
6. Identity testing and probabilistically
checkable proofs

CS-E4500 Advanced Course on Algorithms
Spring 2019

Pe�eri Kaski
Department of Computer Science

Aalto University

Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers

2019 K A L E N T E R I 2019

Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu

1 Ti Uudenvuodenpäivä 1 Pe 1 Pe 1 Ma Vk 14 1 Ke Vappu 1 La

2 Ke 2 La 2 La 2 Ti 2 To 2 Su

3 To 3 Su 3 Su 3 Ke 3 Pe 3 Ma Vk 23

4 Pe 4 Ma Vk 06 4 Ma Vk 10 4 To 4 La 4 Ti

5 La 5 Ti 5 Ti Laskiainen 5 Pe 5 Su 5 Ke

6 Su Loppiainen 6 Ke 6 Ke 6 La 6 Ma Vk 19 6 To

7 Ma Vk 02 7 To 7 To 7 Su 7 Ti 7 Pe

8 Ti 8 Pe 8 Pe 8 Ma Vk 15 8 Ke 8 La

9 Ke 9 La 9 La 9 Ti 9 To 9 Su Helluntaipäivä

10 To 10 Su 10 Su 10 Ke 10 Pe 10 Ma Vk 24

11 Pe 11 Ma Vk 07 11 Ma Vk 11 11 To 11 La 11 Ti

12 La 12 Ti 12 Ti 12 Pe 12 Su Äitienpäivä 12 Ke

13 Su 13 Ke 13 Ke 13 La 13 Ma Vk 20 13 To

14 Ma Vk 03 14 To 14 To 14 Su Palmusunnuntai 14 Ti 14 Pe

15 Ti 15 Pe 15 Pe 15 Ma Vk 16 15 Ke 15 La

16 Ke 16 La 16 La 16 Ti 16 To 16 Su

17 To 17 Su 17 Su 17 Ke 17 Pe 17 Ma Vk 25

18 Pe 18 Ma Vk 08 18 Ma Vk 12 18 To 18 La 18 Ti

19 La 19 Ti 19 Ti 19 Pe Pitkäperjantai 19 Su Kaatuneiden muistopäivä 19 Ke

20 Su 20 Ke 20 Ke Kevätpäiväntasaus 20 La 20 Ma Vk 21 20 To

21 Ma Vk 04 21 To 21 To 21 Su Pääsiäispäivä 21 Ti 21 Pe Kesäpäivänseisaus

22 Ti 22 Pe 22 Pe 22 Ma 2. pääsiäispäivä 22 Ke 22 La Juhannus

23 Ke 23 La 23 La 23 Ti 23 To 23 Su

24 To 24 Su 24 Su 24 Ke 24 Pe 24 Ma Vk 26

25 Pe 25 Ma Vk 09 25 Ma Vk 13 25 To 25 La 25 Ti

26 La 26 Ti 26 Ti 26 Pe 26 Su 26 Ke

27 Su 27 Ke 27 Ke 27 La 27 Ma Vk 22 27 To

28 Ma Vk 05 28 To 28 To 28 Su 28 Ti 28 Pe

29 Ti 29 Pe 29 Ma Vk 18 29 Ke 29 La

30 Ke 30 La 30 Ti 30 To Helatorstai 30 Su

31 To 31 Su Kesäaika alkaa 31 Pe

Vuotuinen kalenteri Marcel Steinger, luotu 9.11.2018 calendar-yearly.com
Käy meillä -> www.calendar-yearly.com L = Lecture; hall T5, Tue 12–14

Q = Q & A session; hall T5, Thu 12–14
D = Problem set deadline; Sun 20:00
 T = Tutorial (model solutions); hall T6, Mon 16–18

Exam
week

L1

Q1

T1
D1

L2

Q2

D2
T2

L3

Q3

D3
T3

L4

Q4

D4
T4

L5

Q5

D5
T5

Break

L6

Q6

D6
T6

L7

Q7

D7
T7

L8

Q8

D8
T8

L9

Q9

D9

T9

 CS-E4500 Advanced Course in Algorithms (5 ECTS, III–IV, Spring 2019)

