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Summary of the Last Lecture

Particle filters can be used for approximate filtering in
general probabilistic state-space models.
Particle filters use weighted set of samples (particles) for
approximating the filtering distributions.
Sequential importance resampling (SIR) is the general
framework and bootstrap filter is a simple special case of it.
EKF, UKF and other Gaussian filters can be used for
forming good importance distributions.
The optimal importance distribution is the minimum
variance importance distribution.
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Particle Filtering: General Idea

Given the general nonlinear, non-Gaussian state space
model

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk )

Particle filters approximate the filtering distribution using a
weighted set of particles {(w (i)

k ,x(i)
k ) : i = 1, . . . ,N} such

that

p(xk |y1:k ) ≈
N∑

i=1

w (i)
k δ(xk − x(i)

k ).
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Particle Filtering: Algorithm

Sequential Importance Resampling

Sample x(i)
k from the importance distribution:

x(i)
k ∼ π(xk | x

(i)
0:k−1,y1:k ), i = 1, . . . ,N.

Calculate the weights

w (i)
k ∝ w (i)

k−1

p(yk | x
(i)
k ) p(x(i)

k | x
(i)
k−1)

π(x(i)
k | x

(i)
0:k−1,y1:k )

, i = 1, . . . ,N,

and normalize them to sum to unity.
If the effective number of particles is too low, perform
resampling.
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Particle Filtering: Some Properties

The bootstrap filter uses the dynamic model as the
importance distribution

π(x(i)
k | x

(i)
0:k−1,y1:k ) = p(x(i)

k | x
(i)
k−1)

The optimal importance distribution is given by

π(x(i)
k | x

(i)
0:k−1,y1:k ) = p(x(i)

k | x
(i)
k−1,yk )

The unscented particle filter uses a Gaussian
approximation to the optimal importance distribution
Particle filters can handle any kind of model and provide a
global approximation and converge to the exact solution
Higher computational requirements than Kalman filters and
difficult to implement in practice for some models
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Particle Filtering: Problems

The particle filter requires a very high number of particles
to work reasonably well.
This is called to curse of dimensionality:

It is difficult to get the particles into the right place in
high-dimensional problems (cf. finding the needle in a
haystack)
The number of particles generally scales exponentially with
the state dimension

In Rao–Blackwellized particle filters we sample only as
small number of states as we need.
Kalman filters are used to integrate out the linear parts of
the state-space.
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Hierarchical Model

Definition of a hierarchical (RBPF) model

uk ∼ p(uk | uk−1)

xk = fk−1(uk ) + Ak−1(uk )xk−1 + qk−1

yk = hk (uk ) + Hk (uk )xk + rk

with qk−1 ∼ N(0,Qk−1(uk )) and rk ∼ N(0,Rk (uk ))

Transition densities:

p(uk | uk−1) = [arbitrary]
p(xk | xk−1,uk ) = N(xk | fk−1(uk ) + Ak−1(uk )xk−1,Qk−1(uk ))

Likelihood:

p(yk | xk ,uk ) = N(yk | hk (uk ) + Hk (uk )xk ,Rk (uk ))
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Fully Mixing Model

Definition of a fully mixing (RBPF) model[
uk
xk

]
=

[
gk−1(uk−1)
fk−1(uk−1)

]
+

[
Bk−1(uk−1)
Ak−1(uk−1)

]
xk−1 + qk−1

yk = hk (uk ) + Hk (uk )xk + rk

with qk−1 ∼ N(0,Qk−1(uk )) and rk ∼ N(0,Rk (uk ))

Transition density:

p(xk ,uk | xk−1,uk−1)

= N

([
uk
xk

] ∣∣∣∣ [gk−1(uk−1)
fk−1(uk−1)

]
+

[
Bk−1(uk−1)
Ak−1(uk−1)

]
xk−1,Qk−1(uk−1)

)
Likelihood:

p(yk | xk ,uk ) = N(yk | hk (uk ) + Hk (uk )xk ,Rk (uk ))
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Rao–Blackwellized Particle Filter: Idea

The posterior at step k can be factorized as

p(u0:k ,xk | y1:k ) = p(xk | u0:k ,y1:k )p(u0:k | y1:k )

