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Lecture schedule

Tue 15 Jan:
Tue 22 Jan:
Tue 29 Jan:
Tue 5 Feb:

Tue 12 Feb:

Tue 19 Feb:
Tue 27 Feb:
Tue 5 Mar:

Tue 12 Mar:
Tue 19 Mar:
Tue 26 Mar:
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. Polynomials and integers

. The fast Fourier transform and fast multiplication

. Quotient and remainder

. Batch evaluation and interpolation

. Extended Euclidean algorithm and interpolation from erroneous data

Exam week — no lecture

. Identity testing and probabilistically checkable proofs

Break — no lecture

. Finite fields
. Factoring polynomials over finite fields
. Factoring integers
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Recap of last week

» Extended Euclidean algorithm for polynomials recalled and expanded
> The quotient sequence, the Bézout coefficients, and the halting threshold

» Fast extended Euclidean algorithm for polynomials by divide and conquer

> The two polynomial operands truncated to a prefix of the highest-degree monomials
determine the prefix of the quotient sequence (exercise)

» Coping with errors in data using error-correcting codes

v

A family of error-correcting codes (Reed-Solomon codes) based on
evaluation—interpolation duality for univariate polynomials

> Key observation: low-degree polynomials have few roots (exercise)

» Fast encoding and decoding of Reed-Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder



Have: Near-linear-time toolbox for univariate polynomials

Modern Computer Algebra i cdition

v

Multiplication

v

Division (quotient and remainder)

Batch evaluation

v

v

Interpolation

Chapter 5

A NEW ALGORITHM FOR DECODING
REED-SOLOMON CODES

v

Extended Euclidean algorithm (gcd)

v

Interpolation from partly erroneous data




Motivation for this week

v

Last week we encountered uncertainty in computation

We saw how to cope with uncertainty in the form of errors in data by using

error-correcting codes

v

This week we look at (fine-grained) proof systems and errors in computation ...

v

» Our motivation is to be able to delegate computation ...



Delegating computation

Client

modest resources
reliable

¢ How to verify
that the
solution is
correct ?

Problem
instance

e
e

Solution

Service-provider

massively SIMD-parallel resources
error-prone

* How to design an algorithm to tolerate
(a small number of) errors during computation ?

* How to convince the client or a third party
that the solution is correct ?




Key content for Lecture 6

» We look at yet further applications of the evaluation-interpolation duality and
randomization in algorithm design

» Randomized identity testing for polynomials and matrices (exercise)
» Delegating computation and proof systems

» Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

» Williams’s (2016) [30] probabilistic proof system for #CNFSAT

» Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed—-Solomon codes revisited)

» Proof systems that tolerate errors during proof preparation (Bjorklund & K. 2016) [3]

» An extension of Shamir’s secret sharing to delegating a computation to multiple
counterparties (delegating matrix multiplication, exercise)



Proof systems

» Let / be a claim
(an instance of a computational problem with a yes/no (true/false) solution)

» Let us assume that [ is decidable, that is, there exists an algorithm D that given [ as
input outputs whether / is true

» Deciding whether / is true can often be assisted by supplying a proof II for /

» A proof system consists of a verification algorithm (the verifier) V that takes as
input / together with a putative proof IT and either accepts or rejects IT as a proof for /



Completeness and soundness

» A proof system with verifier V is

» complete if for every true | there exists a proof IT such that V accepts on input [ and IT

> sound if for every false / and every putative proof II it holds that V rejects on input /
and II



Probabilistic soundness

» Let us relax the notion of soundness somewhat by allowing the verifier V to make
random choices during its execution

> A proof system with a randomized verifier V is probabilistically sound if for every
false I and every putative proof IT it holds that V rejects with high probability on input
I and 11

» By “high probability” we mean with probability 1 — o(1) as a function of the size of /,
where probability is over the random choices made by V



Efficiency (verifier)

» In addition to completeness and soundness, in general we want a proof system also to
be efficient

» That is, V on input / and II should consume less computational resources than it takes
to decide I (using the best known algorithm for deciding /)



Efficiency (prover)

» Besides verifier efficiency, a yet further aspect to a proof system are the computational
resources to prepare a proof

» Let P be an algorithm (the prover) that given a claim [ as input outputs whether [ is
true, and if / is true, also outputs a proof II such that V accepts on input / and IT

» We would like P to be efficient in the sense that P should not consume substantially
more computational resources than it takes to decide [ (using the best known
algorithm for deciding /)



(Some of) recent work on fine-grained proof systems

v

Goldwasser, Kalai, Rothblum [12]
Walfish and Blumberg [29]

v

» Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, Schneider [5]

v

Williams [30]
Bjorklund, K. [3, 15]

v

v

In what follows we look at Williams’s [30] proof system for #CNFSAT ...



