
CS-E4530 Computational Complexity Theory

Lecture 12: Randomised Computation

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

2/27

Agenda

Modelling randomised computation

Probabilistic complexity classes

Example: Polynomial identity testing

Error reduction

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

3/27

Solving Hard Problems: Randomness

There are intractable problems that we don’t know how to
solve in polynomial time

I How to deal with such problems in practice?

One possible approach: Allow random choices
I Basic idea: allow the program to flip coins
I When does this this help? (Or does it help at all?)

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

4/27

Randomised Computation

Real world contains random phenomena
I Randomness is not captured by deterministic Turing machines

What happens if we add randomness to Turing machines?
I Randomness is widely used in computation, e.g. simulations
I Random algorithms can be simpler and more efficient for some

problems
I However, in many (most? all?) cases it turns out that randomness

can be eliminated by some derandomisation technique

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

5/27

Probabilistic Turing Machines

A probabilistic Turing machine M is a Turing machine with
following special features:

I M has two transition functions δ1 and δ2
I M always outputs 1 (accept) or 0 (reject)

An execution of a probabilistic Turing machine M:
I Start from the starting state as normal
I At each step, apply δ1 with probability 1/2 and δ2 with probability

1/2

The output M(x) ∈ {0,1} is a random variable

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

6/27

Probabilistic Turing Machines

Definition
We say that a probabilistic Turing machine M runs in time T(n) if M
halts on input x ∈ {0,1}∗ in T(|x|) steps regardless of the random
choices.

If PTM runs in time t, there are 2t possible branches
I Each branch is selected with probability 1/2t

I Pr[M(x) = 1] is the fraction of branches accepting

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

7/27

Randomised Acceptance and Errors

For probabilistic Turing machines, we allow machines to
output wrong answer for some random choices

I Depending on the exact formulation, we get different complexity
classes

Possible options for resolving this:
I Allow false negatives, but no false positives
I Allow false positives, but no false negatives
I Allow both false negatives and false positives
I Don’t allow errors, but require that the expected running time is

bounded

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

8/27

RTIME and RP: One-sided error

Definition (Randomised time)

The class RTIME(T(n)) is the set of languages L for which there
exists a probabilistic Turing machine M and a constant c > 0 such that
M runs in time c ·T(n), and

for all x ∈ L, we have Pr[M(x) = 1]≥ 2/3, and

for all x /∈ L, we have Pr[M(x) = 1] = 0.

Definition (Randomised polynomial time)

RP =
∞⋃

d=1

RTIME(nd)

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

9/27

RP: Properties and Relationships

RP algorithms are called Monte Carlo algorithms

Complementary class: coRP
I Yes-instances: accepted always
I No-instances: rejected with probability ≥ 2/3

Relationships and completeness
I P⊆ RP∩ coRP
I RP⊆ NP
I coRP⊆ coNP
I No known complete problems for RP and coRP

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

10/27

Expected Running Time

Definition (Expected running time)
Let M be a probabilistic Turing Machine. Let TM,x be a random
variable whose value is the running time of M on x. We say that M has
expected running time T(n) if E[TM,x]≤ T(|x|) for all x ∈ {0,1}∗.

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

11/27

ZTIME and ZPP: Zero-sided error

Definition (zero-error probabilistic time)

The class ZTIME(T(n)) is the set of languages L for which there
exists a probabilistic Turing machine M with expected running time
T(n) such that whenever M halts on input x ∈ {0,1}∗, we have that
M(x) = 1 if and only if x ∈ L.

Definition (Zero-error probabilistic polynomial time)

ZPP =
∞⋃

d=1

ZTIME(nd)

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

12/27

ZPP: Properties and Relationships

ZPP algorithms are called Las Vegas algorithms

ZPP = RP∩ coRP
I Basic idea “⊇”: perform repeated runs of both the RP and the

coRP algorithm until one of them gives a definitive answer
I Basic idea “⊆”: run ZPP algorithm for polynomial time, use

default answer if the ZPP algorithm does not stop

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

13/27

BPTIME and BPP: Two-sided error

Definition (Bounded-error probabilistic time)

The class BPTIME(T(n)) is the set of languages L for which there
exists a probabilistic Turing machine M and a constant c > 0 such that
M runs in time c ·T(n), and

for all x ∈ L, we have Pr[M(x) = 1]≥ 2/3, and

for all x /∈ L, we have Pr[M(x) = 0]≥ 2/3.

