

Aalto University School of Electrical Engineering

Brief Recap of Chapter 7 of Brown et al. (2014)

Simo Särkkä

Contents of Chapter 7 "Signal Detection Concepts"

7.1 Faraday Induction

7.2 The MRI Signal and the Principle of Reciprocity

7.3 Signal from Precessing Magnetization

- 7.3.1 General Expression
- 7.3.2 Spatial Independence
- 7.3.3 Signal Demodulation
- 7.3.4 Dependent Channels and Independent Coils
- 7.4 Dependence on System Parameters
- 7.4.1 Homogeneous Limit
- 7.4.2 Relative Signal Strength
- 7.4.3 Radiofrequency Field Effects

Introduction

- We have already considered:
 - Dynamics of magnetization of the measured sample
 - Rf field used to "tip" the magnetization to cause precession
- Now we consider detection of the rotating field
 - Based on electromotive force (emf) generated on a coil
 - We often use the same coil for transmitting and receiving

Faraday Induction

• The Faraday's law of induction for electromotive force:

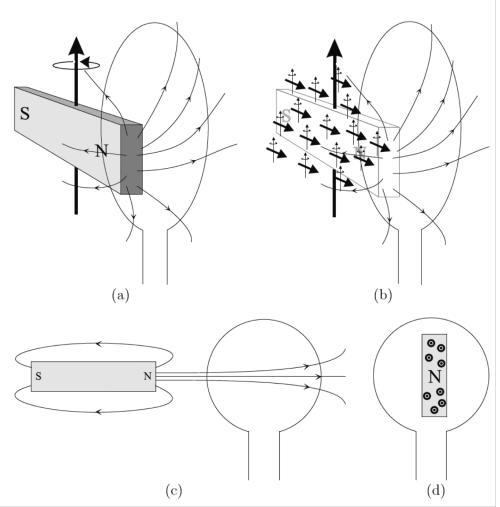
The flux through the coil:

$$\Phi = \int_{\text{coil area}} \vec{B} \cdot d\vec{S}$$

- For example, consider $\vec{B}(t) = B(\sin\theta \hat{y} + \cos\theta \hat{z})\sin\omega t$
- Assuming $d\vec{S} = dx \, dy \, \hat{z}$, we then get

$$emf = -\frac{d}{dt} \int_{-L/2}^{L/2} dx \int_{-L/2}^{L/2} dy \,\hat{z} \cdot \vec{B}(t)$$
$$= -L^2 B\omega \cos \theta \cos \omega t$$

Faraday Induction



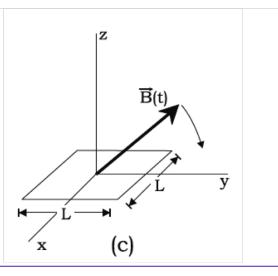
Problem

Problem 5.1

Consider the situation in Fig. 7.2c where the coil lies in the x-y plane and a spatially independent field rotates about the x-axis:

$$\vec{B}(t) = -B\sin(\omega t)\hat{z} + B\cos(\omega t)\hat{y}$$

Show that the *emf* induced in the coil is $L^2 B \omega \cos(\omega t)$.



The MRI Signal and the Principle of Reciprocity

The effective current density caused by magnetization is

 $\vec{J}_M(\vec{r},t) = \vec{\nabla} \times \vec{M}(\vec{r},t)$

The vector potential caused by it is

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3r' \frac{\vec{J}(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|}$$

This then gives the magnetic field

$$\vec{B}=\vec{\nabla}\times\vec{A}$$

• Using the Stokes' theorem we can then write

$$\Phi = \int_{area} \vec{B} \cdot d\vec{S} = \int_{area} (\vec{\nabla} \times \vec{A}) \cdot d\vec{S} = \oint d\vec{l} \cdot \vec{A}$$

The MRI Signal and the Principle of Reciprocity

• We now obtain

$$\begin{split} \Phi_M &= \oint d\vec{l} \cdot \left[\frac{\mu_0}{4\pi} \int d^3 r' \frac{\vec{\nabla'} \times \vec{M}(\vec{r}')}{|\vec{r} - \vec{r}'|} \right] \\ &= \frac{\mu_0}{4\pi} \int d^3 r' \oint d\vec{l} \cdot \left[\left(-\vec{\nabla'} \frac{1}{|\vec{r} - \vec{r}'|} \right) \times \vec{M}(\vec{r}') \right] \\ &= \frac{\mu_0}{4\pi} \int d^3 r' \vec{M}(\vec{r}') \cdot \left[\vec{\nabla'} \times \left(\oint \frac{d\vec{l}}{|\vec{r} - \vec{r}'|} \right) \right] \end{split}$$

