6. Identity testing and probabilistically checkable proofs

CS-E4500 Advanced Course on Algorithms Spring 2019

Petteri Kaski

Department of Computer Science Aalto University

- Tue 15 Jan: 1. Polynomials and integers
- Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
- Tue 29 Jan: 3. Quotient and remainder
- Tue 5 Feb: 4. Batch evaluation and interpolation
- Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data
- Tue 19 Feb: Exam week no lecture
- Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs
- Tue 5 Mar: Break no lecture
- Tue 12 Mar: 7. Finite fields
- Tue 19 Mar: 8. Factoring polynomials over finite fields
- Tue 26 Mar: 9. Factoring integers

CS-E4500 Advanced Course in Algorithms (5 ECTS, III-IV, Spring 2019)

 $L =$ Lecture;

hall T5, Tue 12-14

 $Q = Q & A$ session; hall T5, Thu 12-14

 $D =$ Problem set deadline; Sun 20:00

 $T =$ Tutorial (model solutions); hall T6, Mon $16-18$

- \triangleright Extended Euclidean algorithm for polynomials recalled and expanded
	- \triangleright The quotient sequence, the Bézout coefficients, and the halting threshold
- \triangleright Fast extended Euclidean algorithm for polynomials by **divide and conquer**
	- \triangleright The two polynomial operands **truncated** to a prefix of the highest-degree monomials determine the prefix of the quotient sequence (exercise)
- \triangleright Coping with errors in data using error-correcting codes
- ► A family of error-correcting codes (Reed–Solomon codes) based on evaluation–interpolation duality for univariate polynomials
	- \triangleright Key observation: low-degree polynomials have few roots (exercise)
	- \triangleright Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial toolkit and Gao's (2003) decoder

Have: Near-linear-time toolbox for univariate polynomials

- \triangleright Multiplication
- \triangleright Division (quotient and remainder)
- \blacktriangleright Batch evaluation
- \blacktriangleright Interpolation
- Extended Euclidean algorithm (gcd)
- \blacktriangleright Interpolation from partly erroneous data

- \blacktriangleright Last week we encountered uncertainty in computation
- \triangleright We saw how to cope with uncertainty in the form of **errors in data** by using error-correcting codes
- \triangleright This week we look at (fine-grained) proof systems and errors in computation ...
- \triangleright Our motivation is to be able to delegate computation ...

Delegating computation

Problem instance

Solution

• How to verify that the solution is correct?

Service-provider

- How to design an algorithm to tolerate (a small number of) errors during computation?
- How to convince the client or a third party \bullet that the solution is correct?

Key content for Lecture 6

- \triangleright We look at yet further applications of the evaluation–interpolation duality and randomization in algorithm design
- Example 2 Randomized identity testing for polynomials and matrices (exercise)
- \triangleright Delegating computation and proof systems
- \triangleright Completeness and soundness of a proof system, cost of preparing a proof, cost of verifying a proof
- \triangleright Williams's (2016) [\[30\]](#page-0-0) probabilistic proof system for #CNFSAT
- \triangleright Coping with errors in computation using error-correcting codes with multiplicative structure (Reed–Solomon codes revisited)
- Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [\[3\]](#page-0-0)
- \triangleright An extension of Shamir's secret sharing to delegating a computation to multiple counterparties (delegating matrix multiplication, exercise)

 \blacktriangleright Let *I* be a claim

(an instance of a computational problem with a yes/no (true/false) solution)

