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HYPERSPACE PHILOSOPHER

British mathematician Charles Howard
Hinton, played a key part in the
popularization of ‘hyperphilosophy’ by
publishing many writings during the years
1884—1907, speculating on the physical as
well as spiritual aspects of 4 space. He also
anticipated the hidden dimensions of string
theory by stating that the fourth dimension
could perhaps be observed on the smallest
details of physical matter. Hinton coined the
names ana and kata, which refer to the
positive and negative directions along the
axis of the fourth spatial dimension.

Charles Howard Hinton, (1853-1907)



Charles Howard Hinton, (1853-1907)

HYPERSPACE PHILOSOPHER

Hinton developed a mnemonic system of
some tens of thousand cubes with
individual names in Latin, serving as a 3-
dimensional mental retina of a kind on
which to visualize the successive cross-
sections of objects in 4-space . Interested in
Eastern thought, he also sought to eliminate
the ‘self elements’ of his system by
memorizing the different orientations and
mirror reflections of the cubes. Later he
developed the system into a self-help
method to visualize the fourth dimension,
which consisted of manipulation of
coloured cubes. The cubes were available
for purchase from his publisher.

Views of the Tessaract.

Frontispiece of The Fourth Dimension (1901)



ALICIA BOOLE STOTT

Hinton was a frequent guest at the household of
Mary Everest Boole, whose husband George was
famous of his Boolean algebra. During these visits he
used Alicia, Boole’s young daughter as the primary
guinea pig for his system of cubes, an activity
encouraged by her mother who was also known for
her writings on early mathematics education. Alicia
showed special talent towards visualizing the fourth
dimension, a skill in which she soon exceeded that of
Hinton himself. Despite her restricted circumstances
as a housewife without any sort of formal
mathematical training, Alicia Boole Stott went on to
independently prove the existence of the six regular
polychora, describe their perpendicular cross-
sections, and also find some of the semiregular
polytopes in four dimensions.

Alicia Boole Stott, (1860—1940)



'‘DANGERS" OF THE CUBES

In Algernon Blackwood’s short science-fiction
story A Victim of Higher Space , the ‘victim’ keeps
slipping to four-dimensional space — a condition
brought about by his use of Hinton’s cubes.

When Gardner featured Hinton’s cubes in his
Scientific American article, he received a grave
warning from an English consulting engineer who
had first-hand experience with the method. The
letter claimed the four-dimensional visualization
exercises to take on a life of their own, and
eventually the sequence of cube will “begin to
parade themselves through one’s mind of their own
accord”. He went on to declare the exercises
“completely mind-destroying” and that he would

not “recommend anyone to play with the cubes at
all”.

—

52 MATHEMATICAL CARNIVAL

stellar radio sources, Or quasars. When a giant star undergoes

vitational collapse, perhaps a central mass is fom_ned of such
incredible density that it puckers space-time \'nto a blister. If t?le
curvature is great enough, the blister could pmc.h together at its
neck and the mass fall out of space-time, releasing energy as it

But back to hypercubes and one final question. How many

different order-eight polycubes can be produced by unfolding a
hollow hypercube into three-space?

ADDENDUM

Himan Barrox, a consulting engineer of Etchingham, Sussex,
England, had the following grim comments to make about Hin-
ton’s colored cubes:

» my spine when I read vour reference to

oot hooked on them myself in the nine-
%y eliecve me when I say that they are com-
pletely mind-destroying. The only person I ever met who had
worked with them seriously was Francis Sedlak, a Czech neo-
Hegelian philosopher (he wrote a book called The Creation of
Heaven and Earth) who lived in an Oneida-like community
near Stroud, in Gloucestershire.

As you must know, the technique consists essentially in the
sequential visualizing of the adjoint internal faces of the poly-
colored unit cubes making up the large cube. It is not difficult
to acquire considerable facility in this, but the process is one of
autohypnosis and, after o while, the sequences begin to parade
themselves through one’s mind of their own accord. This is
pleasurable, in a way, and it was not until I went to see Sedlak
in 1929 that I realized the dangers of setting up an autonomous
Jrecess in one’s own brain. For the record, the way out is 10
mswy @ countersystem differing from the first in

ve cube shows different colored faces, but withdrawal
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is slow and 1 wouldn’t recommend anyone to play around with
the cubes at all.

An attractive model of the hypercube, made of prepainted
black and white aluminum strips, and designed to be hung as a
mobile, was created and manufactured in 1972 by Eytan Kauf-
man, of New York City. Under the trade name Tesseract, it was
sold by the Museum of Modern Art.