Definition (Bounded-error probabilistic polynomial time)

BPP =
∞⋃

d=1

BPTIME(nd)

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

14/27

BPP: Properties and Relationships

Relationships and completeness
I RP⊆ BPP
I coRP⊆ BPP
I BPP⊆ Σ

p
2∩Π

p
2

I No known complete problems for BPP

Proving separations for BPP seems difficult
I We don’t even know if BPP 6= NEXP!
I On the other hand, it is known that if NP⊆ BPP, then PH = Σ

p
2

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

15/27

Polynomial Identity Testing

A polynomial is identically zero if and only if its monomial
representation equals 0

Example:

− xy+(x− y)(x2 + y)+ x2(y− x)+ y2

=− xy+ x3 + xy− yx2− y2 + x2y− x3 + y2

=− xy+ xy− x3 + x3− yx2 + x2y− y2 + y2 = 0

is identically zero

Two polynomials, p and q over variables x1, ...,xn, are equal iff the
polynomial p−q is identically zero

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

16/27

Polynomial Identity Testing

One can obtain a Monte Carlo algorithm for checking whether a
polynomial is not identically zero by using the Schwartz-Zippel
lemma:

Lemma (Schwartz-Zippel)

Let p(x1, ...,xn) be a multivariate polynomial with total degree d ≥ 0
over a field F. Assume that p is not identically zero. Let S be a finite
subset of F and let r1,r2, ...,rn be selected randomly from S. Then

Pr
[
p(r1,r2, . . . ,rn) = 0

]
≤ d/ |S| .

No deterministic polynomial time algorithm for this task is known

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

17/27

Perfect Matching
Definition (Perfect matching)

Instance: Bipartite graph B = (U,V,E), where U = {u1, . . . ,un},
V = {v1, . . . ,vn}, E ⊆ U×V .

Question: Is there a set E′ ⊆ E of n edges such that for any two
distinct edges (u,v),(u′,v′) ∈ E′, u 6= u′ and v 6= v′ (i.e., is there a
perfect matching)?

A perfect matching can be seen as a permutation π of 1, . . . ,n
such that (ui,vπ(i)) ∈ E for all ui ∈ U

Example (perfect matchings as permutations)
u1 v1

u2

u3

v2

v3

π1(1)=1
π1(2)=2
π1(3)=3

u1 v1

u2

u3

v2

v3

π1(1)=1
π1(2)=3
π1(3)=2

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

18/27

Perfect Matching

Perfect matching is related to the determinant
I Given a graph G, construct an n×n matrix AG, where the element

ai,j is a variable xij if (ui,vj) ∈ E and 0 otherwise.
I Determinant of AG is

detAG = ∑
π

sgn(π)
n

∏
i=1

ai,π(i)

where π ranges over permutations of n

Example (perfect matchings and determinants)
u1 v1

u2

u3

v2

v3

AG =

(x1,1 x1,2 0
0 x2,2 x2,3
0 x3,2 x3,3

)
detAG =
x1,1x2,2x3,3− x1,1x2,3x3,2

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

19/27

Perfect Matching

Determinant of AG tells us about the existence of a perfect
matching

I Bipartite graph G has a perfect matching if and only if there is a
term for which ai,π(i) 6= 0 for all i = 1, . . . ,n.

I Hence, G has a perfect matching if and only if detAG is not
identically 0.