- In Let us assume that I is decidable, that is, there exists an algorithm D that given I as input outputs whether *is true*
- **E** Deciding whether I is true can often be assisted by supplying a **proof** Π for I
- A proof system consists of a verification algorithm (the verifier) V that takes as input *I* together with a putative proof $\tilde{\Pi}$ and either accepts or rejects $\tilde{\Pi}$ as a proof for *I*
- A proof system with verifier V is
	- **complete** if for every true I there exists a proof Π such that V accepts on input I and Π
	- \blacktriangleright sound if for every false *I* and every putative proof $\tilde{\Pi}$ it holds that V rejects on input *I* and $\tilde{\Pi}$
- Executive Let us relax the notion of soundness somewhat by allowing the verifier V to make random choices during its execution
- A proof system with a randomized verifier V is **probabilistically sound** if for every false *I* and every putative proof $\tilde{\Pi}$ it holds that V rejects with high probability on input I and $\tilde{\Pi}$
- ► By "high probability" we mean with probability $1 o(1)$ as a function of the size of I, where probability is over the random choices made by V
- \blacktriangleright In addition to completeness and soundness, in general we want a proof system also to be *efficient*
- **F** That is, V on input I and $\overrightarrow{\Pi}$ should consume less computational resources than it takes to decide I (using the best known algorithm for deciding I)
- \triangleright Besides verifier efficiency, a yet further aspect to a proof system are the computational resources to prepare a proof
- Extract P be an algorithm (the **prover**) that given a claim *I* as input outputs whether *I* is true, and if *I* is true, also outputs a proof Π such that *V* accepts on input *I* and Π
- \triangleright We would like P to be efficient in the sense that P should not consume substantially more computational resources than it takes to decide I (using the best known algorithm for deciding I)

(Some of) recent work on fine-grained proof systems

- \triangleright Goldwasser, Kalai, Rothblum [\[12\]](#page-0-0)
- \blacktriangleright Walfish and Blumberg [\[29\]](#page-0-0)
- ▶ Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, Schneider [\[5\]](#page-0-0)
- \triangleright Williams [\[30\]](#page-0-0)
- \blacktriangleright Björklund, K. [\[3, 15\]](#page-0-0)

In what follows we look at Williams's [\[30\]](#page-0-0) proof system for $\#CNFSAT$...

- Elet x_1, x_2, \ldots, x_n be *n* variables that take values in {0, 1}
- A truth assignment A is a mapping that assigns a value in $\{0, 1\}$ to each of the variables x_1, x_2, \ldots, x_n
- \blacktriangleright A literal is a variable (x_i) or its negation (\bar{x}_i)
- A literal x_i (respectively, \bar{x}_i) is **satisfied** by A if $A(x_i) = 1$ (respectively, $A(x_i) = 0$)
- \triangleright A clause C is a set of literals
- A clause C is satisfied by A if at least one literal in C is satisfied by A
- A collection of clauses C_1, C_2, \ldots, C_m is **satisfied** by A if A satisfies every clause C_1, C_2, \ldots, C_m

Conjunctive-normal-form satisfiability (CNFSAT)

- \triangleright The CNFSAT problem asks, given a collection C_1, C_2, \ldots, C_m of clauses over variables x_1, x_2, \ldots, x_n as input, whether there exists a truth assignment that satisfies C_1, C_2, \ldots, C_m
- \triangleright CNFSAT is NP-complete
- \triangleright The #**CNFSAT** problem asks, given a collection C_1, C_2, \ldots, C_m of clauses over variables x_1, x_2, \ldots, x_n as input, for the number of truth assignments that satisfy C_1, C_2, \ldots, C_m
- \blacktriangleright #CNFSAT is #P-complete
- ► It is not known how to solve CNFSAT in worst-case time $O^*((2 \epsilon)^n)$ for any constant $\epsilon > 0$; the best known algorithms run in $O^*(2^n)$ time $\epsilon > 0$; the best known algorithms run in $O^*(2^n)$ time
- ► Here the $O^*($) notation suppresses a multiplicative factor polynomial in the size of the input
- It is easy to convince a verifier that an instance C_1, C_2, \ldots, C_m of CNFSAT is satisfiable – just give the verifier a truth assignment A that satisfies C_1, C_2, \ldots, C_m
- In The verifier can check that A actually satisfies C_1, C_2, \ldots, C_m in time $O(mn)$
- But how to convince a verifier that C_1, C_2, \ldots, C_m has exactly N satisfying truth assignments?
- For example, how to convince a verifier that C_1, C_2, \ldots, C_m has no (zero) satisfying truth assignments?