Given u0:k , the first term has a closed form solution
(Gaussian) and can be computed using a Kalman filter
The second nonlinear/non-Gaussian term (marginal
filtering density) is targeted using SIR
This is the application of a variance reduction technique
called Rao–Blackwellization
This yields the posterior approximation

p(uk ,xk | y1:k ) ≈
N∑

i=1

w (i)
k N(xk | m

(i)
k ,P(i)

k )δ(uk − u(i)
k )
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Nonlinear States

For the marginal filtering density we get the recursion:

p(u0:k |y1:k ) ∝ p(yk |u0:k ,y1:k−1)p(u0:k |y1:k−1)

= p(yk |u0:k ,y1:k−1)︸ ︷︷ ︸
Marginal Likelihood

p(uk |u0:k−1,y1:k−1)︸ ︷︷ ︸
Marginal Dynamics

p(u0:k−1 |y1:k−1)︸ ︷︷ ︸
Posterior at k − 1

We can form the importance distribution recursively:

π(u0:k |y1:k ) = π(uk |u0:k−1,y1:k )π(u0:k−1 |y1:k−1)

We then get the following weight recursion:

w (i)
k ∝

p(yk | u
(i)
0:k ,y1:k−1)p(u

(i)
k | u

(i)
0:k−1,y1:k−1)

π(u(i)
k | u

(i)
0:k−1,y1:k )

w (i)
k−1
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Linear States

Assume that at time k − 1 we have that

p(xk−1 | u0:k−1,y1:k ) = N(xk−1 | mk−1,Pk−1)

At time k , the posterior for xk can be factorized as

p(xk | u0:k ,y1:k ) ∝ p(yk | xk ,u0:k ,y1:k−1)p(xk | u0:k ,y1:k−1)

= p(yk | xk ,uk )︸ ︷︷ ︸
Likelihood

p(xk | u0:k ,y1:k−1)︸ ︷︷ ︸
Prediction
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Hierarchical Model: Prediction step [1/3]

Objective: Find p(xk | u0:k ,y1:k−1), the predictive density of
the linear states xk
Dynamic model:

uk ∼ p(uk | uk−1)

p(xk | xk−1,uk ) = N(xk | fk−1(uk ) + Ak−1(uk )xk−1,Qk−1(uk ))

Prediction of linear states:

p(xk | u0:k ,y1:k−1) =

∫
p(xk ,xk−1 | u0:k ,y1:k−1)dxk−1

∝
∫

p(xk ,uk | xk−1,u0:k−1,y1:k−1)p(xk−1 | u0:k−1,y1:k−1)dxk−1

=

∫
p(xk | xk−1,uk )p(uk | uk−1)p(xk−1 | u0:k−1,y1:k−1)dxk−1

∝
∫

p(xk | xk−1,uk )p(xk−1 | u0:k−1,y1:k−1)dxk−1
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Hierarchical Model: Prediction step [2/3]

Prediction of the linear states xk :

p(xk | u0:k ,y1:k−1)

∝
∫

p(xk | xk−1,uk )p(xk−1 | u0:k−1,y1:k−1)dxk−1

= N(xk | m−
k ,P

−
k )

where

m−
k = fk−1(uk ) + Ak−1(uk )mk−1,

P−
k = Ak−1(uk )Pk−1Ak−1(uk )

T + Qk−1(uk )
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Hierarchical Model: Prediction step [3/3]

RBPF Prediction step: Hierarchical Model

For each particle u(i)
k (i = 1, . . . ,N):

Sample u(i)
k

u(i)
k ∼ π(uk | u

(i)
0:k−1,y1:k ).