Example (perfect matchings and determinants)
u1 v1

u2

u3

v2

v3

AG =

(x1,1 x1,2 0
0 x2,2 x2,3
0 x3,2 x3,3

)
detAG =
x1,1x2,2x3,3− x1,1x2,3x3,2

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

20/27

Perfect Matching

Testing whether detAG is identically 0 for a symbolic matrix AG

containing variables can be done by using a randomised
algorithm via Schwartz-Zippel lemma

Randomised algorithm for perfect matching

Given an n×n matrix AG(x1, . . . ,xm) with m≤ n2 variables:

Choose m random integers i1, . . . , im (between 0 and M)

Compute detAG(i1, . . . , im) (by Gaussian elimination)

If detAG(i1, . . . , im) 6= 0, then return yes

If detAG(i1, . . . , im) = 0, then return no

Accepts yes-instances with probability 1−n/M

Rejects no-instances always

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

21/27

BPP Error Reduction

Theorem
Let L⊆ {0,1}∗ be a language, and assume that there is a
polynomial-time PTM M such that for every x ∈ {0,1}∗, we have

Pr[M(x) = L(x)]≥ 1/2+ |x|−c

for constant c > 1. Then for every constant d > 0, there is a
polynomial-time PTM M′ such that for every x ∈ {0,1}∗, we have

Pr[M′(x) = L(x)]≥ 1−2−|x|
d
.

Implies that r = 2/3 in the definition of BPP can be replaced
by any constant r > 1/2. (In fact even by a function that
approaches 1/2 at most polynomially.)

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

22/27

BPP Error Reduction: Proof

Machine M′ does the following on input x ∈ {0,1}∗:
I Run M(x) for k = 8 |x|2c+d times to obtain outputs y1,y2, . . . ,yk
I Output majority of y1,y2, . . . ,yk

We need to show that probability of the wrong answer is
exponentially small

I Define random variable Xi so that Xi is 0 if yi = L(x), and 1
otherwise

I ∑
k
i=1 Xi counts the number of wrong answers

I We want to prove that Pr
[
∑

k
i=1 Xi ≥ k/2

]
≤ 1−2−|x|

d

I For this, we use the Chernoff bound

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

23/27

Chernoff Bound

Theorem (Chernoff bound)
Suppose that X1, . . . ,Xk are independent random variables taking the
values 1 and 0 with probabilities p and 1−p, respectively, and
consider their sum X = ∑

k
i=1 Xi. Then for all 0≤ δ≤ 1,

Pr
[
X ≥ (1+δ)pk

]
≤ e−

δ2
3 pk .

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

24/27

BPP Error Reduction: Proof

We now apply Chernoff bound to random variables Xi:
I Random variables Xi are independent
I p = 1/2−|x|−c

I We set δ = |x|−c /2
I Then (1+δ)pk < k/2
I Thus Pr

[
∑

k
i=1 Xi ≥ k/2

]
≤ Pr

[
∑

k
i=1 Xi ≥ (1+δ)pk

]
By the Chernoff bound, we have

Pr
[k

∑
i=1

Xi ≥ (1+δ)pk
]
≤ e−

δ2
3 pk ≤ 2−|x|

d

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

25/27

Error Reduction

Error reduction for BPP can be used to prove BPP⊆ Σ
p
2∩Π

p
2

I Basic idea: since we can make acceptance probability
exponentially small, there is a very small certificate for accepting
or rejecting states

I Can be checked in Σ
p
2

I Need some non-trivial technical details

Error reduction works also for RP and coRP
I Success probability |x|−c is enough
I Easier to prove, no need for Chernoff bound

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

26/27

Probabilistic and Quantum Computation

Strong Church-Turing thesis: any physically realisable system
can be simulated by a Turing machine with polynomial overhead

I Would require that BPP = P
I This sounds surprising, but may well be the case (or not)

What about quantum computation?
I Quantum polynomial time BQP
I Best known quantum algorithms beat best known randomised

algorithms for some problems
I Known: BPP⊆ BQP⊆ PSPACE

CS-E4530 Computational Complexity Theory / Lecture 12
Department of Computer Science

27/27

Lecture 12: Summary

Monte Carlo algorithms: RP and coRP

Las Vegas algorithms: ZPP

BPP

Polynomial Identity Testing

Error reduction