A probabilistic proof system for #CNFSAT

 \triangleright Williams's (2016) [\[30\]](#page-0-0):

There exists a randomized algorithm V (the verifier) such that for all collections $\mathscr C$ of m clauses over *n* variables and all integers N it holds that

- 1. if $\mathscr C$ has exactly N satisfying truth assignments, then there exists a bit string Π of length $O^*(2^{n/2})$
- $O^*(2^{n/2})$ such that V accepts the triple \mathscr{C}, N, Π with probability 1;
2. if \mathscr{C} does not have exactly N satisfying truth assignments, then for every bit string $\tilde{\Pi}$ it holds that V rejects the triple \mathcal{C}, N , $\tilde{\Pi}$ with probability 1 – $o(1)$.

Moreover, V runs in time $O^*(2^{n/2})$

- ► Let us work over \mathbb{F}_q , a finite field with $q \ge 2$ elements, q prime
- Elet x_1, x_2, \ldots, x_n be indeterminates that take values in \mathbb{F}_q
- Extraport Let us work with multivariate polynomials in $\mathbb{F}_q[x_1, x_2, \ldots, x_n]$
- \triangleright We will transform a collection $\mathscr C$ of m clauses over x_1, x_2, \ldots, x_n into a multivariate polynomial $p_{\mathscr{C}}(x_1, x_2, \ldots, x_n)$ such that for all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\} \subseteq \mathbb{F}_q$ we have $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies \mathcal{C} , and $p_{\mathcal{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ otherwise

For a literal ℓ over the variables x_1, x_2, \ldots, x_n , define the multivariate polynomial

$$
p_{\ell}(x_1, x_2, \ldots, x_n) = \begin{cases} 1 - x_i & \text{if } \ell = x_i; \\ x_i & \text{if } \ell = \bar{x}_i \end{cases}
$$

- \rightarrow *p*_{ℓ} has degree 1
- For all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\}$ we have $p_\ell (\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies ℓ , and $p_\ell (\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ otherwise
- Exercise Let C be a clause over the variables x_1, x_2, \ldots, x_n
- \triangleright For a clause C, define the multivariate polynomial

$$
p_C(x_1, x_2, ..., x_n) = 1 - \prod_{\ell \in C} p_{\ell}(x_1, x_2, ..., x_n)
$$

- \blacktriangleright Since C has at most 2*n* literals, p_C has degree at most 2*n*
- For all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\}$ we have $p_C(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies C, and $p_C(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ otherwise

A collection of clauses as a multivariate polynomial

- Example 1 Let $\mathscr C$ be a collection C_1, C_2, \ldots, C_m of clauses over the variables x_1, x_2, \ldots, x_n
- \triangleright Define the multivariate polynomial

$$
p_{\mathscr{C}}(x_1, x_2, \ldots, x_n) = \prod_{j=1}^m p_{C_j}(x_1, x_2, \ldots, x_n)
$$

- \rightarrow p_C has degree at most 2mn
- For all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\}$ we have $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies \mathcal{C} , and $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ otherwise
- Extrem Let us work over \mathbb{F}_q , a finite field with $q \geq 2$ elements, q a prime
- Elet x_1, x_2, \ldots, x_n be indeterminates that take values in \mathbb{F}_q
- Exercise Let \mathscr{C} be a collection of m clauses over x_1, x_2, \ldots, x_n
- \triangleright We now have a multivariate polynomial $p_{\mathscr{C}}(x_1, x_2, \ldots, x_n)$ of degree at most 2mn such that for all $\alpha_1, \alpha_2, \ldots, \alpha_n \in \{0, 1\}$ we have $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$ if and only if the truth assignment A with $A(x_1) = \alpha_1, A(x_2) = \alpha_2, \ldots, A(x_n) = \alpha_n$ satisfies \mathcal{C} , and $p_{\mathscr{C}}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ otherwise
- In That is, the number N of satisfying truth assignments to $\mathscr C$ satisfies

$$
N \equiv \sum_{\alpha_1, \alpha_2, ..., \alpha_n \in \{0, 1\}} p_{\mathscr{C}}(\alpha_1, \alpha_2, ..., \alpha_n) \qquad (mod \ q)
$$

