

Aalto University School of Science

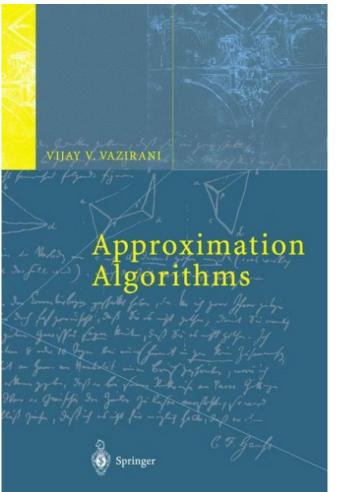
Combinatorics of Efficient Computations

Approximation Algorithms Lecture 1: Introduction & Vertex Cover

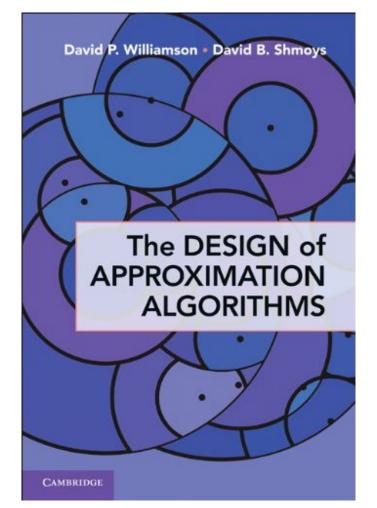
Joachim Spoerhase

2019

Textbooks



Vijay V. Vazirani Approximation Algorithms Springer-Verlag 2003



http://www.designofapproxalgs.com/ D. P. Williamson, D.B. Shmoys The Design of Approximation Algorithms Cambridge-Verlag 2011

Approximation Algorithms

"All exact science is dominated by the idea of approximation." – Bertrand Russell

Overview of Possible Topics

Combinatorial Algorithms

- Introduction
- Set Cover
- Steiner Tree and TSP
- Multiway Cut
- *k*-Center
- Shortest Superstring
- Knapsack
- Bin Packing
- Minimum Makespan Scheduling
- Euclidean TSP

LP-Based Algorithms

- Introduction to LP-Duality
- Set Cover via Dual Fitting
- Rounding Applied to Set Cover
- Set Cover via the Primal–Dual Schema
- Maximum Satisfiability
- Facility Location
- . . .

Approximation Algorithms

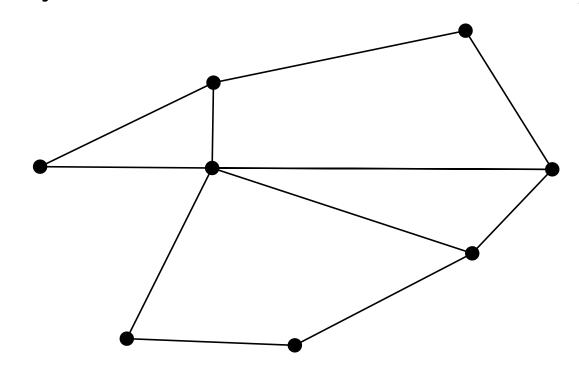
- Many optimization problems are NP-hard (e.g. the travelling salesman problem)
- \rightsquigarrow an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise (currently) mostly from studying specific optimization problems.

Input Graph G = (V, E)

Output a minimum vertex cover: a minimum vertex set $V' \subseteq V$, such that every edge is covered by V' (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).

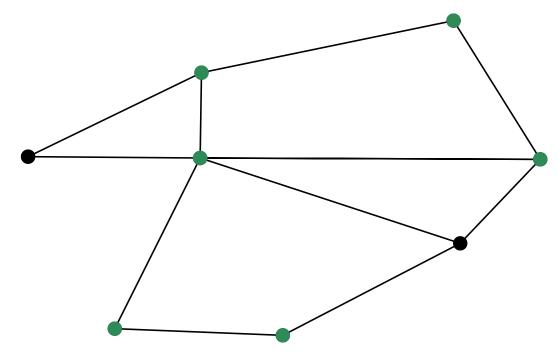
Input Graph G = (V, E)

Output a minimum vertex cover: a minimum vertex set $V' \subseteq V$, such that every edge is covered by V' (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



Input Graph G = (V, E)

