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Charles Howard Hinton, (1853–1907)

HYPERSPACE PHILOSOPHER

British mathematician Charles Howard 
Hinton, played a key part in the 
popularization of ‘hyperphilosophy’ by 
publishing many writings during the years 
1884–1907, speculating on the physical as 
well as spiritual aspects of 4 space. He also 
anticipated the hidden dimensions of string 
theory by stating that the fourth dimension 
could perhaps be observed on the smallest 
details of physical matter. Hinton coined the 
names ana and kata, which refer to the 
positive and negative directions along the 
axis of the fourth spatial dimension.



Charles Howard Hinton, (1853–1907)

HYPERSPACE PHILOSOPHER

Hinton developed a mnemonic system of 
some tens of thousand cubes with 
individual names in Latin, serving as a 3-
dimensional mental retina of a kind on 
which to visualize the successive cross-
sections of objects in 4-space . Interested in 
Eastern thought, he also sought to eliminate 
the ‘self elements’ of his system by 
memorizing the different orientations and 
mirror reflections of the cubes. Later he 
developed the system into a self-help 
method to visualize the fourth dimension, 
which consisted of manipulation of 
coloured cubes. The cubes were available 
for purchase from his publisher.

Frontispiece of The Fourth Dimension (1901)



Alicia Boole Stott, (1860–1940)

ALICIA BOOLE STOTT

Hinton was a frequent guest at the household of 

Mary Everest Boole, whose husband George was 

famous of his Boolean algebra. During these visits he 

used Alicia, Boole’s young daughter as the primary 

guinea pig for his system of cubes, an activity 

encouraged by her mother who was also known for 

her writings on early mathematics education. Alicia 

showed special talent towards visualizing the fourth 

dimension, a skill in which she soon exceeded that of 

Hinton himself. Despite her restricted circumstances 

as a housewife without any sort of formal 

mathematical training, Alicia Boole Stott went on to 

independently prove the existence of the six regular 

polychora, describe their perpendicular cross-

sections, and also find some of the semiregular 

polytopes in four dimensions.



Martin Gardner: “Mathematical Carnival” (1965)

‘DANGERS’ OF THE CUBES

In Algernon Blackwood’s short science-fiction 
story A Victim of Higher Space , the ‘victim’ keeps 
slipping to four-dimensional space – a condition 
brought about by his use of Hinton’s cubes.

When Gardner featured Hinton’s cubes in his 
Scientific American article, he received a grave 
warning from an English consulting engineer who 
had first-hand experience with the method. The 
letter claimed the four-dimensional visualization 
exercises to take on a life of their own, and 
eventually the sequence of cube will “begin to 
parade themselves through one’s mind of their own 
accord”. He went on to declare the exercises 
“completely mind-destroying” and that he would 
not “recommend anyone to play with the cubes at 
all”.



CROSS-SECTIONS OF
THE CUBE IN A PLANE

Before discussing the tesseract itself, it is useful to observe the
logic in the lower-dimensional case.

We cut the cube into 27 pieces, and examine their cross-
sections in the plane.



ONE STEP BACK

The first step towards understanding the concept of hyperspace has usually come 
in the form of analogy. Maybe surprisingly, it is instructive to first go one 
dimension down, and imagine a world with only two dimensions, inhabited by 
equally flat beings. Our challenges to understand and visualize four-dimensional 
space are analogous to the difficulties a two-dimensional being, confined to a 
plane, would have with respect to our three-dimensional space and its shapes.

In fact, there is an entire tradition of ‘flatlands’, i.e. imaginary universes of only 
two dimensions, whose purpose is often to depict our own challenges of with 
regard to non-Euclidean or higher-dimensional spaces.

The most famous of such fictitious conceptions is Edwin A. Abbott’s 1884 classic 
Flatland – A Romance of Many Dimensions. It depicts a satire of Victorian society 
through the life of polygons living in a plane. As noted already by Hinton (A 
Plane World, Scientific Romances, p. 129), Abbott’s main focus was not on the 
geometry and ‘conditions of life on the plane’. Hinton mended this issue in his 
own writings A Plane World (1884) and An Episode on Flatland: Or How a Plain 
Folk Discovered the Third Dimension (1907). Hinton’s planar world was called 
Astria, and it differed from Flatland with its lateral view that enabled a richer 
universe with heavenly bodies, gravity, etc.



ONE STEP BACK

Of the multiple successors of Flatland trying to grasp the 
peculiarities of fictional worlds restricted on a plane, the most 

ambitious is A. K. Dewdney.

A computer scientist at the University of Western Ontario, his two 
dimensional world called the Planiverse first appeared in his 1979 

article Exploring the Planiverse, and later in the same year in Two-
dimensional Science and Technology, which he published privately. 

He developed his creation into full novel in 1984 as The Planiverse
– Computer Contact with a Two-Dimensional World, an account of a 

planar universe complete with its physics, chemistry, biology, 
politics and art.

Two-dimensional protagonist of the Planiverse



CUBE
8 vertices
12 edges
6 faces (squares)

27 CUBES
8 vertex pieces
12 edge pieces
6 face pieces
1 core piece

CUTTING THE CUBE INTO PIECES

For the purpose of depicting the cube in the 
plane, we cut it to three slices with respect to its 
three primary directions.

Thus we get 3x3x3 cluster of small cubes, 
where each cube represents a vertex or an edge 
of the original cube, or the original cube itself.



COLORING THE 
CUBE PIECES

Each cube piece gets an 
unique color when think 
the cube being exposed 
to colored light from 
three different 
directions (yellow, 
orange, pink).

On the ‘shadow’ side 
are the complementary 
colors (purple, blue, 
green).