#CNFSAT as a univariate polynomial (1/2)

- \triangleright Without loss of generality we may assume that *n* is even
- ► With some foresight, let us now assume that $2^{n/2+2}$ mn $\leq q \leq 2^{n/2+3}$ mn (for large enough *n* we can find the two smallest such primes q_1, q_2 in time $O^*(2^{n/2})$,
cf [2] and [1]) cf. $[2]$ and $[1]$)
- ► Let $a_1, a_2, ..., a_{n/2} \in \mathbb{F}_q[x]$ be univariate polynomials of degree at most $2^{n/2} 1$ such that that

 ${0, 1\}^{n/2} = \{(a_1(\alpha), a_2(\alpha), \ldots, a_{n/2}(\alpha)) : \alpha \in \{0, 1, \ldots, 2^{n/2} - 1\}\}$

- In particular we can construct such polynomials $a_1, a_2, \ldots, a_{n/2}$ in time $O^*(2^{n/2})$ using
fast internalation (evergise) fast interpolation (exercise)
- ► Now define the univariate polynomial $P_{\mathscr{C}} \in \mathbb{F}_q[x]$ in the indeterminate x by

$$
P_{\mathscr{C}}(x) = \sum_{\alpha_{n/2+1}, \alpha_{n/2+2}, \dots, \alpha_n \in \{0, 1\}} p_{\mathscr{C}}(a_1(x), a_2(x), \dots, a_{n/2}(x), \alpha_{n/2+1}, \alpha_{n/2+2}, \dots, \alpha_n)
$$

#CNFSAT as a univariate polynomial (2/2)

 \triangleright Recalling from the previous slide, we have

 $P_{\mathscr{C}}(x) = \sum_{\alpha \text{ and } \alpha \text{ is a } \alpha \text{ is a}} p_{\mathscr{C}}(a_1(x), a_2(x), \dots, a_{n/2}(x), \alpha_{n/2+1}, \alpha_{n/2+2}, \dots, \alpha_n)$ $\alpha_{n/2+1}, \alpha_{n/2+2}, \ldots, \alpha_n \in \{0,1\}$

- ► We observe that $P_{\mathscr{C}}$ has degree at most $2^{n/2+1}mn \leq q/2$
- In Using near-linear-time algorithms for univariate polynomials, given a collection $\mathscr C$ of clauses and a point $\xi \in \mathbb{F}_q$ as input, we can compute the value $P_{\mathscr{C}}(\xi)$ in time $O^*(2^{n/2})$
(exercise) (exercise)
- From the definition of the polynomials $a_1, a_2, \ldots, a_{n/2}$ we observe that the number N of satisfying truth assignments to $\mathscr C$ satisfies

$$
N \equiv \sum_{\alpha=0}^{2^{n/2}-1} P_{\mathscr{C}}(\alpha) \qquad \text{(mod } q\text{)}
$$
 (32)