Boolean satisfiability

v

Let x1, x5, . . ., X, be nvariables that take values in {0, 1}

A truth assignment A is a mapping that assigns a value in {0, 1} to each of the
variables xq, x2, . . ., X,

A literal is a variable (x;) or its negation (x;)

A literal x; (respectively, x;) is satisfied by A if A(x;) = 1 (respectively, A(x;) = 0)
A clause C is a set of literals

A clause C is satisfied by A if at least one literal in C is satisfied by A

A collection of clauses Cy, G, . .., Cy, is satisfied by A if A satisfies every clause
C1’C2,--~’Cm



Conjunctive-normal-form satisfiability (CNFSAT)

» The CNFSAT problem asks, given a collection Cy, C,, ..., Cp, of clauses over variables
X1, X2, - - - » Xp @S input, whether there exists a truth assignment that satisfies
C,Cy...,Chp

» CNFSAT is NP-complete

» The #CNFSAT problem asks, given a collection C;, Cs, . . ., Cp, of clauses over variables
X1, X2, - - - » Xp as input, for the number of truth assignments that satisfy Cy, C,, ..., Cp

» #CNFSAT is #P-complete

» It is not known how to solve CNFSAT in worst-case time O*((2 — €)") for any constant
€ > 0; the best known algorithms run in O*(2") time

» Here the O*( ) notation suppresses a multiplicative factor polynomial in the size of the
input



CNFSAT and #CNFSAT

» It is easy to convince a verifier that an instance Cy, Cy, . . ., Cp, of CNFSAT is satisfiable
— just give the verifier a truth assignment A that satisfies C;, Gy, ..., Cp

» The verifier can check that A actually satisfies Cy, C,, . . ., Cy, in time O(mn)

» But how to convince a verifier that Cy, Gy, . . ., Cp,, has exactly N satisfying truth
assignments?

» For example, how to convince a verifier that C;, C,, ..., C,,; has no (zero) satisfying
truth assignments?



A probabilistic proof system for #CNFSAT

» Williams’s (2016) [30]:
There exists a randomized algorithm V (the verifier) such that for all collections 4 of
m clauses over n variables and all integers N it holds that
1. if € has exactly N satisfying truth assignments, then there exists a bit string IT of length
0*(2"'2) such that V accepts the triple %', N, II with probability 1;
2. if € does not have exactly N satisfying truth assignments, then for every bit string IT it
holds that V rejects the triple €, N, II with probability 1 — o(1).

Moreover, V runs in time O*(2"/?)



Multivariate polynomial representation

> Let us work over I, a finite field with ¢ > 2 elements, g prime

> Let xq,x2,. .., X, be indeterminates that take values in F,

> Let us work with multivariate polynomials in Fg[xq, x5, . . ., x5

» We will transform a collection € of m clauses over xi, xa, . . ., X, into a multivariate
polynomial px(x1, x2,. .., x,) such that for all oy, a2, . . ., @, € {0, 1} C Fy we have

pz(ar, aa, ..., ay) = 1if and only if the truth assignment A with
Alx1) = a1, A(x2) = @a, . . ., A(Xy) = @, satisfies €, and pg(ar, oz, ..., ) =0
otherwise



A literal as a multivariate polynomial

» For a literal € over the variables xq, x2, . . ., x;,, define the multivariate polynomial

( ) 1-x; iff=x;

(X1, X0y o o5 Xp) =

peixt %2 " Xj if { = x;

> p¢ has degree 1

» Forall a1, ay, ..., a, € {0, 1} we have pe(ay, ay, . . ., a,) = 0 if and only if the truth
assignment A with A(xy) = a1, A(x2) = ay, . . ., A(xs) = @, satisfies €, and
pe(ar, ag, ..., ay) = 1otherwise



A clause as a multivariate polynomial

v

Let C be a clause over the variables x1, x3, . . ., X,

v

For a clause C, define the multivariate polynomial

pC(X15X29' . -’Xn) = 1 - l—lpf(XhXZ’- . '9Xn)
teC

Since C has at most 2n literals, pc has degree at most 2n

v

For all a1, a0y, . ..,y € {0, 1} we have pc(ay, ay, . . ., a,) = 1if and only if the truth
assignment A with A(xy) = a1, A(x2) = aa, ..., A(x,) = a, satisfies C, and
pc(ar, aa, . .., ) = 0 otherwise

