A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory

Lecture 13: Approximation

Aalto University
School of Science
Department of Computer Science

Spring 2019

Agenda

@ Optimisation Problems

@ Approximation Algorithms
@ PTAS and FPTAS

@ Hardness of Approximation
@ On the PCP Theorem

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
2/25

Solving Hard Problems: Approximation

@ There are intractable problems that we don’t know how to
solve in polynomial time

» How to deal with such problems in practice?

@ Today’s concept: approximation
» Basic idea: instead of looking for the best solution, look for a fairly
good solution
» When does this this help?

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Comple tyTheo y/Lec(ure13
3 25

Optimisation Problems

Definition
An optimisation problem I1 is defined by
@ aset of valid instances I C {0,1}*,

@ aset of feasible solutions F(x) C {0,1}* for all valid instances
xel,

@ an integer cost c(s) for all feasible solutions s € F(x), and

@ a goal function, which is either min or max.

@ Task is to compute optimal solution:
> Maximisation: OPT(x) = maxcp(y) c(x)
> Minimisation: OPT (x) = mine gy c(x)

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
425

NP Optimisation Problems

Definition

An optimisation problem I is an NP optimisation problem (NPO) if it
holds that

@ there is a constant ¢ > 0 such that for all x € I and s € F(x), we
have |s| = O(]x|),

@ languages {x: x €1} and {(x,s): s € F(x)} are decidable in
polynomial time, and

@ the function s — c(s) is computable in polynomial time.

@ We restrict our attention to NP optimisation problems

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
School of Science Department of Computer Science

5125

Covering Problems

Example (Vertex Cover)
@ Instance: Graph G = (V,E).
@ Feasible solution: A vertex cover CC V.
@ Objective: minimise ¢(C) = |C|

Example (Set Cover)

@ Instance: A finite set U and a family § = {S,S>,...,Sn} of
subsets of U.

o Feasible solution: A subfamily 7 C S such that any element
u € U is contained in at least one set T € T?

@ Objective: minimise ¢(7) = |7

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
6/25

Travelling Salesman Problem

Example (TSP)
@ Instance: An undirected/directed weighted graph G = (V,E,w).

@ Feasible solution: A tour T = (vy,v2,...,V,) visiting all vertices
once.

@ Obijective: minimise ¢(7T) = Y,;—1» w(Vi,Vi+1 modn)-

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
7125

Approximation Algorithms

Definition (Approximation algorithm)
Let IT be an optimisation problem. For o > 1, we say that M is a
polynomial-time o.-approximation algorithm if M runs in polynomial
time,

e for all x € I, we have M(x) € F(x), and

o forall x € I, we have (1/a) OPT(x) < ¢(M(x)) < aOPT(x).

@ Maximisation: (1/a) OPT(x) < ¢(M(x)) < OPT(x)
@ Minimisation: OPT(x) < ¢(M(x)) < aOPT(x)

@ Notations may wary between sources:
» e.g. l/a-approximation instead

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
School of Science Department of Computer Science
8/25

2-approximation for Vertex Cover

Approximation algorithm for vertex cover
Input: graph G = (V,E), Output: vertex cover C
@ StartfromC=10
@ Select arbitrary edge {u,v} € E
@ Add u and v to C, remove u, v and all incident edges from the
graph
Repeat until no edges remain

This is a 2-approximation algorithm:
» Let C' be an optimal vertex cover
» For any edge {u, v} selected by the algorithm, at least one of u
and v must be in C’
» Thus, ¢(C) < 2¢(C') =20PT(G)

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
925

O(log n)-approximation for Set Cover

Approximation algorithm for set cover

Input: set family .S over U, Ouput: set cover T’

Start from 7 =0

Find the set S € S that covers most uncovered elements in U
Add Sto T

Repeat until all elements of U are covered

Let uy,us,...,u, be the order in which the algorithm covered
the elements of U
» Assume that u; was covered by a set T € S picked by the
algorithm, and that T covered a uncovered elements
» We define the cost of u as c(uy) = 1/a

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
A School of Science Department of Computer Science
10/25

O(log n)-approximation for Set Cover

Lemma
We have c(ux) < OPT /(n—k+1). J

@ Proof: Consider the iteration when u; was covered

» Let C denote the covered elements at the beginning of the
iteration

» Since remaining elements could be covered with OPT sets, there
is a set that covers at least ‘gP# elements

» Since u; was covered in this iteration, we had [U\ C| > n—k+1

» Since we picked the set that covered most elements, we have

< OPT __OPT
u,
M=o\ T n—k+1

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
11/25

O(log n)-approximation for Set Cover

@ We have | 7| =Y7_, c(ux)

@ By previous lemma, we have

kgl Uy, S; —OPT(1+§+§+..._|_;)

@ Fact: 1+3+1+-+i<Innt+l
@ Thus, |T] < (In n+1)OPT

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
12/25

Polynomial-time Approximation Schemes

Definition (PTAS)
Let IT be an optimisation problem. We say that M is a polynomial-time
approximation scheme (PTAS) if for all € > 0,

e forall x € I, we have M(x,€) € F(x), and
@ forall x € I, we have
(1 —€)OPT(x) < c(M(x,€)) < (14¢€)OPT(x),
and M (x,€) runs in time pg(|x|) time, where p; is a polynomial that
only depends on €.

@ PTAS allows trading time for accuracy
@ Dependence on € can be very large
@ Example: Euclidean TSP has a PTAS

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
13/25

Fully Polynomial-time Approximation

Definition (FPTAS)

Let IT be an optimisation problem. We say that M is a fully
polynomial-time approximation scheme (FPTAS) if for all € > 0,

e for all x € I, we have M(x,€) € F(x), and
o forall x € I, we have
(1—¢)OPT(x) < c¢(M(x,€)) < (1+¢€)OPT(x),
and M(x,€) runs in time p(|x|, 1/€) time, where p is a polynomial.

