

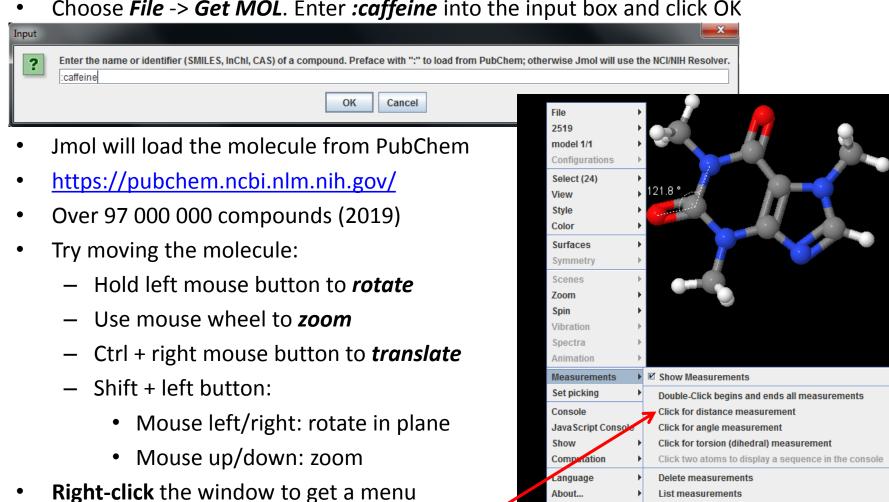
Jmol installation and basic use

Installation of Jmol

- Jmol is a versatile program for visualization and manipulation of molecules and crystal structures
- We will be using Jmol throughout the exercise sessions
- Let's first "install" it in your Aalto profile:
- Aalto MyCourses -> Solid State Chemistry -> Software -> Jmol (<u>link</u>)
- 2. Download the **zip file** on the computer
- 3. Save the file anywhere you like (Desktop is fine, that's easy to find)
- 4. Extract the zip file by right-clicking and choosing 7-Zip -> Extract Here
 - You will get a folder *jmol-x.y.z*, where x.y.z is the version
 - If you start Jmol from the zip file without extracting it, Jmol won't work right!
- 5. Jmol is now "installed"
- 6. Go to the folder *jmol-x.y.z* and double-click *Jmol.jar* or *jmol.bat* to start Jmol
 - Jmol.jar works in the Computer class, jmol.bat probably won't work
 - If you are using your own computer and Jmol does not start, you may need to install the Java Runtime Environment (see the next slide)

Java Runtime Environment (JRE)

- Only read this slide if
 - You are using your own computer (Windows, Linux, or Mac)
 - Jmol does not start
- If you are working in the Computer class, please skip this slide!
- Go to https://www.java.com/en/download/ and click "Free Java Download"
- Install the downloaded package
- If Jmol still does not start after this, please try restarting your (Windows) computer
- Additional information:
 - You do not necessarily have to download the proprietary JRE from Oracle
 - There is also an open source alternative available at https://jdk.java.net/11/
 - It may require bit more tweaking to get it working


File menu

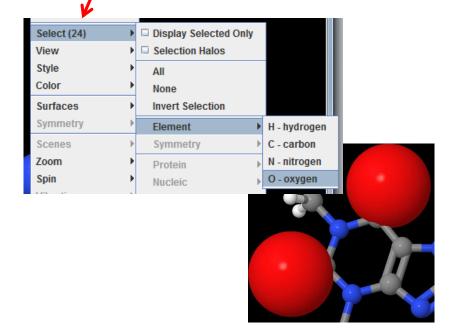
We will obtain crystal structures as CIF files Edit Display from various databases Tools Macros Help Mew They can be opened via Open 2 File -> Open -Open URL "Get MOL" and "Get Get PDB Get MOL PDB" offer really nice S Reload interfaces to PubChem Recent Files... and PDB databases Export Print... S Console... "Console..." opens up a Script Editor... console for typing text **Close** commands. We will use Exit this one a lot

