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Approximation Algorithms

All exact science iIs dominated
by the idea of approximation.”

— Bertrand Russell
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Approximation Algorithms

e Many optimization problems are NP-hard (e.g. the
travelling salesman problem)

e ~~ an optimal solution cannot be efficiently computed
unless P=NP.

e However, good approximate solutions can often be found
efficiently!

e Techniques for the design and analysis of approximation
algorithms arise (currently) mostly from studying specific
optimization problems.
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Input Graph G = (V, F)

Output a minimum vertex cover: a minimum vertex set
V' C V, such that every edge is covered by V' (i.e.,
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VERTEX COVER (cardinality)
Input Graph G = (V, F)

Output a minimum vertex cover: a minimum vertex set
V' C V, such that every edge is covered by V' (i.e.,
for every uv € E, either u € V' or v € V).

“good” approximate solution (5/4-Approximation)
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NP-Optimization Problem

An NP-optimization problem [1 is given by:

e A set Dp of instances.
We use |I| to denote the size of an instance I € Dp.

e For each instance I € Dy there is a set Sp([) # 0 of
feasible solutions for I where:
— For each solution s € Sp(1), its size |s| is polynomially
bounded in |I].

— There is a polynomial time algorithm to decide for each
pair (s, I),whether s € Sp([)

e A polynomial time computable objective function objp,
which assigns a positive objective value obj(7, s) to a
given pair (1, s).

e [l is either a minimization or maximization problem.
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2R NP-Optimization Problem

Exercise

What are the instances?
What are the feasible solutions?

What is the objective function?



Optimum, and optimal objective value.

Let I'1 be a minimization (maximization) problem and I € Dp
be an instance of I1. A feasible solution s* € Sp([/) is Optimal
when objq (7, s*) is the minimum (maximum) among objective
values attained by the feasible solutions of 1.

The optimal value objy (7, s*) of the objective function is also
denoted by OPTp(I) or simply OPT in context.



Approximation Algorithms

Let 1 be a minimization problem and o € Q.
A factor-a-approximation algorithm for 1 is an efficient

algorithm that provides a feasible solution s € Sp(I) for any
instance I € Dp such that:

Objl'l(]7 S) <
OPTH(I) o

.



Approximation Algorithms
a:N — Q
Let M be a minimization problem and g Q.
A factor-a-approximation algorithm for 1 is an efficient

algorithm that provides a feasible solution s € Sp(I) for any
instance I € Dp such that:

ObjI'I(L S)
opTh(r) =7 U




Approximation Algorithms
maximization N —=Q
Let I be a_minimization problem and Q.

A factor-a-approximation algorithm for 1 is an efficient

algorithm that provides a feasible solution s € Sp(I) for any
instance I € Dp such that:

>
Objl'l(]7 S) _
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Approximation Alg. for VERTEX COVER

|deas?

o Edge-Greedy

e Vertex-Greedy (see Exercises)

e Inclusion-wise minimal vertex cover

How can we measure the quality of a feasible solution?

Problem: How can we estimate O%”P({Iis) when 1t is hard to

calculate OPT?

Idea: Find a “good” lower bound L < OPT for OPT and
compare it to our approximate solution.

obj(1.5) _ 0bjy(1.s)
OPT =71
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Lower Bound by Matchings

An edge set M C F of a graph G = (V, E) is a matching
when no vertex of & is incident to two edges in M .

M is maximal when there is no matching M’ with M" D> M.

vertex cover of (G

M|
OPT >4

OPT <2.|M|




Approximation Alg. for V:

Algorithm for Vertex Cover (G)
M « ()
foreach e € F(G) do
if e is not adjacent to an edge

| M« MU {e}

return {u,v | uv € M }

CRTEX COV]

in M then
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Approximation Alg. for VERTEX COV:
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Algorithm for Vertex Cover (G)
M « ()
foreach e € F(G) do
if e is not adjacent to an edge in M then

| M« MU {e}

return {u,v | uv € M }

Thm 1.1 The above algortihm is a factor-2 approximation
algorithm for VERTEX COVER
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Approximation Alg. for VERTEX COV:

Algorithm for Vertex Cover (G)
M « ()
foreach e € F(G) do
if e is not adjacent to an edge in M then

| M« MU {e}

return {u,v | uv € M }

Thm 1.1 The above algortihm is a factor-2 approximation
algorithm for VERTEX COVER

Next week: SET COVER




