6. Identity testing and probabilistically checkable proofs

CS-E4500 Advanced Course on Algorithms
Spring 2019

Petteri Kaski

Department of Computer Science
Aalto University

Lecture schedule

Tue 15 Jan: 1. Polynomials and integers

Tue 22 Jan: 2. The fast Fourier transform and fast multiplication

Tue 29 Jan: 3. Quotient and remainder

Tue 5 Feb: 4. Batch evaluation and interpolation

Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields

Tue 19 Mar: 8. Factoring polynomials over finite fields

Tue 26 Mar: 9. Factoring integers

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)

2019 KALENTERI 2019				
Tammikuu	Helmikuu Maaliskuu	Huhtikuu	Toukokuu	Kesäkuu
1 Ti Uudenvuodenpäivä	1 Pe 1 Pe	1 Ma Vk 14 7	1 Ke Vappu	1 La
2 Ke	2 La 2 La	2 Ti	2 To	2 Su
3 To	3 Su D3 3 Su	3 Ke	3 Pe	3 Ma Vk 23
4 Pe	4 Ma Vk 06 6 4 M Vk	4 To	4 La	4 Ti
5 La	5 Ti L4 5 Ti askiainen	5 Pe •	5 Su	5 Ke
6 Su Loppiainen	6 Ke Break	6 La	6 Ma Vk 19	6 To
7 Ma Vk 02	7 To Q4 7 Td	7 Su	7 Ti	7 Pe
8 Ti	8 Pc 8 Pc	8 Ma Vk 15	8 Ke	8 La
9 Ke	9 La 9 La	9 Ti	9 то	9 Su Helluntaipāivā
10 To	10 Su D4 10 Su D6	10 Ke	10 Pe	10 Ma Vk 24 🕕
11 Pe	11 Ma Vk 07 T4 11 Ma Vk		11 La	11 Ti
12 La	12 Ti L5 12 Ti L7	12 Pe D	12 Su Ältienpäivä	12 Ke
13 Su	13 Ke ① 13 Ke	13 La	13 Ma Vk 20	13 To
14 Ma Vk 03 🕻		Su Palmusunnuntai	14 Ti	14 Pe
15 Ti	15 Pe 15 Pe	15 Ma Vk 16	15 Ke	15 La
16 Ke	16 La 16 La	16 Ti	16 To	16 Su
17 To OI	17 Su 17 Su D7	17 Ke	17 Pe	17 Ma Vk 25 🔾
18 Pe	18 Ma VKUB 18 Ma Vk		18 La	18 Ti
19 La	19 T Exam D 19 T L8	19 Pe Piškāperjantai	19 Su Kaatuneiden muistopäivä	19 Ke
20 Su	20 Ke 20 Ke Kevātpāivā sasaus	20 La	20 Ma Vk 21	20 To
21 Ma Vk 04 (O 21 Su Pääsiäispäivä	21 Ti	21 Pe Kesäpäivänseisaus
22 TI L2	22 Pe 22 Pe	22 Ma 2. pääsiäispäivä	22 Ke	22 La Juhannus
23 Ke	23 La 23 La	23 Ti	23 To	23 Su
24 To Q2	24 Su D5 24 Su D8	24 Ke	24 Pe	24 Ma Vk 26
25 Pe	25 Ma Vk 09 T 5 25 Ma Vk		25 La	25 Ti
26 La	26 Ti L6	26 Pe	26 Su)	26 Ke
27 Su D2 0	27 Ke 27 Ke	27 La ①	27 Ma Vk 22	27 To
28 Ma Vk 05 7	28 To Q6 28 To Q9	28 Su	28 Ti	28 Pe
29 Ti L3	29 Pe	29 Ma Vk 18	29 Ke	29 La
30 Ke	30 La	30 Ti	30 To Helatorstai	30 Su
31 To Q3	31 Su Kesäaika alkaa 9		31 Pe	

L = Lecture; hall T5, Tue 12–14
Q = Q & A session; hall T5, Thu 12–14
D = Problem set deadline; Sun 20:00
T = Tutorial (model solutions); hall T6, Mon 16–18