Predict the means m−(i)
k and covariances P−(i)

k

m−(i)
k = fk−1(u

(i)
k ) + Ak−1(u

(i)
k )m(i)

k−1,

P−(i)
k = Ak−1(u

(i)
k )P(i)

k−1Ak−1(u
(i)
k )T + Qk−1(u

(i)
k )
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Mixing Model: Prediction step [1/3]

Objective: Find p(xk | u0:k ,y1:k−1)

Dynamic model:

p(xk ,uk | xk−1,uk−1)

= N

([
uk
xk

] ∣∣∣∣ [gk−1(uk−1)
fk−1(uk−1)

]
+

[
Bk−1(uk−1)
Ak−1(uk−1)

]
xk−1,Qk−1(uk−1)

)
First note that:

p(xk ,uk | u0:k−1,y1:k−1)

=

∫
p(xk ,uk ,xk−1 | u0:k−1,y1:k−1)dxk−1

=

∫
p(xk ,uk | xk−1,uk−1)p(xk−1 | u0:k−1,y1:k−1)dxk−1

= N

([
uk
xk

] ∣∣∣∣ [gf
]
+

[
B
A

]
mk−1,

[
B
A

]
Pk−1

[
B
A

]T

+

[
Qu Qux

Qxu Qx

])
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Mixing Model: Prediction step [2/3]

Conditioning on uk yields the prediction of the linear states

p(xk | u0:k ,y1:k−1) = N(xk | m−
k ,P

−
k )

with

Mk = Bk−1(uk−1)Pk−1Bk−1(uk−1)
T + Qu

k−1(uk−1)

Lk =
(

Ak−1(uk−1)Pk−1Bk−1(uk−1)
T + Qxu

k−1(uk−1)
)

M−1
k

m−
k = fk−1(uk−1) + Ak−1(uk−1)mk−1

+ Lk (uk − gk−1(uk−1)− Bk−1(uk−1)mk−1)

P−
k = Ak−1(uk−1)Pk−1Ak−1(uk−1)

T + Qx
k−1(uk−1)− LkMkLT

k

This can be seen as a measurement update for the linear
states using the nonlinear states
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Mixing Model: Prediction step [3/3]

RBPF Prediction step: Mixing Model

For each particle u(i)
k (i = 1, . . . ,N):

Sample u(i)
k :

u(i)
k ∼ π(uk | u

(i)
0:k−1,y1:k ).

Predict the means m−(i)
k and covariances P−(i)

k :

M(i)
k = B(i)

k−1P(i)
k−1(B

(i)
k−1)

T + Qu(i)
k−1

L(i)
k =

(
A(i)

k−1P(i)
k−1(B

(i)
k−1)

T + Qxu(i)
k−1

)
(M(i)

k )−1

m−(i)
k = f(i)k−1 + A(i)

k−1m(i)
k−1 + L(i)

k

(
u(i)

k − g(i)
k−1 − B(i)

k−1m(i)
k−1

)
P−(i)

k = A(i)
k−1P(i)

k−1(A
(i)
k−1)

T + Qx(i)
k−1 − L(i)

k M(i)
k (L(i)

k )T
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Measurement Update [1/2]

Likelihood model (both models):

p(yk | xk ,uk ) = N(yk | hk (uk ) + Hk (uk )xk ,Rk (uk ))

Measurement update for the linear states xk :

p(xk | u0:k ,y1:k ) ∝ p(yk | xk ,uk )p(xk | u0:k ,y1:k−1)

= N(yk | hk (uk ) + Hk (uk )xk ,Rk (uk )) N(xk | m−
k ,P

−
k )

∝ N(xk | mk ,Pk )

where

y−
k = hk (uk ) + Hk (uk )m−

k ,

Sk = Hk (uk )P−
k Hk (uk )

T + Rk (uk ),

Kk = P−
k Hk (uk )

T S−1
k ,

mk = m−
k + Kk (yk − y−

k ),

Pk = P−
k − KkSkKT

k
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Measurement Update [2/2]

RBPF Measurement Update

For each particle u(i)
k (i = 1, . . . ,N):

Update the means m(i)
k and covariances P(i)

k :

y−(i)
k = h(i)

k + H(i)
k m−(i)

k ,

S(i)
k = H(i)

k P−(i)
k (H(i)

k )T + R(i)
k ,

K(i)
k = P−(i)

k (H(i)
k )T (S(i)

k )−1,

m(i)
k = m−(i)

k + K(i)
k (yk − y−(i)

k ),

P(i)
k = P−(i)

k − K(i)
k S(i)

k (K(i)
k )T
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Importance Weights: Marginal Dynamics

