
CS-E4530 Computational Complexity Theory

Lecture 13: Approximation

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

2/25

Agenda

Optimisation Problems

Approximation Algorithms

PTAS and FPTAS

Hardness of Approximation

On the PCP Theorem

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

3/25

Solving Hard Problems: Approximation

There are intractable problems that we don’t know how to
solve in polynomial time

I How to deal with such problems in practice?

Today’s concept: approximation
I Basic idea: instead of looking for the best solution, look for a fairly

good solution
I When does this this help?

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

4/25

Optimisation Problems

Definition
An optimisation problem Π is defined by

a set of valid instances I ⊆ {0,1}∗,
a set of feasible solutions F(x)⊆ {0,1}∗ for all valid instances
x ∈ I,

an integer cost c(s) for all feasible solutions s ∈ F(x), and

a goal function, which is either min or max.

Task is to compute optimal solution:
I Maximisation: OPT(x) = maxs∈F(x) c(x)
I Minimisation: OPT(x) = mins∈F(x) c(x)

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

5/25

NP Optimisation Problems

Definition
An optimisation problem Π is an NP optimisation problem (NPO) if it
holds that

there is a constant c > 0 such that for all x ∈ I and s ∈ F(x), we
have |s|= O(|x|c),
languages

{
x : x ∈ I

}
and

{
(x,s) : s ∈ F(x)

}
are decidable in

polynomial time, and

the function s 7→ c(s) is computable in polynomial time.

We restrict our attention to NP optimisation problems

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

6/25

Covering Problems

Example (Vertex Cover)

Instance: Graph G = (V,E).

Feasible solution: A vertex cover C ⊆ V .

Objective: minimise c(C) = |C|

Example (Set Cover)

Instance: A finite set U and a family S = {S1,S2, . . . ,Sm} of
subsets of U.

Feasible solution: A subfamily T ⊆ S such that any element
u ∈ U is contained in at least one set T ∈ T ?

Objective: minimise c(T) = |T |

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

7/25

Travelling Salesman Problem

Example (TSP)

Instance: An undirected/directed weighted graph G = (V,E,w).

Feasible solution: A tour T = (v1,v2, . . . ,vn) visiting all vertices
once.

Objective: minimise c(T) = ∑i=1n w(vi,vi+1 mod n).

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

8/25

Approximation Algorithms

Definition (Approximation algorithm)
Let Π be an optimisation problem. For α > 1, we say that M is a
polynomial-time α-approximation algorithm if M runs in polynomial
time,

for all x ∈ I, we have M(x) ∈ F(x), and

for all x ∈ I, we have (1/α)OPT(x)≤ c(M(x))≤ αOPT(x).

Maximisation: (1/α)OPT(x)≤ c(M(x))≤ OPT(x)

Minimisation: OPT(x)≤ c(M(x))≤ αOPT(x)

Notations may wary between sources:
I e.g. 1/α-approximation instead

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

9/25

2-approximation for Vertex Cover

Approximation algorithm for vertex cover

Input: graph G = (V,E), Output: vertex cover C

Start from C = /0

Select arbitrary edge {u,v} ∈ E

Add u and v to C, remove u, v and all incident edges from the
graph

Repeat until no edges remain

This is a 2-approximation algorithm:
I Let C′ be an optimal vertex cover
I For any edge {u,v} selected by the algorithm, at least one of u

and v must be in C′
I Thus, c(C)≤ 2c(C′) = 2OPT(G)

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

10/25

O(log n)-approximation for Set Cover

Approximation algorithm for set cover

Input: set family S over U, Ouput: set cover T
Start from T = /0

Find the set S ∈ S that covers most uncovered elements in U

Add S to T
Repeat until all elements of U are covered

Let u1,u2, . . . ,un be the order in which the algorithm covered
the elements of U

I Assume that ui was covered by a set T ∈ S picked by the
algorithm, and that T covered a uncovered elements

I We define the cost of uk as c(uk) = 1/a

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

11/25

O(log n)-approximation for Set Cover

Lemma
We have c(uk)≤ OPT/(n− k+1).

Proof: Consider the iteration when uk was covered
I Let C denote the covered elements at the beginning of the

iteration
I Since remaining elements could be covered with OPT sets, there

is a set that covers at least |U\C|OPT elements
I Since uk was covered in this iteration, we had |U \C| ≥ n− k+1
I Since we picked the set that covered most elements, we have

c(uk)≤
OPT
|U \C|

≤ OPT
n− k+1

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

12/25

O(log n)-approximation for Set Cover

We have |T |= ∑
n
k=1 c(uk)

By previous lemma, we have

n

∑
k=1

c(uk)≤
1

∑
k=1

OPT
n− k+1

= OPT
(
1+

1
2
+

1
3
+ · · ·+ 1

n

)
Fact: 1+ 1

2 +
1
3 + · · ·+

1
n ≤ ln n+1.

Thus, |T | ≤ (ln n+1)OPT

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

13/25

Polynomial-time Approximation Schemes

Definition (PTAS)
Let Π be an optimisation problem. We say that M is a polynomial-time
approximation scheme (PTAS) if for all ε > 0,

for all x ∈ I, we have M(x,ε) ∈ F(x), and

for all x ∈ I, we have
(1− ε)OPT(x)≤ c(M(x,ε))≤ (1+ ε)OPT(x),

and M(x,ε) runs in time pε(|x|) time, where pε is a polynomial that
only depends on ε.