Recap of last week

- ► Extended Euclidean algorithm for polynomials recalled and expanded
 - ► The quotient sequence, the Bézout coefficients, and the halting threshold
- ► Fast extended Euclidean algorithm for polynomials by divide and conquer
 - ► The two polynomial operands **truncated** to a prefix of the highest-degree monomials determine the prefix of the quotient sequence (exercise)
- ► Coping with errors in data using error-correcting codes
- ► A family of error-correcting codes (**Reed-Solomon codes**) based on evaluation-interpolation duality for univariate polynomials
 - ► Key observation: low-degree polynomials have few roots (exercise)
 - ► Fast **encoding** and **decoding** of Reed–Solomon codes via the fast univariate polynomial toolkit and **Gao's** (2003) **decoder**

Have: Near-linear-time toolbox for univariate polynomials

- Multiplication
- ► Division (quotient and remainder)
- ► Batch evaluation
- Interpolation
- Extended Euclidean algorithm (gcd)
- ► Interpolation from partly erroneous data

Motivation for this week

- ► Last week we encountered **uncertainty** in computation
- We saw how to cope with uncertainty in the form of errors in data by using error-correcting codes
- ► This week we look at (fine-grained) **proof systems** and **errors in computation** ...
- ► Our motivation is to be able to **delegate computation** ...

Delegating computation

Problem instance

Solution

Client

modest resources

 How to verify that the solution is correct?

Service-provider

- How to design an algorithm to tolerate (a small number of) errors during computation?
- How to convince the client or a third party that the solution is correct?

Key content for Lecture 6

- ► We look at yet further applications of the evaluation–interpolation duality and randomization in algorithm design
- ► Randomized **identity testing** for polynomials and matrices (exercise)
- ► Delegating computation and proof systems
- ► Completeness and soundness of a proof system, cost of preparing a proof, cost of verifying a proof
- ► Williams's (2016) [30] probabilistic proof system for #CNFSAT
- ► Coping with **errors in computation** using error-correcting codes with multiplicative structure (Reed–Solomon codes revisited)
- ► Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [3]
- ► An extension of Shamir's secret sharing to delegating a computation to multiple counterparties (delegating matrix multiplication, exercise)

Proof systems

- ► Let / be a claim

 (an instance of a computational problem with a yes/no (true/false) solution)
- ► Let us assume that / is decidable, that is, there exists an algorithm D that given / as input outputs whether / is true
- ▶ Deciding whether I is true can often be assisted by supplying a **proof** Π for I
- A **proof system** consists of a verification algorithm (the **verifier**) V that takes as input I together with a putative proof $\tilde{\Pi}$ and either accepts or rejects $\tilde{\Pi}$ as a proof for I

Completeness and soundness

- ► A proof system with verifier *V* is
 - ▶ **complete** if for every true / there exists a proof Π such that V accepts on input / and Π
 - **sound** if for every false I and every putative proof $\tilde{\Pi}$ it holds that V rejects on input I and $\tilde{\Pi}$

Probabilistic soundness

- ► Let us relax the notion of soundness somewhat by allowing the verifier *V* to make random choices during its execution
- A proof system with a randomized verifier V is **probabilistically sound** if for every false I and every putative proof $\tilde{\Pi}$ it holds that V rejects with high probability on input I and $\tilde{\Pi}$
- ▶ By "high probability" we mean with probability 1 o(1) as a function of the size of I, where probability is over the random choices made by V

Efficiency (verifier)

- ► In addition to completeness and soundness, in general we want a proof system also to be *efficient*
- ► That is, V on input I and $\tilde{\Pi}$ should consume less computational resources than it takes to decide I (using the best known algorithm for deciding I)

Efficiency (prover)

- ► Besides verifier efficiency, a yet further aspect to a proof system are the computational resources to **prepare** a proof
- Let P be an algorithm (the **prover**) that given a claim I as input outputs whether I is true, and if I is true, also outputs a proof Π such that V accepts on input I and Π
- ► We would like *P* to be efficient in the sense that *P* should not consume substantially more computational resources than it takes to decide *I* (using the best known algorithm for deciding *I*)

(Some of) recent work on fine-grained proof systems

- ► Goldwasser, Kalai, Rothblum [12]
- ► Walfish and Blumberg [29]
- ► Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, Schneider [5]
- ► Williams [30]
- ► Björklund, K. [3, 15]

► In what follows we look at Williams's [30] proof system for #CNFSAT ...