Recall that:

w (i)
k ∝

p(yk | u
(i)
0:k ,y1:k−1)p(u

(i)
k | u

(i)
0:k−1,y1:k−1)

π(u(i)
k | u

(i)
0:k−1,y1:k )

w (i)
k−1

Objective: Find p(uk | u0:k−1,y1:k−1) (marginal dynamics)
and the p(yk | u0:k ,y1:k−1) (marginal likelihood)
Hierarchical model: Given uk−1, the marginal dynamics
are independent of u0:k−2 and y1:k−1 (independent of
xk−1), hence

p(uk | u0:k−1,y1:k−1) = p(uk | uk−1)

Mixing model: Marginalizing p(xk ,uk | u0:k−1,y1:k−1) (see
above) with respect to xk yields

p(uk | u0:k−1,y1:k−1) = N(uk | g + Bmk−1,BPk−1BT + Qu)
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Importance Weights: Marginal Likelihood

For both models, the likelihood is

p(yk | xk ,uk ) = N(yk | hk (uk ) + Hk (uk )xk ,Rk (uk ))

Marginal likelihood

p(yk | u0:k ,y1:k−1)

=

∫
p(yk | xk ,uk )p(xk | u0:k ,y1:k−1)dxk

=

∫
N(yk | hk (uk ) + Hk (uk )xk ,Rk (uk )) N(xk | m−

k ,P
−
k )dxk

= N(yk | y−
k ,Sk )

with y−
k and Sk as in the measurement update
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Rao–Blackwellized Particle Filter: Algorithm

Rao–Blackwellized Particle Filter

For each particle u(i)
k (i = 1, . . . ,N):

Sample u(i)
k :

u(i)
k ∼ π(uk | u

(i)
0:k−1,y1:k ).

Predict the means m−(i)
k and covariances P−(i)

k

Update the means m(i)
k and covariances P(i)

k

Calculate and normalize the weights w (i)
k

w (i)
k ∝ w (i)

k−1

p(yk | u
(i)
0:k ,y1:k−1)p(u

(i)
k | u

(i)
0:k−1,y1:k−1)

π(u(i)
k | u

(i)
0:k−1,y1:k )

If the effective number of particles is too low, resample.
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Rao–Blackwellized Particle Filter: Properties [1/2]

The optimal importance distribution is given by

p(uk | y1:k ,u
(i)
0:k−1) ∝ p(yk | uk ,u

(i)
0:k−1)p(uk | u

(i)
0:k−1,y1:k−1)

The Rao–Blackwellized Bootstrap Particle Filter samples
from the marginal dynamics, that is, from

π(uk | u0:k−1,y1:k ) = p(uk | u0:k−1,y1:k−1)

During resampling, the means m(i)
k and covariances P(i)

k
must be resampled too
Special cases of the models may simplify the updates for
the linear states xk (e.g. only one covariance matrix Pk for
all particles)
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Rao–Blackwellized Particle Filter: Properties [2/2]

The Rao–Blackwellized particle filter produces a set of
weighted samples {w (i)

k ,u(i)
k ,m(i)

k ,P(i)
k : i = 1, . . . ,N}

The expectation of a function g(·) can be approximated as

E[g(xk ,uk ) |y1:k ] ≈
N∑

i=1

w (i)
k

∫
g(xk ,u

(i)
k ) N(xk |m

(i)
k ,P(i)

k ) dxk .

Approximation of the filtering distribution is

p(xk ,uk |y1:k ) ≈
N∑

i=1

w (i)
k δ(uk − u(i)

k ) N(xk |m
(i)
k ,P(i)

k ).
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Summary

Rao–Blackwellization is a variance reduction technique
that can be used to handle analytically tractable
substructures
In Rao–Blackwellized particle filters a part of the state is
sampled and part is integrated in closed form with Kalman
filter
Rao–Blackwellized particle filters use a Gaussian mixture
for approximating the filtering distributions
Rao–Blackwellization may significantly reduce the number
of particles required in a particle filter
It is possible to do approximate Rao–Blackwellization by
replacing the Kalman filter with a Gaussian filter
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