Which can be seen to actually have the form

$$\Phi_M(t) = \int_{sample} d^3 r \vec{\mathcal{B}}^{receive}(\vec{r}) \cdot \vec{M}(\vec{r}, t)$$

- Here B^{receive} is the magnetic field per unit current that would be produced by the coil at the point r
- Example of the principle of reciprocity

Signal from Precessing Magnetization

The emf induced in the coil is expressed as

$$emf = -\frac{d}{dt}\Phi_M(t)$$

= $-\frac{d}{dt}\int_{sample} d^3r \vec{M}(\vec{r},t) \cdot \vec{\mathcal{B}}^{receive}(\vec{r})$

Thus the detected signal is proportional to

signal
$$\propto -\frac{d}{dt} \int d^3r \left[\mathcal{B}_x^{receive}(\vec{r}) M_x(\vec{r},t) + \mathcal{B}_y^{receive}(\vec{r}) M_y(\vec{r},t) + \mathcal{B}_z^{receive}(\vec{r}) M_z(\vec{r},t) \right]$$

This is nominally of the form

signal
$$\propto \omega_0 \int d^3 r e^{-t/T_2(\vec{r})} \left[\mathcal{B}_x^{receive}(\vec{r}) \operatorname{Re} \left(i M_+(\vec{r},0) e^{-i\omega_0 t} \right) + \mathcal{B}_y^{receive}(\vec{r}) \operatorname{Im} \left(i M_+(\vec{r},0) e^{-i\omega_0 t} \right) \right]$$

 $\propto \omega_0 \int d^3 r e^{-t/T_2(\vec{r})} M_\perp(\vec{r},0) \left[\mathcal{B}_x^{receive}(\vec{r}) \sin \left(\omega_0 t - \phi_0(\vec{r}) \right) + \mathcal{B}_y^{receive}(\vec{r}) \cos \left(\omega_0 t - \phi_0(\vec{r}) \right) \right]$

$$(7.18)$$

signal
$$\propto \omega_0 \int d^3 r e^{-t/T_2(\vec{r})} M_\perp(\vec{r},0) \mathcal{B}_\perp(\vec{r}) \sin(\omega_0 t + \theta_\mathcal{B}(\vec{r}) - \phi_0(\vec{r}))$$

Or

Signal Demodulation

Demodulation multiplies signal with

 $\sin{(\omega_0 + \delta\omega)t}$

- **Giving** demodulated signal \propto reference signal \cdot induced emf $\propto \sin(\omega_0 + \delta\omega)t \cdot \sin(\omega_0 t + \zeta)$ $\propto \frac{1}{2}(\cos(\delta\omega \cdot t - \zeta) - \cos((2\omega_0 + \delta\omega)t + \zeta))$
- Then we low-pass filter away the high frequency:

demodulated and filtered signal
$$\propto \frac{1}{2}\cos(\delta\omega \cdot t - \zeta) = \frac{1}{2}\text{Re}(e^{i\delta\omega \cdot t - i\zeta})$$

(real channel) (7.24)

• By multiplying with $-\cos{(\omega_0 + \delta\omega)t}$ we get

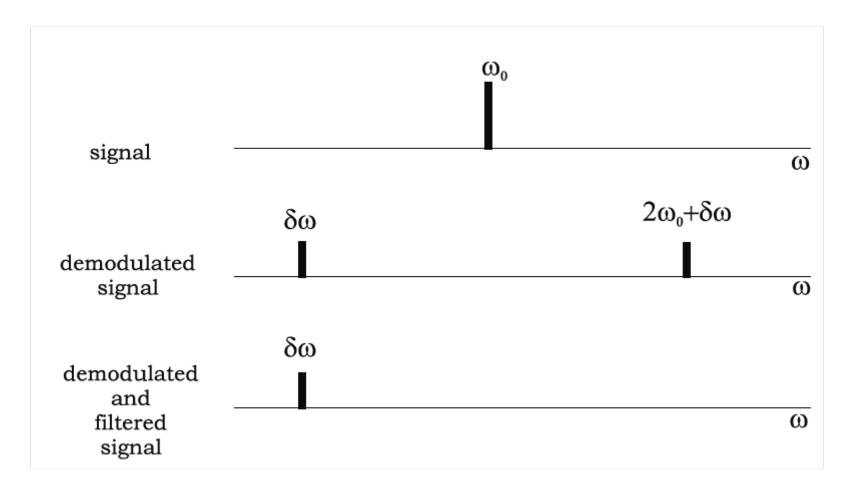
demodulated and filtered signal
$$\propto \frac{1}{2} \sin \left(\delta \omega \cdot t - \zeta \right) = \frac{1}{2} \operatorname{Im}(e^{i\delta \omega \cdot t - i\zeta})$$