Boolean satisfiability

- ► Let $x_1, x_2, ..., x_n$ be *n* variables that take values in $\{0, 1\}$
- ► A **truth assignment** A is a mapping that assigns a value in $\{0, 1\}$ to each of the variables x_1, x_2, \ldots, x_n
- ► A **literal** is a variable (x_i) or its negation $(\bar{x_i})$
- ► A literal x_i (respectively, $\bar{x_i}$) is **satisfied** by A if $A(x_i) = 1$ (respectively, $A(x_i) = 0$)
- ► A clause C is a set of literals
- ► A clause *C* is **satisfied** by *A* if at least one literal in *C* is satisfied by *A*
- ▶ A collection of clauses $C_1, C_2, ..., C_m$ is **satisfied** by A if A satisfies every clause $C_1, C_2, ..., C_m$

Conjunctive-normal-form satisfiability (CNFSAT)

- ► The **CNFSAT** problem asks, given a collection C_1, C_2, \ldots, C_m of clauses over variables x_1, x_2, \ldots, x_n as input, whether there exists a truth assignment that satisfies C_1, C_2, \ldots, C_m
- ► CNFSAT is NP-complete
- ► The **#CNFSAT** problem asks, given a collection C_1, C_2, \ldots, C_m of clauses over variables x_1, x_2, \ldots, x_n as input, for the number of truth assignments that satisfy C_1, C_2, \ldots, C_m
- ► #CNFSAT is #P-complete
- ▶ It is not known how to solve CNFSAT in worst-case time $O^*((2-\epsilon)^n)$ for any constant $\epsilon > 0$; the best known algorithms run in $O^*(2^n)$ time
- ► Here the *O**() notation suppresses a multiplicative factor polynomial in the size of the input

CNFSAT and #CNFSAT

- ▶ It is easy to convince a verifier that an instance C_1, C_2, \ldots, C_m of CNFSAT is satisfiable just give the verifier a truth assignment A that satisfies C_1, C_2, \ldots, C_m
- ► The verifier can check that A actually satisfies C_1, C_2, \ldots, C_m in time O(mn)
- ▶ But how to convince a verifier that $C_1, C_2, ..., C_m$ has exactly N satisfying truth assignments?
- ► For example, how to convince a verifier that C_1, C_2, \ldots, C_m has no (zero) satisfying truth assignments?

A probabilistic proof system for #CNFSAT

► Williams's (2016) [30]:

There exists a randomized algorithm V (the verifier) such that for all collections \mathscr{C} of m clauses over n variables and all integers N it holds that

- 1. if \mathscr{C} has exactly N satisfying truth assignments, then there exists a bit string Π of length $O^*(2^{n/2})$ such that V accepts the triple \mathscr{C} , N, Π with probability 1;
- 2. if $\mathscr C$ does not have exactly N satisfying truth assignments, then for every bit string $\tilde{\Pi}$ it holds that V rejects the triple $\mathscr C$, N, $\tilde{\Pi}$ with probability 1-o(1).

Moreover, V runs in time $O^*(2^{n/2})$

Multivariate polynomial representation

- ▶ Let us work over \mathbb{F}_q , a finite field with $q \ge 2$ elements, q prime
- ► Let $x_1, x_2, ..., x_n$ be indeterminates that take values in \mathbb{F}_q
- ► Let us work with multivariate polynomials in $\mathbb{F}_q[x_1, x_2, \dots, x_n]$
- We will transform a collection $\mathscr C$ of m clauses over x_1, x_2, \ldots, x_n into a multivariate polynomial $p_{\mathscr C}(x_1, x_2, \ldots, x_n)$ such that for all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\} \subseteq \mathbb F_q$ we have $p_{\mathscr C}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies $\mathscr C$, and $p_{\mathscr C}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ otherwise

A literal as a multivariate polynomial

▶ For a literal ℓ over the variables x_1, x_2, \ldots, x_n , define the multivariate polynomial

$$p_{\ell}(x_1, x_2, \dots, x_n) = \begin{cases} 1 - x_i & \text{if } \ell = x_i; \\ x_i & \text{if } \ell = \bar{x}_i \end{cases}$$