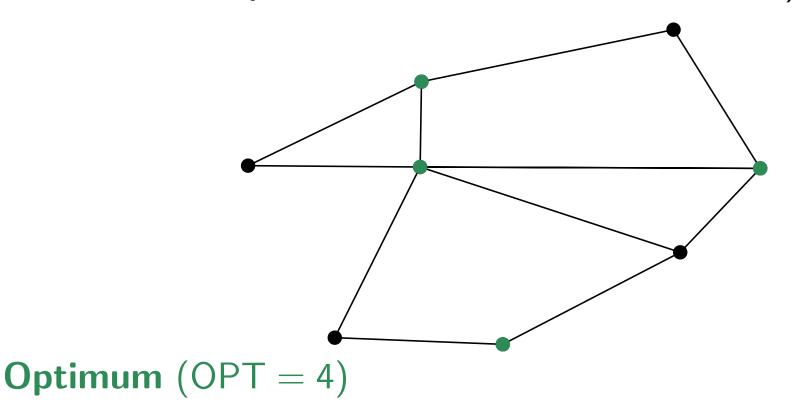
Output a minimum vertex cover: a minimum vertex set $V' \subseteq V$, such that every edge is covered by V' (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



a vertex cover

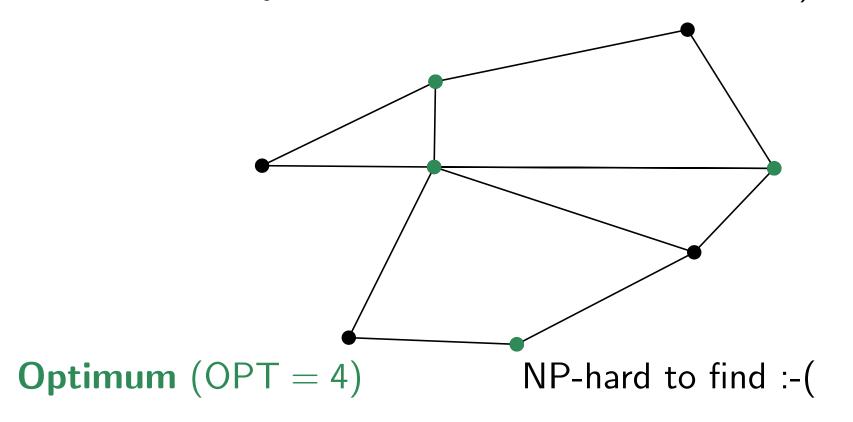
Input Graph G = (V, E)

Output a minimum vertex cover: a minimum vertex set $V' \subseteq V$, such that every edge is covered by V' (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



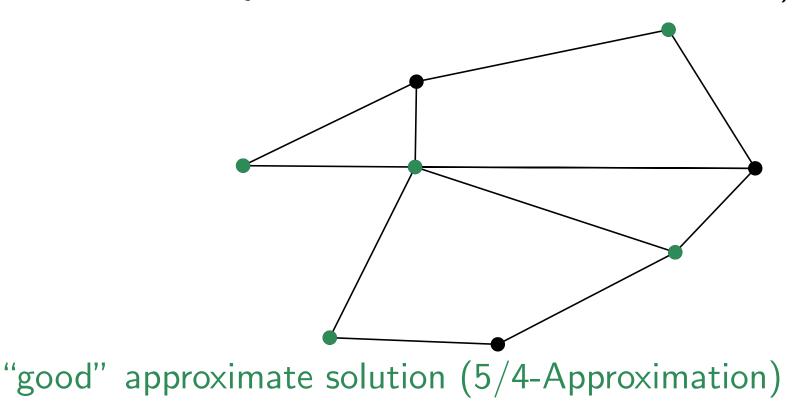
Input Graph G = (V, E)

Output a minimum vertex cover: a minimum vertex set $V' \subseteq V$, such that every edge is covered by V' (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



Input Graph G = (V, E)

Output a minimum vertex cover: a minimum vertex set $V' \subseteq V$, such that every edge is covered by V' (i.e., for every $uv \in E$, either $u \in V'$ or $v \in V'$).



An NP-optimization problem Π is given by:

A set D_Π of instances.
We use |I| to denote the size of an instance I ∈ D_Π.

An NP-optimization problem Π is given by:

- A set D_{Π} of **instances**. We use |I| to denote the size of an instance $I \in D_{\Pi}$.
- For each instance I ∈ D_Π there is a set S_Π(I) ≠ Ø of feasible solutions for I where:
 - For each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|.
 - There is a polynomial time algorithm to decide for each pair (s, I), whether $s \in S_{\Pi}(I)$

An NP-optimization problem Π is given by:

- A set D_{Π} of **instances**. We use |I| to denote the size of an instance $I \in D_{\Pi}$.
- For each instance I ∈ D_Π there is a set S_Π(I) ≠ Ø of feasible solutions for I where:
 - For each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|.
 - There is a polynomial time algorithm to decide for each pair (s, I), whether $s \in S_{\Pi}(I)$
- A polynomial time computable objective function obj_Π, which assigns a positive objective value obj_Π(I, s) to a given pair (I, s).

