable

School of Science Department of Computer Sci

Aalto University CS-E4530 Computational Complexi tyTheo y/Lec(ure12
5/ 27

Probabilistic Turing Machines

Definition
We say that a probabilistic Turing machine M runs in time T'(n) if M
halts on input x € {0,1}* in T(|x|) steps regardless of the random

choices.

@ If PTM runs in time 7, there are 2’ possible branches

» Each branch is selected with probability 1 /2
» Pr[M(x) = 1] is the fraction of branches accepting

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science Department of Computer Science
6/27

Randomised Acceptance and Errors

@ For probabilistic Turing machines, we allow machines to
output wrong answer for some random choices
» Depending on the exact formulation, we get different complexity
classes

@ Possible options for resolving this:

Allow false negatives, but no false positives

Allow false positives, but no false negatives

Allow both false negatives and false positives

Don't allow errors, but require that the expected running time is
bounded

v

vV vy

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science Department of Computer Science
727

RTIME and RP: One-sided error

Definition (Randomised time)

The class RTIME(7'(n)) is the set of languages L for which there
exists a probabilistic Turing machine M and a constant ¢ > 0 such that

M runs in time ¢- T(n), and
e forall x € L, we have Pr[M(x) =
o forallx ¢ L, we have Pr[M(x) = 1] =0.

Definition (Randomised polynomial time)

RP = | J RTIME(n)
d=1

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science
827

RP: Properties and Relationships

@ RP algorithms are called Monte Carlo algorithms

@ Complementary class: coRP

» Yes-instances: accepted always
» No-instances: rejected with probability > 2/3

@ Relationships and completeness

P € RPN coRP

RP C NP

coRP C coNP

No known complete problems for RP and coRP

v

vV vy

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ure12
9 27

Expected Running Time

Definition (Expected running time)
Let M be a probabilistic Turing Machine. Let T), . be a random
variable whose value is the running time of M on x. We say that M has

expected running time T(n) if E[Ty] < T(|x|) for all x € {0, 1}*.

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

Aalto University
School of Science
10727

ZTIME and ZPP: Zero-sided error

Definition (zero-error probabilistic time)

The class ZTIME(7'(n)) is the set of languages L for which there
exists a probabilistic Turing machine M with expected running time
T (n) such that whenever M halts on input x € {0, 1}*, we have that
M(x) =1lifandonly if x € L.

Definition (Zero-error probabilistic polynomial time)

ZPP = | J ZTIME(n)
d=1

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
A School of Science Department of Computer Science
11727

ZPP: Properties and Relationships

@ ZPP algorithms are called Las Vegas algorithms

@ ZPP =RPNcoRP
» Basic idea “O”: perform repeated runs of both the RP and the
coRP algorithm until one of them gives a definitive answer
» Basic idea “C”: run ZPP algorithm for polynomial time, use
default answer if the ZPP algorithm does not stop

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science Department of Computer Science
12/27

BPTIME and BPP: Two-sided error

Definition (Bounded-error probabilistic time)

The class BPTIME(T'(n)) is the set of languages L for which there
exists a probabilistic Turing machine M and a constant ¢ > 0 such that

M runs in time ¢- T(n), and
@ forall x € L, we have Pr[M(x) = 1] > 2/3, and
o forallx ¢ L, we have Pr[M(x) = 0] > 2/3.

Definition (Bounded-error probabilistic polynomial time)

BPP = _J BPTIME(n")
d=1

(CS-E4530 Computational Complexity Theory / Lecture 12

Aalto University
School of Science

Department of Computer Science
13/27

BPP: Properties and Relationships

@ Relationships and completeness

RP C BPP

coRP C BPP

BPP C XY NI

No known complete problems for BPP

v

v VvYyy

@ Proving separations for BPP seems difficult

» We don’t even know if BPP s NEXP!
» On the other hand, it is known that if NP C BPP, then PH = Z’z’

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
14/27

Polynomial Identity Testing

@ A polynomial is identically zero if and only if its monomial
representation equals 0

o Example:

—xy+ (=) (P +y) + 2 (y—x) +y°
= —xy+x° xy —yx® —y? Faty =0 +y?
:—xy+xy—x3+x3 —yxz—i-xzy—yz—i-y2 =0
is identically zero

@ Two polynomials, p and g over variables x1, ..., x,, are equal iff the
polynomial p — ¢ is identically zero

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
A School of Science Department of Computer Science
15/27

Polynomial Identity Testing

@ One can obtain a Monte Carlo algorithm for checking whether a
polynomial is not identically zero by using the Schwartz-Zippel
lemma:

Lemma (Schwartz-Zippel)

Letp(xi,...,x,) be a multivariate polynomial with total degree d > 0
over a field F. Assume that p is not identically zero. Let S be a finite
subset of ¥ and let ry,ra,...,r, be selected randomly from S. Then

Pr[p(rl,rg,...,rn) :O] <d/|S|.

@ No deterministic polynomial time algorithm for this task is known

School of Science Department of Computer Sci

Aalto University CS-E4530 Computational Complexi tyTheo y/Lec(ure12
16 27

Perfect Matching
Definition (Perfect matching)

@ Instance: Bipartite graph B = (U, V,E), where U = {uy,...,u, },

V={vi,....mpi L, ECUXV.,

@ Question: Is there a set E' C E of n edges such that for any two
distinct edges (u,v), (u/,V') € E',u#u' andv #V (i.e., is there a

perfect matching)?