COLORING THE CUBE 
PIECES

Vertex pieces are three-colored, since 
they are exposed to light/shadow 
from three directions.

Edge pieces are two-colored, since 
they are exposed to light/shadow 
from two directions.

Face pieces are one-colored, since 
they are exposed to light/shadow 
from one direction.

The core piece is colorless, since it is 
not exposed to any light/shadow.



CROSS-SECTIONS OF
THE CUBE IN A PLANE

Now the 27 pieces of the cube can be
represented in the plane with two-

dimensional slabs.

These slabs can be assembeled to show 
the cross-sections of the cube.



The sequence of three pictures below depicts the cross-sections perceived by the flatlander as the cube is
pushed through its 2D world green face first.

First it sees the green face and the surrounding vertices and edges (a).
In the next corss-section it sees the core of the cube (grey) and the surrounding edges and faces (b).

Finally it sees the red face and the surrounding vertices and edges (c).

(c)(b)(a)



Exercise:

Cut out the slabs from the papers.
Assemble them again to depict a new sequence of cross-sections, from another direction.

Repeat once or twice.

What kinds of rules you perceive see in the colorings of adjecent slabs?
When can two slabs be neighbours, when not?



CROSS-SECTIONS OF
THE TESSERACT IN A 3-SPACE



CONSRUCTING THE 
TESSERACT

If a point (a) is moved (b), it sweeps a line 
segment (c). If that line segment is then 
moved perpendicularly away from its line 
(d), over the distance of its length, it traces 
out a square (e). Similarly, we get the cube 
from the square (f,g), and finally when the 
cube is moved perpendicularly away from 
its 3 space over the distance of its edge 
length (h), the trace is a tesseract, also 
called the 8 cell (i). It has sixteen vertices, 
thirty-two edges, twenty-four square faces, 
and eight cubical cells. There are three 
cells meeting at each edge, and four at each 
vertex. This family of polytopes extends to 
all higher dimensions, and they are 
collectively called the hypercubes.

(a)

(e)

(c)

(g) (h) (i)

(d)

(b)

(f)



THE STRUCTURE
OF THE
TESSERACT

16 vertices
32 edges
24 faces (squares)
8 cells (cubes)



TESSERACT
16 vertices
32 edges
24 faces (squares)
8 cells (cubes)

81 TESSERACTS
16 vertex pieces
32 edge pieces
24 face pieces
8 cell pieces
1 core piece

CUTTING THE TESSERACT INTO 
PIECES

For the purpose of depicting the tesseract in the 
3-space, we cut it to three slices with respect to 
its four primary directions.

Thus we get 3x3x3x3 cluster of small 
tesseracts, where each tesseract represents a 
vertex, an edge, or a face of the original 
tesseract, or the original tesseract itself.
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TESSERACT PIECES

Each tesseract piece gets an 
unique color when think the 
tesseract being exposed to 
colored light from four different 
directions (white, yellow, orange, 
pink).

On the ‘shadow’ side are the 
complementary colors (black, 
purple, blue, green).



COLORING THE 
TESSERACT PIECES

Vertex pieces are four-colored, since 
they are exposed to light/shadow 
from four directions.

Edge pieces are three-colored, since 
they are exposed to light/shadow 
from three directions.

Face pieces are two-colored, since 
they are exposed to light/shadow 
from two directions.

Cell pieces are one-colored, since 
they are exposed to light/shadow 
from one direction.

The core piece is colorless, since it is 
not exposed to any light/shadow.
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81 PIECES

The diagram lists each 
piece with its 
coloring, and shows 
how they are 
connected to each 
other.



BUILDING THE CUBE SET:

(e)
(d)

(c)

(b)(a)



CROSS-SECTIONS OF THE CUBE IN A PLANE
Now the 81 pieces of the tesseract can be represented in 3-space with three-dimensional blocks.

These blocks can be assembeled to show the cross-sections of the tesseract.



(a)
(b) (c)

The sequence of three models below depicts the cross-sections perceived by us as the tesseract is pushed
through our 3D world white cell first.

First we see the white cell and the surrounding vertices, edges and faces (a).
In the next corss-section we seethe core of the tesseract (grey) and the surrounding edges, faces and cells (b).

Finally we see the black cell and the surrounding vertices, edges, and faces (c).



SOURCES:

Abbott, Edwin A. Flatland: A Romance of Many Dimensions [1884]. New York: Oxford University Press, 2006.

Blacklock, Mark. The Emergence of the Fourth Dimension: Higher Spatial Thinking in the Fin De Siècle. New York: Oxford University 

Press, 2018.

Blackwood, Algernon. "A Victim of Higher Space." The Occult Review, (William Rider and Son, Ltd) 20, no. 6 (December 1914): 318–335.

Dewdney, A. K. The Planiverse: Computer Contact with a Two-dimensional World [1984]. New York: Copernicus, 2000.

Gardner, Martin. "Hypercubes." In Mathematical Carnival, 41-54. London: Penguin Books, 1978.

Henderson, Linda Dalrymple. The Fourth Dimension and Non-Euclidean Geometry in Modern Art [1983]. Revised edition. Cambridge: MIT 

Press, 2013.

Hinton, Charles Howard. A New Era of Thought. London: Swann Sonnenschein & Co., 1888.

Hinton, Charles Howard. The Fourth Dimension. New York: Swann Sonnenschein & Co., 1901.

Rucker, Rudy. The Fourth Dimension: Toward a Geometry of Higher Reality [1984]. New York: Dover, 2014.

Volkert, Klaus. In Höheren Räumen: Der Weg der Geometrie in Die Vierte Dimension. Berlin: Springer Spektrum, 2018.

White, Cristopher G. Other Worlds: Spirituality and the Search for Invisible Dimensions. Cambridge: Harvard University Press, 2018.