@ Example: Knapsack has an FPTAS

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
14/25

Hardness of Approximation

@ Which NP-complete problems are easy to approximate?
» Do all NP-complete problems have a PTAS or FPTAS?
» FPTAS is almost as good as polynomial-time algorithm

@ Can prove ad-hoc inapproximability results
@ Can also define complexity classes related to approximation
and prove hardness

» FPTAS: problems with FPTAS
» PTAS: problems with PTAS
» APX: problems with constant-factor approximation

@ However, proving inapproximability results is very difficult
with the tools we have seen so far

School of Science uter Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
Department of Comput
15/25

Example: TSP

Theorem
TSP cannot be o.-approximated for any constant o > 1 unless P = NP.}

@ Proof: consider the following reduction from Hamiltonian cycle
instance G = (V,E):

The TSP instance is a complete graph G' = (V,E')

Edge ¢ € E' has weight 1 if e € E, and weight a.| V| otherwise

If G has Hamiltonian cycle, then G’ has TSP tour with weight | V|

If G does not have Hamiltonian cycle, then the minimim TSP tour

in G’ has weight > o.|V|

An o-approximate algorithm can tell these two cases apart

vV vy vVvyYy

v

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
School of Science Department of Computer Science
16/25

Example: TSP
Example (Symmetric Metric TSP)

@ Instance: A complete undirected graph G = (V,E,w) with a

weight function satisfying the triangle inequality

w(u,v) <w(u,w)+w(w,v) forallu,v,weV.

@ Feasible solution: A tour T = (vy,v,,...,v,) visiting all vertices

once.

@ Obijective: minimise ¢(7T) =Y, 1» w(Vi,Vit1 modn)-

@ Symmetric metric TSP has 3 /2-approximation algorithm
[Christofides 1976]

@ Symmetric metric TSP cannot be approximated with factor ¢ for
any ¢ < 123/122 unless P = NP [Karpinski, Lampis & Schmied

2015]

School of Science

A Aalto University CS-E4530 Computation: al Complexi tyTheo y/Lec(ure13

Department of Computer Sci

17 25

PCP Theorem

@ PCP theorem is the one of the great celebrated results in
theoretical computer science
» Central tool for inapproximability results

@ What does the PCP theorem say?
» Verification view: every language in NP has a verifier that can
verify the correctness of a certificate with constant number of

queries
> Hardness of approximation view: MAX-3SAT cannot be

approximated within arbitrarily good constant

CS-E4530 Computational Complexity Theory / Lecture 13

Aalto University
School of Science Department of Computer Sc\;n;c
18/25

PCP: Verification View

Definition (Restricted verifiers)

@ An (r(n),q(n))-restricted verifier is a polynomial-time
probabilistic Turing machine V that takes as an input a string
x € {0,1} and has a random access to a proofy of length at most
q(n)2"™ such that
» V uses at most r(n) random bits, and
» V queries at most g(n) symbols of y.
@ Given a random bit string z of at most r(n) bits, the verifier V:
(1) computes Q(x,z), a set of k < g(n) indices,
(2) chooses k symbols y1,...,yx from y according to indices in
0(x,z), and
(8) outputs 1 or 0 depending on x, z, and (y1,...,Vk)-

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
19/25

PCP: Verification View

Definition (Probabilistically checkable proofs (PCP))

We say that a language L C {0, 1}* is in class PCP(r(n),q(n)) if there
isa (0(r(n)),0(q(n)))-restricted verifier V such that
@ if x € L, then there is a proof y € {0,1}* such that
Pr[V(x,y)=1] =1, and
e if x ¢ L, then for all proofs y € {0,1}* we have
Pr[V(x,y) =1] <1/2.

Theorem (The PCP theorem (Arora & Safra 1992))
NP = PCP(logn, 1).

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
20/25

PCP: Hardness of Approximation View

Example (MAX-3SAT)
@ Instance: A CNF formula ¢ with at most 3 literals per clause
@ Feasible Solution: An assignment x into variables of @

@ Obijective: maximise c(x), where c¢(x) is the number of clauses
of ¢ satisfied by x

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
School of Science Department of Computer Science
21/25

PCP: Hardness of Approximation View

Theorem (The PCP theorem, alternative form)

There is a constant o. > 1 such that there is no o.-approximation
algorithm for MAX-3SAT, unless P = NP.

Theorem (Hastad 1997)

There is no (8/7 — €)-approximation algorithm for MAX-3SAT for any
€ >0, unless P = NP.

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
School of Science

Department of Computer Science
22/25

Inapproximability from PCP Theorem

Theorem

There are constants o, o > 1 such that maximum independent set
cannot be o.-approximated and minimum vertex cover cannot be
o -approximated unless P = NP.

@ Proof sketch:

» Apply the standard reduction from 3SAT to maximum independent
set

» Observe that the size of the independent sets in the resulting
graph is connected to the maximum number of satisfiable clauses
in the original formula

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
A School of Science Department of Computer Science
23/25

Inapproximability from PCP Theorem

Theorem

Maximum independent set cannot be a.-approximated for any constant
a > 1 unless P = NP.

@ Proof: boosting via graph products

@ The PCP theorem is analogous to the Cook-Levin theorem
for hardness of approximation

» Provides a starting point for further results

A

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13

School of Science Department of Computer Science
24/25

Lecture 13: Summary

@ Optimisation problems

@ Approximation algorithms
e PTAS and FPTAS

@ Inapproximability

e PCP theorem

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 13
25/25