- ▶ p_{ℓ} has degree 1
- For all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\}$ we have $p_{\ell}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies ℓ , and $p_{\ell}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ otherwise

A clause as a multivariate polynomial

- ► Let C be a clause over the variables $x_1, x_2, ..., x_n$
- ► For a clause *C*, define the multivariate polynomial

$$p_C(x_1, x_2, ..., x_n) = 1 - \prod_{\ell \in C} p_{\ell}(x_1, x_2, ..., x_n)$$

- ▶ Since C has at most 2n literals, p_C has degree at most 2n
- ► For all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\}$ we have $p_C(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies C, and $p_C(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ otherwise

A collection of clauses as a multivariate polynomial

- ▶ Let \mathscr{C} be a collection C_1, C_2, \ldots, C_m of clauses over the variables x_1, x_2, \ldots, x_n
- ► Define the multivariate polynomial

$$p_{\mathscr{C}}(x_1, x_2, \ldots, x_n) = \prod_{j=1}^m p_{C_j}(x_1, x_2, \ldots, x_n)$$

- ► p_% has degree at most 2mn
- For all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\}$ we have $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies \mathscr{C} , and $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ otherwise

#CNFSAT as a multivariate polynomial

- ▶ Let us work over \mathbb{F}_q , a finite field with $q \ge 2$ elements, q a prime
- ► Let $x_1, x_2, ..., x_n$ be indeterminates that take values in \mathbb{F}_q
- ▶ Let \mathscr{C} be a collection of m clauses over x_1, x_2, \ldots, x_n
- We now have a multivariate polynomial $p_{\mathscr{C}}(x_1, x_2, \ldots, x_n)$ of degree at most 2mn such that for all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\}$ we have $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies \mathscr{C} , and $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ otherwise
- ► That is, the number N of satisfying truth assignments to \mathscr{C} satisfies

$$N \equiv \sum_{\alpha_1, \alpha_2, \dots, \alpha_n \in \{0, 1\}} p_{\mathscr{C}}(\alpha_1, \alpha_2, \dots, \alpha_n) \pmod{q}$$

#CNFSAT as a univariate polynomial (1/2)

- ► Without loss of generality we may assume that *n* is even
- ▶ With some foresight, let us now assume that $2^{n/2+2}mn \le q \le 2^{n/2+3}mn$ (for large enough n we can find the two smallest such primes q_1, q_2 in time $O^*(2^{n/2})$, cf. [2] and [1])
- ▶ Let $a_1, a_2, ..., a_{n/2} \in \mathbb{F}_q[x]$ be univariate polynomials of degree at most $2^{n/2} 1$ such that

$$\{0,1\}^{n/2} = \{(a_1(\alpha), a_2(\alpha), \dots, a_{n/2}(\alpha)) : \alpha \in \{0, 1, \dots, 2^{n/2} - 1\}\}$$

- ► In particular we can construct such polynomials $a_1, a_2, \ldots, a_{n/2}$ in time $O^*(2^{n/2})$ using fast interpolation (exercise)
- ▶ Now define the univariate polynomial $P_{\mathscr{C}} \in \mathbb{F}_q[x]$ in the indeterminate x by

$$P_{\mathscr{C}}(x) = \sum_{\alpha_{n/2+1}, \alpha_{n/2+2}, \dots, \alpha_n \in \{0, 1\}} p_{\mathscr{C}}(a_1(x), a_2(x), \dots, a_{n/2}(x), \alpha_{n/2+1}, \alpha_{n/2+2}, \dots, \alpha_n)$$

#CNFSAT as a univariate polynomial (2/2)

► Recalling from the previous slide, we have

$$P_{\mathscr{C}}(x) = \sum_{\alpha_{n/2+1}, \alpha_{n/2+2}, \dots, \alpha_n \in \{0, 1\}} p_{\mathscr{C}}(a_1(x), a_2(x), \dots, a_{n/2}(x), \alpha_{n/2+1}, \alpha_{n/2+2}, \dots, \alpha_n)$$