Recap of last week

I Extended Euclidean algorithm for polynomials recalled and expanded
I The quotient sequence, the Bézout coe�icients, and the halting threshold

I Fast extended Euclidean algorithm for polynomials by divide and conquer
I The two polynomial operands truncated to a prefix of the highest-degree monomials

determine the prefix of the quotient sequence (exercise)

I Coping with errors in data using error-correcting codes
I A family of error-correcting codes (Reed–Solomon codes) based on

evaluation–interpolation duality for univariate polynomials
I Key observation: low-degree polynomials have few roots (exercise)

I Fast encoding and decoding of Reed–Solomon codes via the fast univariate polynomial
toolkit and Gao’s (2003) decoder

Have: Near-linear-time toolbox for univariate polynomials

I Multiplication

I Division (quotient and remainder)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd)

I Interpolation from partly erroneous data

Motivation for this week

I Last week we encountered uncertainty in computation

I We saw how to cope with uncertainty in the form of errors in data by using
error-correcting codes

I This week we look at (fine-grained) proof systems and errors in computation ...

I Our motivation is to be able to delegate computation ...

Delegating computation

Key content for Lecture 6

I We look at yet further applications of the evaluation–interpolation duality and
randomization in algorithm design

I Randomized identity testing for polynomials and matrices (exercise)

I Delegating computation and proof systems

I Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

I Williams’s (2016) [30] probabilistic proof system for #CNFSAT

I Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed–Solomon codes revisited)

I Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [3]

I An extension of Shamir’s secret sharing to delegating a computation to multiple
counterparties (delegating matrix multiplication, exercise)

Proof systems

I Let I be a claim
(an instance of a computational problem with a yes/no (true/false) solution)

I Let us assume that I is decidable, that is, there exists an algorithm D that given I as
input outputs whether I is true

I Deciding whether I is true can o�en be assisted by supplying a proof Π for I

I A proof system consists of a verification algorithm (the verifier) V that takes as
input I together with a putative proof Π̃ and either accepts or rejects Π̃ as a proof for I

Completeness and soundness

I A proof system with verifier V is

I complete if for every true I there exists a proof Π such that V accepts on input I and Π

I sound if for every false I and every putative proof Π̃ it holds that V rejects on input I
and Π̃

Probabilistic soundness

I Let us relax the notion of soundness somewhat by allowing the verifier V to make
random choices during its execution

I A proof system with a randomized verifier V is probabilistically sound if for every
false I and every putative proof Π̃ it holds that V rejects with high probability on input
I and Π̃

I By “high probability” we mean with probability 1 − o(1) as a function of the size of I,
where probability is over the random choices made by V

E�iciency (verifier)

I In addition to completeness and soundness, in general we want a proof system also to
be e�icient

I That is, V on input I and Π̃ should consume less computational resources than it takes
to decide I (using the best known algorithm for deciding I)

E�iciency (prover)

I Besides verifier e�iciency, a yet further aspect to a proof system are the computational
resources to prepare a proof

I Let P be an algorithm (the prover) that given a claim I as input outputs whether I is
true, and if I is true, also outputs a proof Π such that V accepts on input I and Π

I We would like P to be e�icient in the sense that P should not consume substantially
more computational resources than it takes to decide I (using the best known
algorithm for deciding I)

(Some of) recent work on fine-grained proof systems

I Goldwasser, Kalai, Rothblum [12]

I Walfish and Blumberg [29]

I Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, Schneider [5]

I Williams [30]

I Björklund, K. [3, 15]

I In what follows we look at Williams’s [30] proof system for #CNFSAT ...