\{



A collection of clauses as a multivariate polynomial

v

Let € be a collection Cq, C,, ..., Cy, of clauses over the variables xq, xo, . . ., x;,

v

Define the multivariate polynomial

m
Pz (X1, X2, o 23 Xp) = l—[pcj(x1,x2, vy Xn)
j=1

» ps has degree at most 2mn
» Forall ay,a,,...,a, € {0,1} we have pg (a1, @2, . . ., @y) = 1if and only if the truth
assignment A with A(xy) = a1, A(x) = ay, - .., A(xy) = @, satisfies €, and

pel(ar, aa, . .., an) = 0 otherwise



#CNFSAT as a multivariate polynomial

> Let us work over F, a finite field with ¢ > 2 elements, g a prime

> Let xq,x2,. .., X, be indeterminates that take values in F,

» Let € be a collection of m clauses over x1, x, . . ., X,

» We now have a multivariate polynomial p¢(x1, x, . . ., x,) of degree at most 2mn such
that for all oy, a, . . ., @, € {0, 1} we have py(ay, ay, ..., a,) = 1if and only if the
truth assignment A with A(x7) = a1, A(x) = @2, . . ., A(xn) = a, satisfies €, and
pg(aq, oo, ..., an) = 0 otherwise

» That is, the number N of satisfying truth assignments to % satisfies

N= > pelanan....a)  (mod q)

ay, ay, ..., an€{0,1}



#CNFSAT as a univariate polynomial (1/2)

» Without loss of generality we may assume that n is even

» With some foresight, let us now assume that 2"/2*2mn < q < 2"2*3mn
(for large enough n we can find the two smallest such primes g1, ¢ in time O*(2"/?),

cf. [2] and [1])

> Let aj, ay, . . ., an2 € Fy[x] be univariate polynomials of degree at most 2"/ — 1 such
that

{0, 1)"2 = ((a1(@), az(@), . . ., ana(@)) - @ € {0, 1,...,2"2 — 1}}

> In particular we can construct such polynomials aj, a, . . ., a,/ in time O*(2"/?) using
fast interpolation (exercise)

» Now define the univariate polynomial Py € Fy[x] in the indeterminate x by

P%’(X) = Z pz'(m (X), az(X), ey an/z(X), An/24+15 Xnf2+425 « + +» an)

Qn/241>Anj2425 - An €10, 1}



#CNFSAT as a univariate polynomial (2/2)

» Recalling from the previous slide, we have

P%(X) = Z P‘J(m(x), aZ(X)a---,an/Z(X)’an/2+1’an/2+2’-'-,an)

Qp/2+15Anj2+2s - An €10, 1}

» We observe that Py has degree at most 2"/2*'mn < q/2

» Using near-linear-time algorithms for univariate polynomials, given a collection ¢ of
clauses and a point ¢ € Fg as input, we can compute the value Py (£) in time 0*(2"?)
(exercise)

» From the definition of the polynomials ay, ay, . . ., an/2 we observe that the number N
of satisfying truth assignments to ¢ satisfies

2"/21

N = Z Py(e)  (mod q) (32)
a=0



The proof string

» Recall that for large enough n we can assume that we work modulo a prime g with
2”/2+2mn S q S 2ﬂ/2+3mn

» Given € as input, in time O*(2"/2e) we can produce e evaluations of Py at distinct
points

> If e > 2"/%*"mn + 1, these evaluations enable us to interpolate Py in time O*(2"/?)
using fast interpolation

» We can represent the prime g and the coefficients of Py € Fy[x] (of degree at most
2"2*1mn) as a (prefix-coded) binary string I1, of length 0*(2"?)

> Let g1, g, be the two least primes in the interval [2"/2*2mn, 2"/?*3mn]

> Take as the proof string II the concatenation of I1,, and IIg,



Completeness

> Suppose IT = I1y I1g, is a correct proof string (of length 0*(2"'?))

» Using I1,, and II,, together with fast batch evaluation and (32) we can recover
N mod q; and N mod g, in time O*(2"/?), where N is the number of satisfying truth
assignments to ¢

» Since 0 < N < 2"and g1g, > 2" + 1, from N mod g; and N mod g, we can reconstruct
the correct N using the Chinese Remainder Theorem

> Thus the verifier will always accept a correct triple €, N,II with [T = [T and N = N in
time O*(2"/?)