- Execall that for large enough n we can assume that we work modulo a prime q with $2^{n/2+2}$ mn $\leq q \leq 2^{n/2+3}$ mn
- ► Given $\mathscr C$ as input, in time $O^*(2^{n/2}e)$ we can produce e evaluations of $P_{\mathscr C}$ at distinct points
- If $e \ge 2^{n/2+1}mn + 1$, these evaluations enable us to interpolate $P_{\mathscr{C}}$ in time $O^*(2^{n/2})$ using fast interpolation
- ► We can represent the prime q and the coefficients of $P_{\mathscr{C}} \in \mathbb{F}_q[x]$ (of degree at most $2^{n/2+1}$ mn) as a (prefix-coded) binary string Π_q of length $O^*(2^{n/2})$
- In Let q_1, q_2 be the two least primes in the interval $\left[2^{n/2+2}mn, 2^{n/2+3}mn\right]$
- \blacktriangleright Take as the proof string Π the concatenation of Π_{q_1} and Π_{q_2}
- ► Suppose $\Pi = \Pi_{q_1} \Pi_{q_2}$ is a correct proof string (of length $O^*(2^{n/2})$)
- \blacktriangleright Using Π_{q_1} and Π_{q_2} together with fast batch evaluation and [\(32\)](#page-24-0) we can recover N mod q_1 and N mod q_2 in time $O^*(2^{n/2})$, where N is the number of satisfying truth assignments to $\mathscr C$
- ► Since $0 \le N \le 2^n$ and $q_1q_2 \ge 2^n + 1$, from N mod q_1 and N mod q_2 we can reconstruct the correct N using the Chinese Remainder Theorem
- ► Thus the verifier will always accept a correct triple $\mathcal{C}, \tilde{N}, \tilde{\Pi}$ with $\tilde{\Pi} = \Pi$ and $\tilde{N} = N$ in time $O^*(2^{n/2})$ time $O^*(2^{n/2})$
- In Suppose the verifier is given as input a collection $\mathscr C$ of m clauses over the variables x_1, x_2, \ldots, x_n , an integer \tilde{N} , and a binary string $\tilde{\Pi}$
- \blacktriangleright The verifier first checks that $\tilde{\Pi}=\tilde{\Pi}_{q_1}\tilde{\Pi}_{q_2}$ such that $\tilde{\Pi}_{q_1}$ and $\tilde{\Pi}_{q_2}$ encode the coefficients of a polynomial \tilde{P} of degree at most $2^{n/2+1}$ mn modulo the two least primes q_1 and q_2 in the interval $[2^{n/2+2}mn, 2^{n/2+3}mn]$; if this is not the case, the verifier rejects
- ► Next, consider each $q \in \{q_1, q_2\}$ in turn
- ► To verify that $\tilde{P} = P_{\mathscr{C}} \in \mathbb{F}_q[x]$ the verifier repeats the following test $\lceil \log_2 n \rceil + 1$ times: select $\xi \in \mathbb{F}_q$ independently and uniformly at random, and test that $\tilde{P}(\xi) = P_{\mathscr{C}}(\xi)$
holds: if this is not the case, the verifier rejects holds; if this is not the case, the verifier rejects
- ► The left-hand side $\tilde{P}(\xi)$ can be evaluated in time $O^*(2^{n/2})$ using Horner's rule; the right-hand side $P_0(\xi)$ can be evaluated in time $O^*(2^{n/2})$ using the dedicated right-hand side $P_{\mathscr{C}}(\xi)$ can be evaluated in time $O^*(2^{n/2})$ using the dedicated
evaluation algorithm for $P_{\mathscr{C}}$ (in the evergises) evaluation algorithm for $P_{\mathscr{C}}$ (in the exercises)
- Since $\tilde{P} P_{\mathscr{C}}$ has degree at most $2^{n+1}mn \le q/2$, if $\tilde{P} \ne P_{\mathscr{C}} \in \mathbb{F}_q[x]$ then the verifier
rejects with probability at least $1 1/n$ (exercise) rejects with probability at least $1 - \frac{1}{n}$ (exercise)
- ► Thus the verifier rejects with probability 1 $o(1)$ unless the string $\tilde{\Pi}$ is in fact the correct proof string Π ; from Π the verifier can recover the correct solution N and reject unless $\tilde{N} = N$; the verifier runs in time $O^*(2^{n/2})$