PTAS allows trading time for accuracy

Dependence on ε can be very large

Example: Euclidean TSP has a PTAS

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

14/25

Fully Polynomial-time Approximation

Definition (FPTAS)
Let Π be an optimisation problem. We say that M is a fully
polynomial-time approximation scheme (FPTAS) if for all ε > 0,

for all x ∈ I, we have M(x,ε) ∈ F(x), and

for all x ∈ I, we have
(1− ε)OPT(x)≤ c(M(x,ε))≤ (1+ ε)OPT(x),

and M(x,ε) runs in time p(|x| ,1/ε) time, where p is a polynomial.

Example: Knapsack has an FPTAS

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

15/25

Hardness of Approximation

Which NP-complete problems are easy to approximate?
I Do all NP-complete problems have a PTAS or FPTAS?
I FPTAS is almost as good as polynomial-time algorithm

Can prove ad-hoc inapproximability results
Can also define complexity classes related to approximation
and prove hardness

I FPTAS: problems with FPTAS
I PTAS: problems with PTAS
I APX: problems with constant-factor approximation

However, proving inapproximability results is very difficult
with the tools we have seen so far

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

16/25

Example: TSP

Theorem
TSP cannot be α-approximated for any constant α > 1 unless P = NP.

Proof: consider the following reduction from Hamiltonian cycle
instance G = (V,E):

I The TSP instance is a complete graph G′ = (V,E′)
I Edge e ∈ E′ has weight 1 if e ∈ E, and weight α |V| otherwise
I If G has Hamiltonian cycle, then G′ has TSP tour with weight |V|
I If G does not have Hamiltonian cycle, then the minimim TSP tour

in G′ has weight > α |V|
I An α-approximate algorithm can tell these two cases apart

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

17/25

Example: TSP
Example (Symmetric Metric TSP)

Instance: A complete undirected graph G = (V,E,w) with a
weight function satisfying the triangle inequality

w(u,v)≤ w(u,w)+w(w,v) for all u,v,w ∈ V .

Feasible solution: A tour T = (v1,v2, . . . ,vn) visiting all vertices
once.

Objective: minimise c(T) = ∑i=1n w(vi,vi+1 mod n).

Symmetric metric TSP has 3/2-approximation algorithm
[Christofides 1976]
Symmetric metric TSP cannot be approximated with factor c for
any c < 123/122 unless P = NP [Karpinski, Lampis & Schmied
2015]

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

18/25

PCP Theorem

PCP theorem is the one of the great celebrated results in
theoretical computer science

I Central tool for inapproximability results

What does the PCP theorem say?
I Verification view: every language in NP has a verifier that can

verify the correctness of a certificate with constant number of
queries

I Hardness of approximation view: MAX-3SAT cannot be
approximated within arbitrarily good constant

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

19/25

PCP: Verification View

Definition (Restricted verifiers)

An (r(n),q(n))-restricted verifier is a polynomial-time
probabilistic Turing machine V that takes as an input a string
x ∈ {0,1} and has a random access to a proof y of length at most
q(n)2r(n) such that

I V uses at most r(n) random bits, and
I V queries at most q(n) symbols of y.

Given a random bit string z of at most r(n) bits, the verifier V :
(1) computes Q(x,z), a set of k ≤ q(n) indices,
(2) chooses k symbols y1, . . . ,yk from y according to indices in

Q(x,z), and
(3) outputs 1 or 0 depending on x, z, and (y1, . . . ,yk).

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

20/25

PCP: Verification View

Definition (Probabilistically checkable proofs (PCP))

We say that a language L⊆ {0,1}∗ is in class PCP(r(n),q(n)) if there
is a (O(r(n)),O(q(n)))-restricted verifier V such that

if x ∈ L, then there is a proof y ∈ {0,1}∗ such that
Pr[V(x,y) = 1] = 1, and

if x /∈ L, then for all proofs y ∈ {0,1}∗ we have
Pr[V(x,y) = 1]≤ 1/2.

Theorem (The PCP theorem (Arora & Safra 1992))

NP = PCP(logn,1).

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

21/25

PCP: Hardness of Approximation View

Example (MAX-3SAT)
Instance: A CNF formula ϕ with at most 3 literals per clause

Feasible Solution: An assignment x into variables of ϕ

Objective: maximise c(x), where c(x) is the number of clauses
of ϕ satisfied by x

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

22/25

PCP: Hardness of Approximation View

Theorem (The PCP theorem, alternative form)
There is a constant α > 1 such that there is no α-approximation
algorithm for MAX-3SAT, unless P = NP.

Theorem (Håstad 1997)

There is no (8/7− ε)-approximation algorithm for MAX-3SAT for any
ε > 0, unless P = NP.

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

23/25

Inapproximability from PCP Theorem

Theorem
There are constants α,α′ > 1 such that maximum independent set
cannot be α-approximated and minimum vertex cover cannot be
α′-approximated unless P = NP.

Proof sketch:
I Apply the standard reduction from 3SAT to maximum independent

set
I Observe that the size of the independent sets in the resulting

graph is connected to the maximum number of satisfiable clauses
in the original formula

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

24/25

Inapproximability from PCP Theorem

Theorem
Maximum independent set cannot be α-approximated for any constant
α > 1 unless P = NP.

Proof: boosting via graph products

The PCP theorem is analogous to the Cook-Levin theorem
for hardness of approximation

I Provides a starting point for further results

CS-E4530 Computational Complexity Theory / Lecture 13
Department of Computer Science

25/25

Lecture 13: Summary

Optimisation problems

Approximation algorithms

PTAS and FPTAS

Inapproximability

PCP theorem