Soundness (probabilistic) |

> Suppose the verifier is given as input a collection ¢ of m clauses over the variables
X1, X2, - . . » Xp, @N integer N and a binary string I

> The verifier first checks that IT = I14, 1y, such that I1,, and I1,, encode the coefficients
of a polynomial P of degree at most 2"/>*'mn modulo the two least primes g; and g,
in the interval [2"/2*2mn, 2"/2*3 mn; if this is not the case, the verifier rejects

» Next, consider each q € {q1, g2} in turn

» To verify that P = Py € [F4[x] the verifier repeats the following test [log, n] + 1 times:
select £ € Fy independently and uniformly at random, and test that P(£) = P (¢)
holds; if this is not the case, the verifier rejects

» The left-hand side P(¢) can be evaluated in time O* (2"/2) using Horner’s rule; the
right-hand side Py (&) can be evaluated in time O*(2"/?) using the dedicated
evaluation algorithm for Py (in the exercises)



Soundness (probabilistic) Il

» Since P — P4 has degree at most 2" 'mn < q/2, if P+Pye Fq[x] then the verifier
rejects with probability at least 1 — 1/n (exercise)

> Thus the verifier rejects with probability 1 — o(1) unless the string IT is in fact the
correct proof string IT; from II the verifier can recover the correct solution N and reject
unless N = N; the verifier runs in time O*(2"/?)



Complexity of preparing and verifying the proof

» Given € as input, in time O*(2"/?e) we can produce e evaluations of Py at distinct
points modulo ¢

> If e > 2"/%*"mn + 1, these evaluations enable us to interpolate Py in time O*(2"/?)
using fast interpolation

» Thus, the total effort to prepare the proof is O*(2"), which essentially matches the best
known algorithms for counting the number of satisfying assignments to C (that is, no
algorithm that runs in worst-case time O*((2 — €)") is known for any constant € > 0)

> The total effort to (probabilistically) verify the proof is O*(2"/?)



Proof preparation with tolerance for errors [3, 15]

» Beyond #CNFSAT, a number of other computational problems admit proof systems in
the following framework ...

» The proof is a polynomial p(x) of degree at most d over F,
(one or more polynomials with Chinese Remaindering)

v

Prepare the proof in evaluation representation with distinct e points

(&1, p(&1)), (&2, p(82))s - - - (Ees p(&e))

Preparation is vector-parallel, tolerates at most (e — d — 1)/2 errors fore > d + 1

v

v

Decode the proof from evaluation representation to coefficient representation

p(x) = m + X + X +...+7rdxd

\{

Verify the proof by selecting a uniform random ¢ € F, and testing whether

p(&) = my + mE + mE% + ..+ mqé?



Delegating computation

Client

modest resources
reliable

¢ How to verify
that the
solution is
correct ?

Problem
instance

e
e

Solution

Service-provider

massively SIMD-parallel resources
error-prone

* How to design an algorithm to tolerate
(a small number of) errors during computation ?

* How to convince the client or a third party
that the solution is correct ?




Recap of Lecture 6

» We look at yet further applications of the evaluation-interpolation duality and
randomization in algorithm design

» Randomized identity testing for polynomials and matrices (exercise)
» Delegating computation and proof systems

» Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

» Williams’s (2016) [30] probabilistic proof system for #CNFSAT

» Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed—-Solomon codes revisited)

» Proof systems that tolerate errors during proof preparation (Bjorklund & K. 2016) [3]

» An extension of Shamir’s secret sharing to delegating a computation to multiple
counterparties (delegating matrix multiplication, exercise)



Learning objectives (1/2)

» Terminology and objectives of modern algorithmics, including elements of algebraic,
online, and randomised algorithms

» Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

» The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

» (Linear) independence, dependence, and their abstractions as enablers of efficient
algorithms



Learning objectives (2/2)

» Making use of duality
» Often a problem has a corresponding dual problem that is obtainable from the original
(the primal) problem by means of an easy transformation

» The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

» Relaxation and tradeoffs between objectives and resources as design tools
> Instead of computing the exact optimum solution at considerable cost, often a less costly
but principled approximation suffices

> Instead of the complete dual, often only a randomly chosen partial dual or other
relaxation suffices to arrive at a solution with high probability