Boolean satisfiability

I Let x1, x2, . . . , xn be n variables that take values in {0, 1}

I A truth assignment A is a mapping that assigns a value in {0, 1} to each of the
variables x1, x2, . . . , xn

I A literal is a variable (xi) or its negation (x̄i)

I A literal xi (respectively, x̄i) is satisfied by A if A(xi) = 1 (respectively, A(xi) = 0)

I A clause C is a set of literals

I A clause C is satisfied by A if at least one literal in C is satisfied by A

I A collection of clauses C1,C2, . . . ,Cm is satisfied by A if A satisfies every clause
C1,C2, . . . ,Cm

Conjunctive-normal-form satisfiability (CNFSAT)

I The CNFSAT problem asks, given a collection C1,C2, . . . ,Cm of clauses over variables
x1, x2, . . . , xn as input, whether there exists a truth assignment that satisfies
C1,C2, . . . ,Cm

I CNFSAT is NP-complete

I The #CNFSAT problem asks, given a collection C1,C2, . . . ,Cm of clauses over variables
x1, x2, . . . , xn as input, for the number of truth assignments that satisfy C1,C2, . . . ,Cm

I #CNFSAT is #P-complete

I It is not known how to solve CNFSAT in worst-case time O∗ ((2 − ϵ)n) for any constant
ϵ > 0; the best known algorithms run in O∗ (2n) time

I Here the O∗ () notation suppresses a multiplicative factor polynomial in the size of the
input

CNFSAT and #CNFSAT

I It is easy to convince a verifier that an instance C1,C2, . . . ,Cm of CNFSAT is satisfiable
– just give the verifier a truth assignment A that satisfies C1,C2, . . . ,Cm

I The verifier can check that A actually satisfies C1,C2, . . . ,Cm in time O(mn)

I But how to convince a verifier that C1,C2, . . . ,Cm has exactly N satisfying truth
assignments?

I For example, how to convince a verifier that C1,C2, . . . ,Cm has no (zero) satisfying
truth assignments?

A probabilistic proof system for #CNFSAT

I Williams’s (2016) [30]:
There exists a randomized algorithm V (the verifier) such that for all collections C of
m clauses over n variables and all integers N it holds that

1. if C has exactly N satisfying truth assignments, then there exists a bit string Π of length
O∗ (2n/2) such that V accepts the triple C ,N ,Π with probability 1;

2. if C does not have exactly N satisfying truth assignments, then for every bit string Π̃ it
holds that V rejects the triple C ,N , Π̃ with probability 1 − o(1).

Moreover, V runs in time O∗ (2n/2)

Multivariate polynomial representation

I Let us work over Fq, a finite field with q ≥ 2 elements, q prime

I Let x1, x2, . . . , xn be indeterminates that take values in Fq

I Let us work with multivariate polynomials in Fq[x1, x2, . . . , xn]

I We will transform a collection C of m clauses over x1, x2, . . . , xn into a multivariate
polynomial pC (x1, x2, . . . , xn) such that for all α1,α2, . . . ,αn ∈ {0, 1} ⊆ Fq we have
pC (α1,α2, . . . ,αn) = 1 if and only if the truth assignment A with
A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies C , and pC (α1,α2, . . . ,αn) = 0
otherwise

A literal as a multivariate polynomial

I For a literal ` over the variables x1, x2, . . . , xn, define the multivariate polynomial

p` (x1, x2, . . . , xn) =

1 − xi if ` = xi;

xi if ` = x̄i
I p` has degree 1

I For all α1,α2, . . . ,αn ∈ {0, 1} we have p` (α1,α2, . . . ,αn) = 0 if and only if the truth
assignment A with A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies `, and
p` (α1,α2, . . . ,αn) = 1 otherwise

A clause as a multivariate polynomial

I Let C be a clause over the variables x1, x2, . . . , xn

I For a clause C, define the multivariate polynomial

pC (x1, x2, . . . , xn) = 1 −
∏
`∈C

p` (x1, x2, . . . , xn)

I Since C has at most 2n literals, pC has degree at most 2n

I For all α1,α2, . . . ,αn ∈ {0, 1} we have pC (α1,α2, . . . ,αn) = 1 if and only if the truth
assignment A with A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies C, and
pC (α1,α2, . . . ,αn) = 0 otherwise

A collection of clauses as a multivariate polynomial

I Let C be a collection C1,C2, . . . ,Cm of clauses over the variables x1, x2, . . . , xn

I Define the multivariate polynomial

pC (x1, x2, . . . , xn) =
m∏

j=1

pCj (x1, x2, . . . , xn)