Complexity of preparing and verifying the proof

- ► Given $\mathscr C$ as input, in time $O^*(2^{n/2}e)$ we can produce e evaluations of $P_{\mathscr C}$ at distinct points modulo q
- ► If $e \ge 2^{n/2+1}mn + 1$, these evaluations enable us to interpolate $P_{\mathscr{C}}$ in time $O^*(2^{n/2})$ using fast interpolation
- ► Thus, the total effort to prepare the proof is $O[*](2ⁿ)$, which essentially matches the best known algorithms for counting the number of satisfying assignments to $\mathbb C$ (that is, no algorithm that runs in worst-case time $O^*((2-\epsilon)^n)$ is known for any constant $\epsilon > 0$)
- ► The total effort to (probabilistically) verify the proof is $O^*(2^{n/2})$

Proof preparation with tolerance for errors [\[3, 15\]](#page-0-0)

- \triangleright Beyond #CNFSAT, a number of other computational problems admit proof systems in the following framework ...
- \triangleright The proof is a polynomial $p(x)$ of degree at most d over \mathbb{F}_q (one or more polynomials with Chinese Remaindering)
- **Prepare** the proof in **evaluation** representation with distinct e points

 $(\xi_1, p(\xi_1)), (\xi_2, p(\xi_2)), \ldots, (\xi_e, p(\xi_e))$

- Preparation is vector-parallel, tolerates at most $(e d 1)/2$ errors for $e \ge d + 1$
- \triangleright Decode the proof from evaluation representation to coefficient representation

 $p(x) = \pi_0 + \pi_1 x + \pi_2 x^2 + \ldots + \pi_d x^d$

► Verify the proof by selecting a uniform random $\xi \in \mathbb{F}_q$ and testing whether

 $p(\xi) = \pi_0 + \pi_1 \xi + \pi_2 \xi^2 + \ldots + \pi_d \xi^d$

Delegating computation

Problem instance

Solution

• How to verify that the solution is correct?

Service-provider

- How to design an algorithm to tolerate (a small number of) errors during computation?
- How to convince the client or a third party \bullet that the solution is correct?

Recap of Lecture 6

- \triangleright We look at yet further applications of the evaluation–interpolation duality and randomization in algorithm design
- Example 2 Randomized identity testing for polynomials and matrices (exercise)
- \triangleright Delegating computation and proof systems
- \triangleright Completeness and soundness of a proof system, cost of preparing a proof, cost of verifying a proof
- \triangleright Williams's (2016) [\[30\]](#page-0-0) probabilistic proof system for #CNFSAT
- \triangleright Coping with errors in computation using error-correcting codes with multiplicative structure (Reed–Solomon codes revisited)
- Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [\[3\]](#page-0-0)
- \triangleright An extension of Shamir's secret sharing to delegating a computation to multiple counterparties (delegating matrix multiplication, exercise)
- \triangleright Terminology and objectives of modern algorithmics, including elements of algebraic, online, and randomised algorithms
- \triangleright Ways of coping with uncertainty in computation, including error-correction and proofs of correctness
- \triangleright The art of solving a large problem by reduction to one or more smaller instances of the same or a related problem
- \blacktriangleright (Linear) independence, dependence, and their abstractions as enablers of efficient algorithms

Learning objectives (2/2)

- \triangleright Making use of duality
	- \triangleright Often a problem has a corresponding **dual** problem that is obtainable from the original (the primal) problem by means of an easy transformation
	- \triangleright The primal and dual control each other, enabling an algorithm designer to use the interplay between the two representations
- \triangleright Relaxation and tradeoffs between objectives and resources as design tools
	- Instead of computing the exact optimum solution at considerable cost, often a less costly but principled approximation suffices
	- Instead of the complete dual, often only a randomly chosen partial dual or other relaxation suffices to arrive at a solution with high probability