V.

@ A perfect matching can be seen as a permutationtof 1,...,n

such that (u;,vy(;)) € Eforallu; € U

Example (perfect matchings as permutations)

(w——w (——)

m(1)=1 m(1)=1
(=) ,(2)=2 (o) 1y(2)=3
@A@ T (3)=3 @A@ T (3)=2

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

17127

Perfect Matching

@ Perfect matching is related to the determinant

» Given a graph G, construct an n x n matrix A®, where the element

aj;is a variable x;; if (u;,v;) € E and 0 otherwise.
» Determinant of AY is

n
G
detA” = ngn(n) Hai’n(i)
n i=1
where T ranges over permutations of n

Example (perfect matchings and determinants)

(w—®) . .
UREE detAC =
@v@ AC = 0 xmom;
O 0 x32 %33 X1,1X2,2X3,3 — X1,1X2,3X3 2

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science

Department of Computer Science
18/27

Perfect Matching

@ Determinant of A“ tells us about the existence of a perfect
matching

» Bipartite graph G has a perfect matching if and only if there is a
term for which a; ;) # O foralli=1,...,n.

» Hence, G has a perfect matching if and only if detA“ is not
identically 0.

Example (perfect matchings and determinants)

(w—®) . .
UREE detAC =
@v@ AC = 0 xmom;
O 0 x32 %33 X1,1X2,2X3,3 — X1,1X2,3X3 2

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science Department of Computer Science
19/27

Perfect Matching

@ Testing whether detA® is identically O for a symbolic matrix A¢
containing variables can be done by using a randomised
algorithm via Schwartz-Zippel lemma

Randomised algorithm for perfect matching

Given an n x n matrix A%(x1,...,x,) with m < n? variables:
@ Choose m random integers iy,..., i, (between 0 and M)

Compute detA%(iy,...,i,) (by Gaussian elimination)

If detA%(iy,...,in) # 0, then return yes

If detA%(iy,...,in) = 0, then return no

Accepts yes-instances with probability 1 —n/M

Rejects no-instances always

School of Science epartment of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
D
20/27

BPP Error Reduction

Theorem

Let L C {0,1}* be a language, and assume that there is a
polynomial-time PTM M such that for every x € {0,1}*, we have

Pr[M(x) =L(x)] > 1/2+ |x|¢

for constant ¢ > 1. Then for every constantd > 0, there is a
polynomial-time PTM M’ such that for every x € {0,1}*, we have

Pr[M’ (x) = L(x)] > 1 — 27",

@ Implies that » = 2/3 in the definition of BPP can be replaced
by any constant > 1/2. (In fact even by a function that
approaches 1/2 at most polynomially.)

School of Science uter Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
Department of Comput
21/27

BPP Error Reduction: Proof

@ Machine M’ does the following on input x € {0,1}*:

> Run M(x) for k = 8 |x|*** times to obtain outputs y1,ys, ..., «
» Output majority of y1,y2,..., vk

@ We need to show that probability of the wrong answer is
exponentially small
» Define random variable X; so that X; is 0 if y; = L(x), and 1
otherwise
» YX | X; counts the number of wrong answers
> We want to prove that Pr[Y% | X; > k/2] <1- Il
» For this, we use the Chernoff bound

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science Department of Computer Science
22/27

Chernoff Bound

Theorem (Chernoff bound)

Suppose that X1, ..., X are independent random variables taking the
values 1 and 0 with probabilities p and 1 — p, respectively, and
consider their sum X = Y*_| X;. Then forall0 <8 < 1,

2
PrX > (1+8)pk] < e 57k,

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science

Department of Computer Science
23/27

BPP Error Reduction: Proof

@ We now apply Chernoff bound to random variables X;:

Random variables X; are independent

p=1/2—x

We set 8 = |x| /2

Then (1+08)pk < k/2

Thus Pr[Y5 | X; > k/2] <Pr[Yi X; > (14 3)pk]

vV vy VY VvVYyy

@ By the Chernoff bound, we have

Zx> +8pk]<e 3Pk<2\x\

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ure12
24 27

Error Reduction

e Error reduction for BPP can be used to prove BPP C X/ NIT)
» Basic idea: since we can make acceptance probability
exponentially small, there is a very small certificate for accepting
or rejecting states
» Can be checked in X5
» Need some non-trivial technical details

@ Error reduction works also for RP and coRP

» Success probability |x| is enough
» Easier to prove, no need for Chernoff bound

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
School of Science Department of Computer Science
25/27

Probabilistic and Quantum Computation

@ Strong Church-Turing thesis: any physically realisable system
can be simulated by a Turing machine with polynomial overhead
» Would require that BPP =P
» This sounds surprising, but may well be the case (or not)

@ What about quantum computation?
» Quantum polynomial time BQP

» Best known quantum algorithms beat best known randomised
algorithms for some problems
» Known: BPP C BQP C PSPACE

Aalto University CS-E4530 Computation: al Comple ty'rheo y/Lec(ure12
School of Science Department of Computer Sci

26 27

Lecture 12: Summary

Monte Carlo algorithms: RP and coRP
Las Vegas algorithms: ZPP

BPP

Polynomial Identity Testing

Error reduction

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 12
27127