- ▶ We observe that $P_{\mathscr{C}}$ has degree at most $2^{n/2+1}mn \leq q/2$
- ▶ Using near-linear-time algorithms for univariate polynomials, given a collection \mathscr{C} of clauses and a point $\xi \in \mathbb{F}_q$ as input, we can compute the value $P_{\mathscr{C}}(\xi)$ in time $O^*(2^{n/2})$ (exercise)
- ► From the definition of the polynomials $a_1, a_2, \ldots, a_{n/2}$ we observe that the number N of satisfying truth assignments to \mathscr{C} satisfies

$$N \equiv \sum_{n=0}^{2^{n/2}-1} P_{\mathscr{C}}(\alpha) \pmod{q}$$
 (32)

The proof string

- ► Recall that for large enough n we can assume that we work modulo a prime q with $2^{n/2+2}mn \le q \le 2^{n/2+3}mn$
- ► Given \mathscr{C} as input, in time $O^*(2^{n/2}e)$ we can produce e evaluations of $P_{\mathscr{C}}$ at distinct points
- ▶ If $e \ge 2^{n/2+1}mn + 1$, these evaluations enable us to interpolate $P_{\mathscr{C}}$ in time $O^*(2^{n/2})$ using fast interpolation
- ▶ We can represent the prime q and the coefficients of $P_{\mathscr{C}} \in \mathbb{F}_q[x]$ (of degree at most $2^{n/2+1}mn$) as a (prefix-coded) binary string Π_q of length $O^*(2^{n/2})$
- ► Let q_1, q_2 be the two least primes in the interval $[2^{n/2+2}mn, 2^{n/2+3}mn]$
- ▶ Take as the proof string Π the concatenation of Π_{q_1} and Π_{q_2}

Completeness

- ► Suppose $\Pi = \Pi_{q_1}\Pi_{q_2}$ is a correct proof string (of length $O^*(2^{n/2})$)
- ▶ Using Π_{q_1} and Π_{q_2} together with fast batch evaluation and (32) we can recover $N \mod q_1$ and $N \mod q_2$ in time $O^*(2^{n/2})$, where N is the number of satisfying truth assignments to \mathscr{C}
- ► Since $0 \le N \le 2^n$ and $q_1q_2 \ge 2^n + 1$, from $N \mod q_1$ and $N \mod q_2$ we can reconstruct the correct N using the Chinese Remainder Theorem
- ► Thus the verifier will always accept a correct triple \mathscr{C} , \tilde{N} , $\tilde{\Pi}$ with $\tilde{\Pi} = \Pi$ and $\tilde{N} = N$ in time $O^*(2^{n/2})$

Soundness (probabilistic) I

- ▶ Suppose the verifier is given as input a collection \mathscr{C} of m clauses over the variables x_1, x_2, \ldots, x_n , an integer \tilde{N} , and a binary string $\tilde{\Pi}$
- ► The verifier first checks that $\tilde{\Pi} = \tilde{\Pi}_{q_1} \tilde{\Pi}_{q_2}$ such that $\tilde{\Pi}_{q_1}$ and $\tilde{\Pi}_{q_2}$ encode the coefficients of a polynomial \tilde{P} of degree at most $2^{n/2+1}mn$ modulo the two least primes q_1 and q_2 in the interval $[2^{n/2+2}mn, 2^{n/2+3}mn]$; if this is not the case, the verifier rejects
- ▶ Next, consider each $q \in \{q_1, q_2\}$ in turn
- ► To verify that $\tilde{P} = P_{\mathscr{C}} \in \mathbb{F}_q[x]$ the verifier repeats the following test $\lceil \log_2 n \rceil + 1$ times: select $\xi \in \mathbb{F}_q$ independently and uniformly at random, and test that $\tilde{P}(\xi) = P_{\mathscr{C}}(\xi)$ holds; if this is not the case, the verifier rejects
- ► The left-hand side $\tilde{P}(\xi)$ can be evaluated in time $O^*(2^{n/2})$ using Horner's rule; the right-hand side $P_{\mathscr{C}}(\xi)$ can be evaluated in time $O^*(2^{n/2})$ using the dedicated evaluation algorithm for $P_{\mathscr{C}}$ (in the exercises)