An NP-optimization problem Π is given by:

- A set D_{Π} of **instances**. We use |I| to denote the size of an instance $I \in D_{\Pi}$.
- For each instance I ∈ D_Π there is a set S_Π(I) ≠ Ø of feasible solutions for I where:
 - For each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|.
 - There is a polynomial time algorithm to decide for each pair (s, I), whether $s \in S_{\Pi}(I)$
- A polynomial time computable objective function obj_Π, which assigns a positive objective value obj_Π(I, s) to a given pair (I, s).
- Π is either a minimization or maximization problem.

VERTEX COVER NP-Optimization Problem

Exercise

VERTEX COVER NP-Optimization Problem

Exercise

What are the *instances*?

What are the *feasible solutions*?

What is the *objective function*?

Optimum, and optimal objective value.

Let Π be a minimization (maximization) problem and $I \in D_{\Pi}$ be an instance of Π . A feasible solution $s^* \in S_{\Pi}(I)$ is **Optimal** when $obj_{\Pi}(I, s^*)$ is the minimum (maximum) among objective values attained by the feasible solutions of I.

The optimal value $obj_{\Pi}(I, s^*)$ of the objective function is also denoted by $OPT_{\Pi}(I)$ or simply OPT in context.

Approximation Algorithms

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm that provides a feasible solution $s \in S_{\Pi}(I)$ for any instance $I \in D_{\Pi}$ such that:

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \leq \alpha \,.$$

Approximation Algorithms

Let Π be a minimization problem and $\varphi \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm that provides a feasible solution $s \in S_{\Pi}(I)$ for any instance $I \in D_{\Pi}$ such that:

$$rac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \leq \mathbf{\alpha}. \quad \alpha(|I|)$$

 $\alpha: \mathbb{N} \to \mathbb{O}$

Approximation Algorithms maximization $\alpha \colon \mathbb{N} \to \mathbb{Q}$ Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$. A factor- α -approximation algorithm for Π is an efficient algorithm that provides a feasible solution $s \in S_{\Pi}(I)$ for any instance $I \in D_{\Pi}$ such that:

$$rac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \geq \alpha(|I|)$$

Approximation Alg. for $\operatorname{Vertex}\,\operatorname{Cover}$

Ideas?

Approximation Alg. for $\operatorname{Vertex}\,\operatorname{Cover}$

Ideas?

- Edge-Greedy
- Vertex-Greedy (see Exercises)
- Inclusion-wise minimal vertex cover

Ideas?

- Edge-Greedy
- Vertex-Greedy (see Exercises)
- Inclusion-wise minimal vertex cover

How can we measure the quality of a feasible solution?

Ideas?

- Edge-Greedy
- Vertex-Greedy (see Exercises)
- Inclusion-wise minimal vertex cover

How can we measure the quality of a feasible solution?

Problem: How can we estimate $\frac{obj_{\Pi}(I,s)}{OPT}$ when it is hard to calculate OPT?

Ideas?

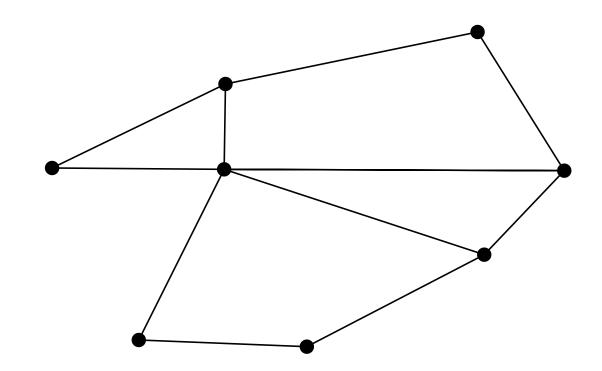
- Edge-Greedy
- Vertex-Greedy (see Exercises)
- Inclusion-wise minimal vertex cover

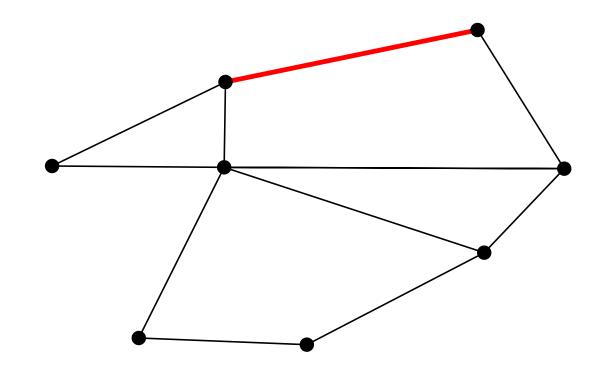
How can we measure the quality of a feasible solution?