So far as I am aware, there has been no published solution to
either of two problems which I conceived for my column, but
for which I had no answer: (1) What is the largest cube that
will fit inside a tesseract of unit side? (2) Into how many differ-
ent order-8 polycubes can a hollow tesseract be cut and “un-
folded” into three-space? I received several answers to the second
question, and seven answers to the first. Unfortunately, no two
solutions for either problem were in agreement, and I did not
have the skill to evaluate any of them. Until an answer to either
question is published and verified, both problems must be re-
garded as still unsolved.

ANSWERS

A TESSERACT of side 7 has a hypervolume of z*. The volume of
its hypersurface is 82%. If the two magnitudes are equal, the
equation gives z a value of 8. In general an n-space “cube” with
an n-volume equal to the (7 — 1)-volume of its “surface” is an
n-cube of side 27.

The largest square that can be fitted inside a unit cube is the
square shown in Figure 29. Each corner of the square is a dis-
tance of 1/ from a corner of the cube. The square has an area of
exactly 9/8 and a side that is three-fourths of the square root of
2. Readers familiar with the old problem of pushing the largest
p(.)ssible cube through a square hole in a smaller cube will recog-
nize this square as the cross section of the limiting size of the
Square hole. In other words, a cube of side not quite three-
fourths of the square root of 2 can be pushed through a square
hole in a unit cube.

Martin Gardner: “Mathematical Carnival” (1965)




CROSS-SECTIONS OF
THE CUBE IN A PLANE

Before discussing the tesseract itself, it is useful to observe the
logic in the lower-dimensional case.

We cut the cube into 27 pieces, and examine their cross-
sections in the plane.



ONE STEP BACK

The first step towards understanding the concept of hyperspace has usually come
in the form of analogy. Maybe surprisingly, it is instructive to first go one
dimension down, and imagine a world with only two dimensions, inhabited by
equally flat beings. Our challenges to understand and visualize four-dimensional
space are analogous to the difficulties a two-dimensional being, confined to a
plane, would have with respect to our three-dimensional space and its shapes.

In fact, there is an entire tradition of ‘flatlands’, i.e. imaginary universes of only
two dimensions, whose purpose is often to depict our own challenges of with
regard to non-Euclidean or higher-dimensional spaces.

The most famous of such fictitious conceptions is Edwin A. Abbott’s 1884 classic
Flatland — A Romance of Many Dimensions. It depicts a satire of Victorian society
through the life of polygons living in a plane. As noted already by Hinton (4
Plane World, Scientific Romances, p. 129), Abbott’s main focus was not on the
geometry and ‘conditions of life on the plane’. Hinton mended this issue in his
own writings A Plane World (1884) and An Episode on Flatland: Or How a Plain
Folk Discovered the Third Dimension (1907). Hinton’s planar world was called
Astria, and it differed from Flatland with its lateral view that enabled a richer
universe with heavenly bodies, gravity, etc.



Two-dimensional protagonist of the Planiverse

ONE STEP BACK

Of the multiple successors of Flatland trying to grasp the
peculiarities of fictional worlds restricted on a plane, the most
ambitious is A. K. Dewdney.

A computer scientist at the University of Western Ontario, his two
dimensional world called the Planiverse first appeared in his 1979
article Exploring the Planiverse, and later in the same year in Two-
dimensional Science and Technology, which he published privately.

He developed his creation into full novel in 1984 as The Planiverse
— Computer Contact with a Two-Dimensional World, an account of a
planar universe complete with its physics, chemistry, biology,
politics and art.



CUBE

8 vertices

12 edges
CUTTING THE CUBE INTO PIECES H FI || F H F 6 faces (squares)

For the purpose of depicting the cube in the
plane, we cut it to three slices with respect to its

three primary directions. F ‘ ! ‘ ' |
Thus we get 3x3x3 cluster of small cubes, [ | [| E
H F D | | E\l | 27 CUBES

where each cube represents a vertex or an edge
of the original cube, or the original cube itself.

8 vertex pieces
12 edge pieces

6 face pieces
1 core piece




COLORING THE
CUBE PIECES

Each cube piece gets an
unique color when think
the cube being exposed
to colored light from
three different
directions (yellow,
orange, pink).

On the ‘shadow’ side
are the complementary
colors (purple, blue,
green).




COLORING THE CUBE
PIECES

Vertex pieces are three-colored, since
they are exposed to light/shadow
from three directions.