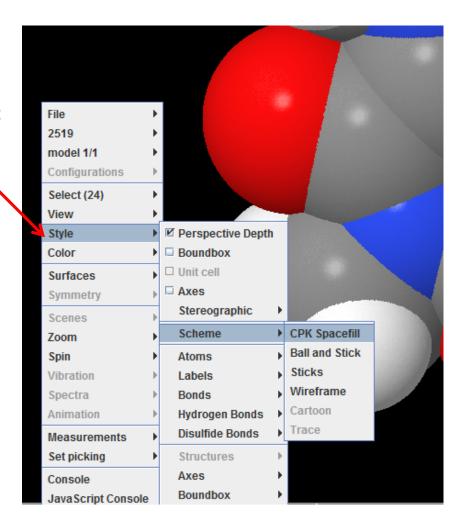
Loading a molecule from Pubchem

Choose *File -> Get MOL*. Enter :caffeine into the input box and click OK

Try measuring some distances and angles.

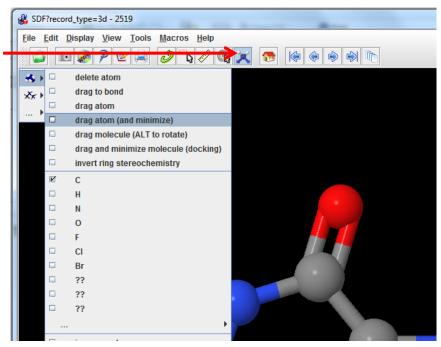
Distance units nanometers


Distance units Angstroms

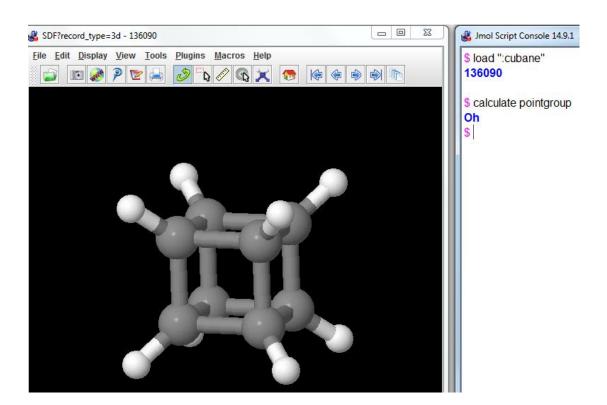

Distance units picometers

10 #10 - N5 #5: 121.82001

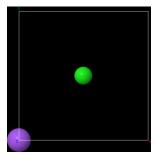
Controls


- Try changing the display settings
 - CPK spacefill -> sometimes very useful for understanding e.g. steric constraints
 - You can also select just some /atoms and then change their properties

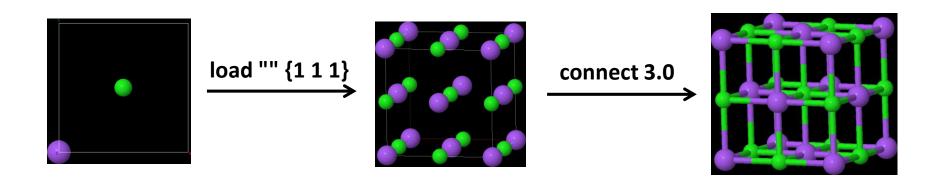
Model kit


- Jmol can also be used to build molecules (it is not an ideal solution for that)
- You can try the model kit and for example modify the caffeine molecule
- Warning! The *Drag atom (and minimize)*tool can be very addictive! (choose it,
 start dragging an atom and see what
 happens when you release the mouse
 button)