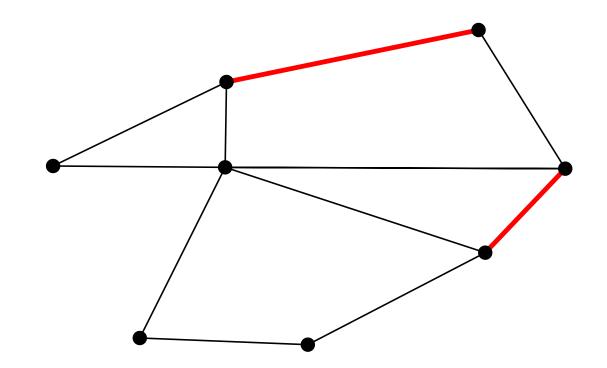
Problem: How can we estimate $\frac{obj_{\Pi}(I,s)}{OPT}$ when it is hard to calculate OPT?

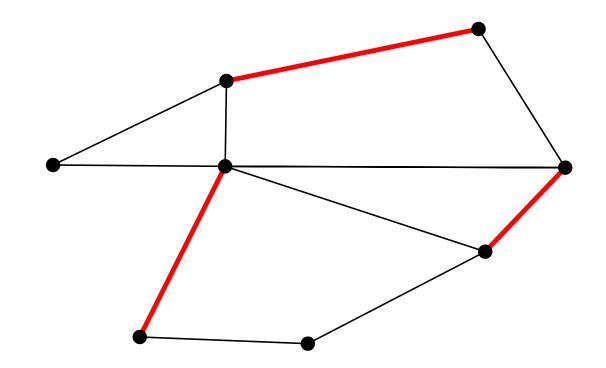
Idea: Find a "good" lower bound $L \leq OPT$ for OPT and compare it to our approximate solution.

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}} \leq \frac{\mathsf{obj}_{\Pi}(I,s)}{L}$$