Soundness (probabilistic) II

- ▶ Since $\tilde{P} P_{\mathscr{C}}$ has degree at most $2^{n+1}mn \le q/2$, if $\tilde{P} \ne P_{\mathscr{C}} \in \mathbb{F}_q[x]$ then the verifier rejects with probability at least 1 1/n (exercise)
- ► Thus the verifier rejects with probability 1 o(1) unless the string $\tilde{\Pi}$ is in fact the correct proof string Π ; from Π the verifier can recover the correct solution N and reject unless $\tilde{N} = N$; the verifier runs in time $O^*(2^{n/2})$

Complexity of preparing and verifying the proof

- ► Given \mathscr{C} as input, in time $O^*(2^{n/2}e)$ we can produce e evaluations of $P_{\mathscr{C}}$ at distinct points modulo q
- ▶ If $e \ge 2^{n/2+1}mn + 1$, these evaluations enable us to interpolate $P_{\mathscr{C}}$ in time $O^*(2^{n/2})$ using fast interpolation
- ► Thus, the total effort to prepare the proof is $O^*(2^n)$, which essentially matches the best known algorithms for counting the number of satisfying assignments to \mathbb{C} (that is, no algorithm that runs in worst-case time $O^*((2-\epsilon)^n)$ is known for any constant $\epsilon > 0$)
- ► The total effort to (probabilistically) verify the proof is $O^*(2^{n/2})$

Proof preparation with tolerance for errors [3, 15]

- ► Beyond #CNFSAT, a number of other computational problems admit proof systems in the following framework ...
- ► The proof is a polynomial p(x) of degree at most d over \mathbb{F}_q (one or more polynomials with Chinese Remaindering)
- ► **Prepare** the proof in **evaluation** representation with distinct *e* points

$$(\xi_1, p(\xi_1)), (\xi_2, p(\xi_2)), \ldots, (\xi_e, p(\xi_e))$$

- ▶ Preparation is vector-parallel, tolerates at most (e d 1)/2 errors for $e \ge d + 1$
- ► **Decode** the proof from evaluation representation to **coefficient** representation

$$p(x) = \pi_0 + \pi_1 x + \pi_2 x^2 + \ldots + \pi_d x^d$$

▶ **Verify** the proof by selecting a uniform random $\xi \in \mathbb{F}_q$ and testing whether

$$p(\xi) = \pi_0 + \pi_1 \xi + \pi_2 \xi^2 + \ldots + \pi_d \xi^d$$

Delegating computation

Client

modest resources reliable

instance Solution

Problem

that the

 How to verify solution is correct?

Service-provider

- How to design an algorithm to tolerate (a small number of) errors during computation?
- How to convince the client or a third party that the solution is correct?

Recap of Lecture 6

- ► We look at yet further applications of the evaluation–interpolation duality and randomization in algorithm design
- ► Randomized **identity testing** for polynomials and matrices (exercise)
- ► Delegating computation and proof systems
- ► Completeness and soundness of a proof system, cost of preparing a proof, cost of verifying a proof
- ► Williams's (2016) [30] probabilistic proof system for #CNFSAT
- ► Coping with **errors in computation** using error-correcting codes with multiplicative structure (Reed–Solomon codes revisited)
- ► Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [3]
- ► An extension of Shamir's secret sharing to delegating a computation to multiple counterparties (delegating matrix multiplication, exercise)

Learning objectives (1/2)

- ► Terminology and objectives of modern algorithmics, including elements of algebraic, online, and randomised algorithms
- Ways of coping with uncertainty in computation, including error-correction and proofs of correctness
- ► The art of solving a large problem by reduction to one or more smaller instances of the same or a related problem
- ► (Linear) independence, dependence, and their abstractions as enablers of efficient algorithms

Learning objectives (2/2)

- Making use of duality
 - ► Often a problem has a corresponding **dual** problem that is obtainable from the original (the **primal**) problem by means of an easy transformation
 - ► The primal and dual control each other, enabling an algorithm designer to use the interplay between the two representations
- ► Relaxation and tradeoffs between objectives and resources as design tools
 - ► Instead of computing the exact optimum solution at considerable cost, often a less costly but principled approximation suffices
 - ► Instead of the complete dual, often only a randomly chosen partial dual or other relaxation suffices to arrive at a solution with high probability