I pC has degree at most 2mn

I For all α1,α2, . . . ,αn ∈ {0, 1} we have pC (α1,α2, . . . ,αn) = 1 if and only if the truth
assignment A with A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies C , and
pC (α1,α2, . . . ,αn) = 0 otherwise

#CNFSAT as a multivariate polynomial

I Let us work over Fq, a finite field with q ≥ 2 elements, q a prime

I Let x1, x2, . . . , xn be indeterminates that take values in Fq

I Let C be a collection of m clauses over x1, x2, . . . , xn

I We now have a multivariate polynomial pC (x1, x2, . . . , xn) of degree at most 2mn such
that for all α1,α2, . . . ,αn ∈ {0, 1} we have pC (α1,α2, . . . ,αn) = 1 if and only if the
truth assignment A with A(x1) = α1,A(x2) = α2, . . . ,A(xn) = αn satisfies C , and
pC (α1,α2, . . . ,αn) = 0 otherwise

I That is, the number N of satisfying truth assignments to C satisfies

N ≡
∑

α1,α2, ...,αn∈{0,1}

pC (α1,α2, . . . ,αn) (mod q)

#CNFSAT as a univariate polynomial (1/2)

I Without loss of generality we may assume that n is even

I With some foresight, let us now assume that 2n/2+2mn ≤ q ≤ 2n/2+3mn
(for large enough n we can find the two smallest such primes q1, q2 in time O∗ (2n/2),
cf. [2] and [1])

I Let a1, a2, . . . , an/2 ∈ Fq[x] be univariate polynomials of degree at most 2n/2 − 1 such
that

{0, 1}n/2 = {(a1 (α), a2 (α), . . . , an/2 (α)) : α ∈ {0, 1, . . . , 2n/2 − 1}}

I In particular we can construct such polynomials a1, a2, . . . , an/2 in time O∗ (2n/2) using
fast interpolation (exercise)

I Now define the univariate polynomial PC ∈ Fq[x] in the indeterminate x by

PC (x) =
∑

αn/2+1,αn/2+2, ...,αn∈{0,1}

pC

(
a1 (x), a2 (x), . . . , an/2 (x),αn/2+1,αn/2+2, . . . ,αn

)

#CNFSAT as a univariate polynomial (2/2)

I Recalling from the previous slide, we have

PC (x) =
∑

αn/2+1,αn/2+2, ...,αn∈{0,1}

pC

(
a1 (x), a2 (x), . . . , an/2 (x),αn/2+1,αn/2+2, . . . ,αn

)
I We observe that PC has degree at most 2n/2+1mn ≤ q/2

I Using near-linear-time algorithms for univariate polynomials, given a collection C of
clauses and a point ξ ∈ Fq as input, we can compute the value PC (ξ) in time O∗ (2n/2)
(exercise)

I From the definition of the polynomials a1, a2, . . . , an/2 we observe that the number N
of satisfying truth assignments to C satisfies

N ≡
2n/2−1∑
α=0

PC (α) (mod q) (32)

The proof string

I Recall that for large enough n we can assume that we work modulo a prime q with
2n/2+2mn ≤ q ≤ 2n/2+3mn

I Given C as input, in time O∗ (2n/2e) we can produce e evaluations of PC at distinct
points

I If e ≥ 2n/2+1mn + 1, these evaluations enable us to interpolate PC in time O∗ (2n/2)
using fast interpolation

I We can represent the prime q and the coe�icients of PC ∈ Fq[x] (of degree at most
2n/2+1mn) as a (prefix-coded) binary string Πq of length O∗ (2n/2)

I Let q1, q2 be the two least primes in the interval [2n/2+2mn, 2n/2+3mn]

I Take as the proof string Π the concatenation of Πq1 and Πq2

Completeness

I Suppose Π = Πq1Πq2 is a correct proof string (of length O∗ (2n/2))

I Using Πq1 and Πq2 together with fast batch evaluation and (32) we can recover
N mod q1 and N mod q2 in time O∗ (2n/2), where N is the number of satisfying truth
assignments to C