(imaginary channel) (7.25)

Aalto University School of Electrical Engineering

•

Signal Demodulation



Problem

Problem 5.2

Consider the signal resulting from two spin isochromats with identical spin densities but different frequencies of precession $\omega_a = \omega_0 + \Delta \omega$ and $\omega_b = \omega_0 - \Delta \omega$. The total signal for this experiment is just the linear addition of the signal from each isochromat. Find the demodulated signal (with zero offset, $\delta \omega = 0$) from the two-spin system and compare it to the demodulated signal (with offset) represented by (7.24) or (7.25).

Note: It will be evident in the solution that the signal from two spin isochromats with slightly different frequencies (a difference represented by a small $\Delta \omega$) exhibits beats. See the discussion on beating in Ch. 8.

demodulated and filtered signal
$$\propto \frac{1}{2}\cos(\delta\omega \cdot t - \zeta) = \frac{1}{2}\operatorname{Re}(e^{i\delta\omega \cdot t - i\zeta})$$

(real channel) (7.24)
demodulated and filtered signal $\propto \frac{1}{2}\sin(\delta\omega \cdot t - \zeta) = \frac{1}{2}\operatorname{Im}(e^{i\delta\omega \cdot t - i\zeta})$
(imaginary channel) (7.25)

Complex Signal

Complex demodulated signal

$$s(t) \equiv s_{re}(t) + i s_{im}(t)$$

Alternative forms for the signal:

$$s(t) \propto \omega_0 V_s e^{-t/T_2} M_\perp \mathcal{B}_\perp e^{i[(\Omega - \omega_0)t + \phi_0 - \theta_B]} \quad \text{(space-independent limit)}$$

$$s(t) \propto \omega_0 \int d^3 r e^{-t/T_2(\vec{r})} M_\perp(\vec{r}, 0) \mathcal{B}_\perp(\vec{r}) e^{i((\Omega - \omega_0)t + \phi_0(\vec{r}) - \theta_B(\vec{r}))}$$

$$s(t) \propto \omega_0 \int d^3 r M_+(\vec{r}, t) \mathcal{B}^*_+(\vec{r})$$

where

$$\mathcal{B}_{+} \equiv \mathcal{B}_{x}^{receive} + i\mathcal{B}_{y}^{receive} = \mathcal{B}_{\perp}e^{i\theta_{\mathcal{B}}}$$

Dependence on System Parameters

In homogeneous limit we have (ignoring amplification)

 $|s| = \omega_0 M_0 \mathcal{B}_\perp V_s$

- As M_0 is proportional to B_0 , this is proportional to B_0^2
- The noise increases proportionally to B₀ and hence signalto-noise ratio (SNR) is proportional to B₀
- For this reason higher *B*₀ fields are preferred
- The relative signal strength for a given species is

 $\mathcal{R}_i \equiv |\gamma_i|^3 r_i a_i s_i (s_i + 1)$

 A non-uniform profiles of B^{receive} and B^{transmit} also affect the measured image

Dependence on System Parameters

Nucleus <i>i</i>	γ_i	r_i	a_i	s_i	$\mathcal{R}_i/\mathcal{R}(^1\mathrm{H})$
	$(\mathrm{MHz}/\mathrm{T})$				at 1 T
¹ H, gray matter	42.58	1.0	1.0	$\frac{1}{2}$	1.0
²³ Na, average tissue	11.27	$9.1 imes 10^{-4}$	1.0	$\frac{3}{2}$	$8.4 imes 10^{-5}$
³¹ P, average tissue	17.25	$8.5 imes 10^{-4}$	1.0	$\frac{1}{2}$	$5.7 imes 10^{-5}$
¹⁷ O, gray matter	-5.77	0.5	$3.8 imes 10^{-4}$	$\frac{5}{2}$	$5.5 imes 10^{-6}$
¹⁹ F, average tissue	40.08	$4.5 imes 10^{-8}$	1.0	$\frac{1}{2}$	3.8×10^{-8}