Edge pieces are two-colored, since
they are exposed to light/shadow
from two directions.

Face pieces are one-colored, since
they are exposed to light/shadow
from one direction.

The core piece is colorless, since it is
not exposed to any light/shadow.




CROSS-SECTIONS OF
THE CUBE IN A PLANE

Now the 27 pieces of the cube can be
represented in the plane with two-
dimensional slabs.

These slabs can be assembeled to show
the cross-sections of the cube.



The sequence of three pictures below depicts the cross-sections perceived by the flatlander as the cube is
pushed through its 2D world green face first.

First it sees the green face and the surrounding vertices and edges (a).
In the next corss-section it sees the core of the cube (grey) and the surrounding edges and faces (b).
Finally it sees the red face and the surrounding vertices and edges (c).

.A .."5..
E‘?..

(a) (c)




Exercise:
Cut out the slabs from the papers.
Assemble them again to depict a new sequence of cross-sections, from another direction.
Repeat once or twice.

What kinds of rules you perceive see in the colorings of adjecent slabs?
When can two slabs be neighbours, when not?

.A ..‘5..
| S




CROSS-SECTIONS OF
THE TESSERACT IN A 3-SPACE



CONSRUCTING THE
TESSERACT

If a point (a) is moved (b), it sweeps a line
segment (c). If that line segment is then
moved perpendicularly away from its line
(d), over the distance of its length, it traces
out a square (e). Similarly, we get the cube
from the square (f,g), and finally when the
cube is moved perpendicularly away from
its 3 space over the distance of its edge
length (h), the trace is a tesseract, also
called the 8 cell (1). It has sixteen vertices,
thirty-two edges, twenty-four square faces,
and eight cubical cells. There are three
cells meeting at each edge, and four at each
vertex. This family of polytopes extends to
all higher dimensions, and they are
collectively called the hypercubes.




THE STRUCTURE
OF THE
TESSERACT

16 vertices

32 edges

24 faces (squares)
8 cells (cubes)




CUTTING THE TESSERACT INTO

PIECES TESSERACT
16 vertices
.. : 32 edges
For the purpose of depicting the tesseract in the
. : : 24 faces (squares)
3-space, we cut it to three slices with respect to
8 cells (cubes)

its four primary directions.

Thus we get 3x3x3x3 cluster of small
tesseracts, where each tesseract represents a
vertex, an edge, or a face of the original
tesseract, or the original tesseract itself.

81 TESSERACTS

16 vertex pieces
32 edge pieces
24 face pieces

8 cell pieces

1 core piece



COLORING THE
TESSERACT PIECES

Each tesseract piece gets an
unique color when think the
tesseract being exposed to
colored light from four different
directions (white, yellow, orange,
pink).

On the ‘shadow’ side are the
complementary colors (black,
purple, blue, green).

White

Yellow Orange
light Q light Q
light Pink

Q 1ight©

Green \V, X ; Black
shadow ~\, shadow
Blue Puro]
shadow P

Q shadow Q



COLORING THE
TESSERACT PIECES

Vertex pieces are four-colored, since
they are exposed to light/shadow
from four directions.

Edge pieces are three-colored, since
they are exposed to light/shadow
from three directions.

Face pieces are two-colored, since
they are exposed to light/shadow
from two directions.

Cell pieces are one-colored, since
they are exposed to light/shadow
from one direction.

The core piece is colorless, since it is
not exposed to any light/shadow.

White

Yellow Orange
light Q light Q
light Pink

Green \V, X ~\ Black
shadow ~\L shadow
Blue Puro]
shadow P



81 PIECES

The diagram lists each
piece with its
coloring, and shows
how they are
connected to each
other.

orange

uyrple
Elfiie
green

hite
orange 8reen

purple

orange orange

greén

/
Kolle
/

n/ o Sellow
green
| Eo r% 1ge

orange
e
Ptk

orange



(a) (b)

BUILDING THE CUBE SET:

(©)




CROSS-SECTIONS OF THE CUBE IN A PLANE

Now the 81 pieces of the tesseract can be represented in 3-space with three-dimensional blocks.
These blocks can be assembeled to show the cross-sections of the tesseract.




The sequence of three models below depicts the cross-sections perceived by us as the tesseract is pushed
through our 3D world white cell first.

First we see the white cell and the surrounding vertices, edges and faces (a).
In the next corss-section we seethe core of the tesseract (grey) and the surrounding edges, faces and cells (b).
Finally we see the black cell and the surrounding vertices, edges, and faces (c¢).
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