I Since 0 ≤ N ≤ 2n and q1q2 ≥ 2n + 1, from N mod q1 and N mod q2 we can reconstruct
the correct N using the Chinese Remainder Theorem

I Thus the verifier will always accept a correct triple C , Ñ , Π̃ with Π̃ = Π and Ñ = N in
time O∗ (2n/2)

Soundness (probabilistic) I

I Suppose the verifier is given as input a collection C of m clauses over the variables
x1, x2, . . . , xn, an integer Ñ , and a binary string Π̃

I The verifier first checks that Π̃ = Π̃q1 Π̃q2 such that Π̃q1 and Π̃q2 encode the coe�icients
of a polynomial P̃ of degree at most 2n/2+1mn modulo the two least primes q1 and q2

in the interval [2n/2+2mn, 2n/2+3mn]; if this is not the case, the verifier rejects

I Next, consider each q ∈ {q1, q2} in turn

I To verify that P̃ = PC ∈ Fq[x] the verifier repeats the following test dlog2 ne + 1 times:
select ξ ∈ Fq independently and uniformly at random, and test that P̃ (ξ) = PC (ξ)
holds; if this is not the case, the verifier rejects

I The le�-hand side P̃ (ξ) can be evaluated in time O∗ (2n/2) using Horner’s rule; the
right-hand side PC (ξ) can be evaluated in time O∗ (2n/2) using the dedicated
evaluation algorithm for PC (in the exercises)

Soundness (probabilistic) II

I Since P̃ − PC has degree at most 2n+1mn ≤ q/2, if P̃ , PC ∈ Fq[x] then the verifier
rejects with probability at least 1 − 1/n (exercise)

I Thus the verifier rejects with probability 1 − o(1) unless the string Π̃ is in fact the
correct proof string Π; from Π the verifier can recover the correct solution N and reject
unless Ñ = N ; the verifier runs in time O∗ (2n/2)

Complexity of preparing and verifying the proof

I Given C as input, in time O∗ (2n/2e) we can produce e evaluations of PC at distinct
points modulo q

I If e ≥ 2n/2+1mn + 1, these evaluations enable us to interpolate PC in time O∗ (2n/2)
using fast interpolation

I Thus, the total e�ort to prepare the proof is O∗ (2n), which essentially matches the best
known algorithms for counting the number of satisfying assignments to C (that is, no
algorithm that runs in worst-case time O∗ ((2 − ϵ)n) is known for any constant ϵ > 0)

I The total e�ort to (probabilistically) verify the proof is O∗ (2n/2)

Proof preparation with tolerance for errors [3, 15]
I Beyond #CNFSAT, a number of other computational problems admit proof systems in

the following framework ...

I The proof is a polynomial p(x) of degree at most d over Fq

(one or more polynomials with Chinese Remaindering)

I Prepare the proof in evaluation representation with distinct e points

(ξ1, p(ξ1)), (ξ2, p(ξ2)), . . . , (ξe, p(ξe))

I Preparation is vector-parallel, tolerates at most (e − d − 1)/2 errors for e ≥ d + 1

I Decode the proof from evaluation representation to coe�icient representation

p(x) = π0 + π1x + π2x2 + . . . + πdxd

I Verify the proof by selecting a uniform random ξ ∈ Fq and testing whether

p(ξ) = π0 + π1ξ + π2ξ
2 + . . . + πdξ

d

Delegating computation

Recap of Lecture 6

I We look at yet further applications of the evaluation–interpolation duality and
randomization in algorithm design

I Randomized identity testing for polynomials and matrices (exercise)

I Delegating computation and proof systems

I Completeness and soundness of a proof system,
cost of preparing a proof, cost of verifying a proof

I Williams’s (2016) [30] probabilistic proof system for #CNFSAT

I Coping with errors in computation using error-correcting codes with multiplicative
structure (Reed–Solomon codes revisited)

I Proof systems that tolerate errors during proof preparation (Björklund & K. 2016) [3]

I An extension of Shamir’s secret sharing to delegating a computation to multiple
counterparties (delegating matrix multiplication, exercise)

Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic,
online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms

Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability