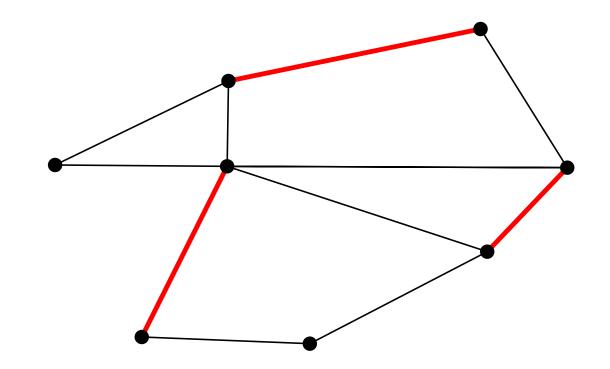




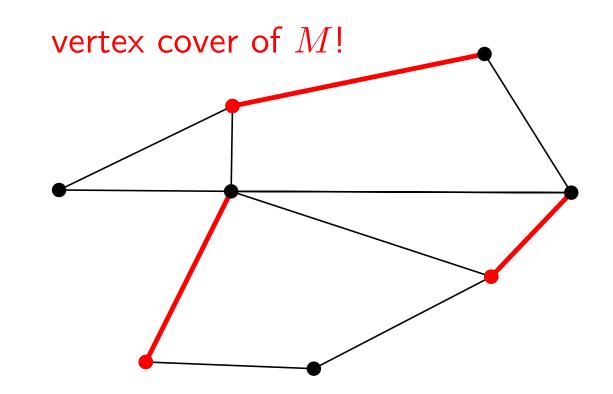




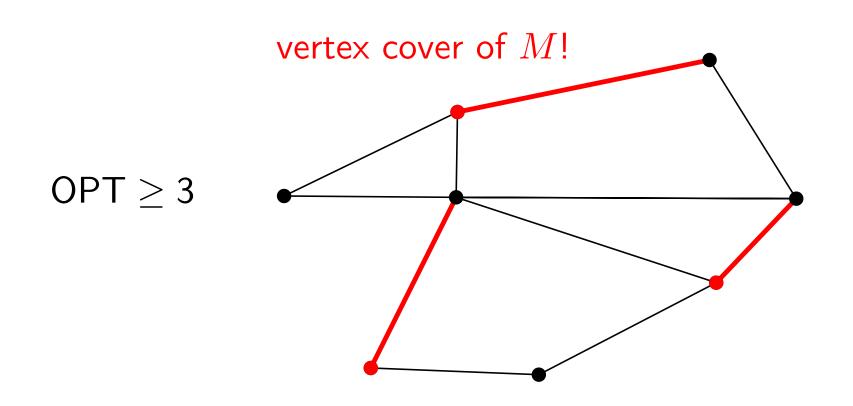
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** when no vertex of G is incident to two edges in M.



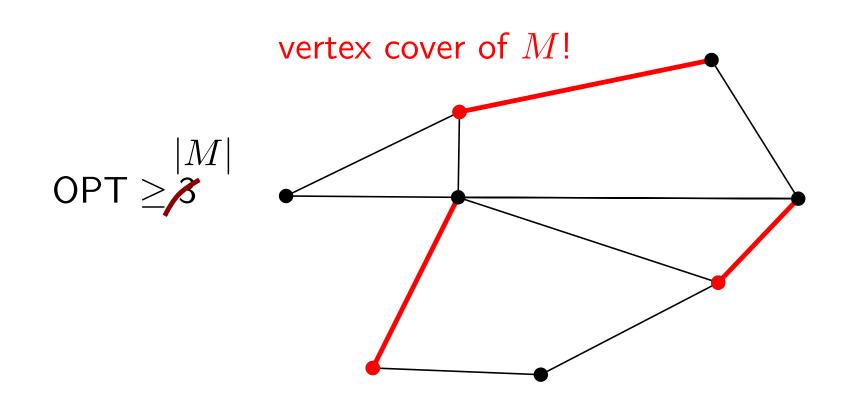
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** when no vertex of G is incident to two edges in M.



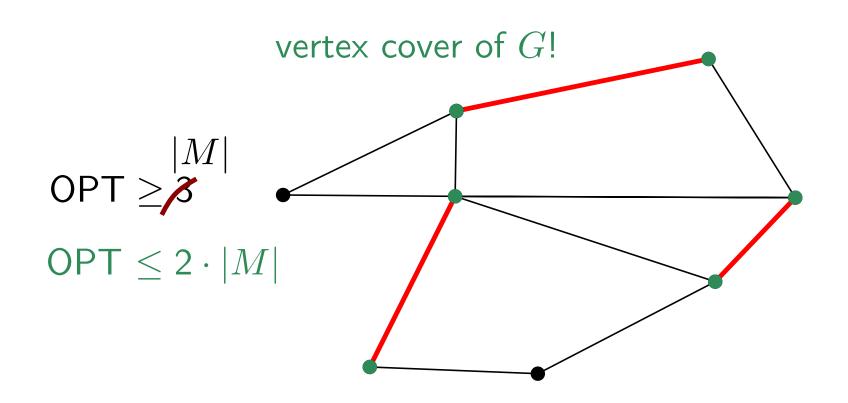
An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** when no vertex of G is incident to two edges in M.



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** when no vertex of G is incident to two edges in M.



An edge set $M \subseteq E$ of a graph G = (V, E) is a **matching** when no vertex of G is incident to two edges in M.



Algorithm for Vertex Cover (G) $M \leftarrow \emptyset$ foreach $e \in E(G)$ do \downarrow if e is not adjacent to an edge in M then $\downarrow M \leftarrow M \cup \{e\}$ return $\{u, v \mid uv \in M\}$

Algorithm for Vertex Cover (G) $M \leftarrow \emptyset$ foreach $e \in E(G)$ do \downarrow if e is not adjacent to an edge in M then $\downarrow M \leftarrow M \cup \{e\}$ return $\{u, v \mid uv \in M\}$

Thm 1.1 The above algorithm is a factor-2 approximation algorithm for $\rm VERTEX\ COVER$

Algorithm for Vertex Cover (G) $M \leftarrow \emptyset$ foreach $e \in E(G)$ do \downarrow if e is not adjacent to an edge in M then $\downarrow M \leftarrow M \cup \{e\}$ return $\{u, v \mid uv \in M\}$

Thm 1.1 The above algorithm is a factor-2 approximation algorithm for $\rm VERTEX\ COVER$

Next week: Set Cover