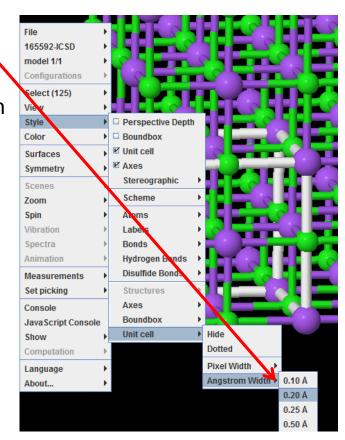
- Try to load few more molecules with "Get MOL"
 - :aspirin, :ibuprofen, :dodecahedrane, :tnt, your favorite molecule, ...
- Some additional commands that may be helpful (but not used on this course):
 - To export the XYZ coordinates of any molecule, first open File -> Console
 - To print out the XYZ coordinates (for copy-pasting), execute write xyz
 - write filename.xyz writes directly to a file (in the Jmol folder)


Point group symmetries

- One more useful feature in Jmol is the point group symmetry detection
- open File -> Console
- Execute load :cubane to directly load cubane from PubChem
- Execute calculate pointgroup to determine the point group symmetry -> Oh!
- For more information, execute **help calculate** (e.g. to make the search less strict)


Loading a crystal structure from Crystallography Open Database (COD)

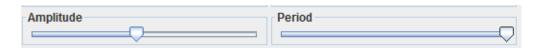
- COD (http://www.crystallography.net/) is an open access crystal structure database
- Using COD from Jmol is very easy:
 - First, find out the COD ID of the crystal structure via the COD web interface
 - Let's use a NaCl structure as an example (COD ID 1000041)
 - In Jmol, open File -> Console
 - Type into the console: load =cod/1000041
 - There must be one space between load and =
- The structure should load right away!
- This is easier than saving a CIF from COD and opening it in Jmol (File -> Open)
- The structure probably first looks like this:
- Let's modify the appearance next


Tuning crystal structure appearance

- To show the unit cell properly, type into the console: load "" {1 1 1}
 - "" = two quotes. Note that {1 1 1} has spaces between the numbers!
 - load "" means "reload the current structure"
 - load "" {a b c} can be used to draw any kind of supercell, e.g. load "" {4 2 2}
 - The other way is to right-click -> Symmetry -> Reload {1 1 1}
- Draw bonds with connect 3.0 (connects all atoms with distance < 3.0 Å)
 - More generally: connect 2.5 3.0 {_Na} {_Cl} (min, max, from_atom, to_atom)
 - Execute help connect if you want to have more information

Further tips for crystal structures

- Load a larger supercell by entering the following:
 - load "" {2 2 2}
 - connect 3.0
- To see unit cell edges better, increase the edge width:
- Symmetry -> HM:Fm-3m can be used to visualize space group symmetry operations! Try e.g. C₃ rotation
 3 or mirror plane 23
- Distance measurements work similarly to molecules
 - Right-click -> Measurements
 - You can also use the measurement tool in the main menu bar: Macros


Advanced Jmol topics (starting from Lecture 8)

Visualizing vibrations with Jmol

- Vibrational modes can be visualized in Jmol
 - This enables us to interpret IR/Raman spectra
 - ... after someone has first run the quantum chemical spectrum calculation
- Download Materials -> Data files for lectures -> Lecture 8 -> H2O_freq.log
- The file includes the vibrational modes of H₂O
- Open the file in Jmol (Jmol first loads the structure of H₂O)
- To visualize the vibrational modes, go to Tools -> AtomSetChooser.
- The vibrational frequencies are under Calculation 1 -> Frequencies ->
- Choose a mode and click "Play" button under "Vibration": Vibration

- "Amplitude" slider can be used to increase the amplitude
- Period slider can be used to make the vibration slower of faster.

- If you need to further increase the amplitude for visualization purposes:
 - Right-click the main screen -> "Vibration" -> "*2" (can be done several times)

AtomSetChooser

Atom Set Collection

Calculation 1

FrequenciesFrequencies
a1 1623.4100 cm^-1
a1 3851.6000 cm^-1