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Summary of the Last Lecture

@ Particle filters can be used for approximate filtering in
general probabilistic state-space models.

@ Particle filters use weighted set of samples (particles) for
approximating the filtering distributions.

@ Sequential importance resampling (SIR) is the general
framework and bootstrap filter is a simple special case of it.

@ EKF, UKF and other Gaussian filters can be used for
forming good importance distributions.

@ The optimal importance distribution is the minimum
variance importance distribution.
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Particle Filtering: General Idea

@ Given the general nonlinear, non-Gaussian state space
model

Xk ~ P(Xk | Xk—1)
Yk ~ P(Yk | Xk)

@ Particle filters approximate the filtering distribution using a
weighted set of particles {(Wk), (’)) . i=1,...,N} such

that
N

Pk |Y16) = > w5(xy — x).

i=1
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Particle Filtering: Algorithm
Sequential Importance Resampling

@ Sample xf(i) from the importance distribution:

xf(l) (xk’x0k 17y1k) i=1,....N.

@ Calculate the weights

(1)
i i X X X
Wl((l) X Wl£121 p(yk | 6) ) p( & ’ )
( ’ Xok 1ay k)

and normalize them to sum to unity.

@ If the effective number of particles is too low, perform
resampling.
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Particle Filtering: Some Properties

@ The bootstrap filter uses the dynamic model as the
importance distribution

(Xk ’ x0k 1> Y1 k) (Xg) ‘ XS(’)_1

@ The optimal importance distribution is given by

() [ xS 1 ¥ak) = O | X 1, y)
@ The unscented particle filter uses a Gaussian
approximation to the optimal importance distribution

@ Particle filters can handle any kind of model and provide a
global approximation and converge to the exact solution

@ Higher computational requirements than Kalman filters and
difficult to implement in practice for some models
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Particle Filtering: Problems

@ The particle filter requires a very high number of particles
to work reasonably well.
@ This is called to curse of dimensionality:

o It is difficult to get the particles into the right place in
high-dimensional problems (cf. finding the needle in a
haystack)

e The number of particles generally scales exponentially with
the state dimension

@ In Rao—Blackwellized particle filters we sample only as
small number of states as we need.

@ Kalman filters are used to integrate out the linear parts of
the state-space.
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Hierarchical Model

@ Definition of a hierarchical (RBPF) model

Uk ~ p(uk | Ux—1)
Xk = fr_q(Ug) + Ag_1(Ug)Xk—1 + Ok_1
Vi = h(uk) + Hy(ug )Xk + rg

with qx—1 ~ N(0, Q_1(ux)) and rx ~ N(0, R (ux))
@ Transition densities:

p(ux | ux_1) = [arbitrary]
P(Xk | Xk—1,Uk) = N(Xg | Fx_1(Ux) + Ax—1(Uk)Xk—1, Qk—1(Ux))

@ Likelihood:

P(Yk | Xk, Uk) = N(Yi | hie(uk) + Hi(uk)Xk, Rie(ux))
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Fully Mixing Model

@ Definition of a fully mixing (RBPF) model

] = [oecr) | (Bt

Yk = hi(uk) + He(ug)xx + rg
with qx_1 ~ N(0,Qx_1(uk)) and rx ~ N(O, Rx(uk))
@ Transition density:

P(Xk, Uk | Xk—1,Uk_1)

([t E R ERIC R
@ Likelihood:

P(Yk | Xk, Uk) = N(Yk | he(uk) + He(ug)Xk, Re(uk))
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Rao—Blackwellized Particle Filter: Idea

@ The posterior at step k can be factorized as

P(Uo.k, Xk | Y1:k) = P(Xk | Yok, Y1:k)P(Uo:k | Y1:k)

@ Given ug.«, the first term has a closed form solution
(Gaussian) and can be computed using a Kalman filter

@ The second nonlinear/non-Gaussian term (marginal
filtering density) is targeted using SIR

@ This is the application of a variance reduction technique
called Rao—Blackwellization

@ This yields the posterior approximation

N

P(uk, Xk [ Y1ik) = > W Nxi | m), PY)3(uk — u)
i=1
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Nonlinear States

@ For the marginal filtering density we get the recursion:

P(Uok | Y1:k) < P(Yk | Yok, Y1:k—1)P(Uok | V1:k—1)
= P(Yk | Uo:k; Y1:k—1) P(Uk | Uo:k—1, Y1:k—1) P(Uo:k—1 | V1:k—1)

Marginal Likelihood Marginal Dynamics Posterior at kK — 1

@ We can form the importance distribution recursively:
7(Uo:k | Y1:k) = 7(Uk [Uok—1, Y1:k) T(Uok—1 | Y1:k-1)
@ We then get the following weight recursion:

() . Pk ulk yik-1)p(uy | ug){)l<—1’y1ik*1)w(i)

; - k-1
W(UEJ) \ ug:)k_pw;k)
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Linear States

@ Assume that at time kK — 1 we have that

P(Xk—1 | Uok—1,Y1:k) = N(Xk—1 [ Mg_1,Px_1)
@ Attime k, the posterior for x, can be factorized as
P(Xk | Uo:k, Y1:k) o< P(Yk | Xk, Uo:k, Y1:k—1)P(Xk | Uo:k: Y1:k—1)

= P(Yk | Xk, Uk) p(Xk | Yok, Y1:k-1)
Likelihood Prediction
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Hierarchical Model: Prediction step [1/3]

@ Objective: Find p(xx | Uo.x, Y1:k—1), the predictive density of
the linear states x4
@ Dynamic model:

Uy ~ p(uk | Uk_1)
P(Xk | Xk—1,Ux) = N(Xg | fx—1(Uk) + Ak—1(Uk)Xk—1, Qx—1(Ux))

@ Prediction of linear states:

P(Xk | Ug:k, Y1:k—1) = /P(Xk,xkq | Uo.k; Y1:k—1)dXk_1
o< /P(Xk,uk | Xk—1,U0:k—1, Y1:k—1)P(Xk—1 | Uo:k—1, Y1:k—1)dXk_1
= /P(Xk | Xk—1,Uk)P(Ux | Ux—1)P(Xk—1 | Uo:k—1, Y1:k—1)dXk_1

o< /P(Xk | Xk—1, Uk)P(Xk—1 | Uo:k—1, Y1:k—1)dXk_1
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Hierarchical Model: Prediction step [2/3]

@ Prediction of the linear states x:

P(Xk | Uo:k, Y1:k—1)
o /P(Xk | Xk—1, Uk )P(Xk—1 | Uo:k—1, Y1:k—1)dXk—1
= N(xx | m,P,)
where

m, = fi_1(uxk) + Ax—1(Ux)Mgk_1,
P = Ak 1(uk)Pr 1Ak _1(uk)T + Qi1 (uy)
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Hierarchical Model: Prediction step [3/3]

RBPF Prediction step: Hierarchical Model

For each particle u(’) (i=1,...,N):

@ Sample ug()

uﬁ’)w( Jul) i)

@ Predict the means m,: and covariances P;(i)
m, O =f_1(ul’) + A (u (i))mg)w
P, = A1 (u)PY A1 ()T + Qy_q (ul)
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Mixing Model: Prediction step [1/3]

@ Objective: Find p(Xk | Ug.k, Y1:k—1)
@ Dynamic model:

P(Xk, Uk | Xx—1,Ux_1)

_N <[:ﬂ [gk—1(uk—1)} n |:Bk—1(uk—1)] xk1,Qk1(Uk1)>

fr1(Uk—1) Ak _1(uk_1)
@ First note that:

P(Xk, Uk | Uo:k—1,Y1:k—1)

= /p(xkaukaxk—1 | Uo:k—1, Y1:k—1)dXk_1

= /P(Xk,uk | Xk—1,Uk—1)P(Xk—1 | Uo:k—1, Y1:k—1)dXk_1

o () ) e B 37 25 )
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Mixing Model: Prediction step [2/3]

@ Conditioning on uy yields the prediction of the linear states
P(Xk | Uo.k, Y1:k—1) = N(Xx [ m, . P,)
with
My = By 1(Uk—1)Pk_1Br_1(ux_1)" + Qlf_; (uk_1)
L = (Akq (Uk—1)Pr_1Br_1(ue—1)" + QF¥ (Uk71)) M,
m, = fr_q(Uk—1) + Ak—1(Ug—1)Mg_q

+ Lk (Ux — Ok—1(Uk—1) — Bg_1(Ug_1)Mg_4)
P = Ak 1(Uk_1)Pr_1Ak_1(uk_1)" + QF_;(ux_1) — LML}

@ This can be seen as a measurement update for the linear
states using the nonlinear states
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Mixing Model: Prediction step [3/3]

RBPF Prediction step: Mixing Model

For each particle uf(’) (i=1,...,N):
@ Sample uf(’):
u) ~ w(uk [ UGk Yk,
@ Predict the means m;(i) and covariances P;(i):
M(i) _ B(i) Pg(i) 1(B(i) )T + Qu(i)
L = (AL, P, (BT + Q")) (M)~
m 0 =42, + AL m2. 4 L (o) - of?, ~ B m))
P = A P (AT + QL - LOMP)T
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Measurement Update [1/2]

@ Likelihood model (both models):
P(Yk | Xic; Uk) = N(Yi | hi(uk) + Hi(u)xi, Ric(uk))
@ Measurement update for the linear states xy:
P(Xk | Uo:k: Y1:k) < P(Yk | Xk, U )P(Xk | Uo:ks Y1:k—1)

= N(yk | hx(uk) + Hk(uk)Xk, Re(uk)) N(xx | m, ,P,)
X N(Xk ‘ mk,Pk)

where
Vi = he(uk) + He(ug)mg,
Sk = Hi(ux)P Hy(uk)” + R (ug),
Kk = P Hi(uk) ™S, ",
my = m, + Kk(Yx — Y ),
Py = P, — K«SkK/

Simo Sarkka Lecture 7: Rao-Blackwellized Particle Filtering



Measurement Update [2/2]

For each particle uf(’) (i=1,...,N):

@ Update the means mf(i) and covariances Pf(’):

v = h) ¢ Hm O,
s = HP, M) + R,
K = PLOHD)T(S) .
m{) = m D+ KO(y, — y ),
PV =P~ KS(KY)T
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Importance Weights: Marginal Dynamics

@ Recall that:
P(Yk | ug’;)k,wqu)p(uy \ Ug;)k_pyhkq)w(;)
- - k=1
(U | Yoy Vi)
@ Objective: Find p(uk | Ug.k—1,Y1:k—1) (marginal dynamics)
and the p(yx | Uo., Y1:k—1) (marginal likelihood)
@ Hierarchical model: Given ug_4, the marginal dynamics

are independent of ug.x_» and yi.4_1 (independent of
Xx_1), hence

W o

P(Uk | Uo:k—1,Y1:k—1) = P(Uk | Ugk_1)

@ Mixing model: Marginalizing p(Xx, Uk | Ug:k—1,Y1:k—1) (S€e
above) with respect to xy yields

p(uk | Uok—1,Y1:k—1) = N(ux | g + Bmy_1,BP,_1B" + Q")
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Importance Weights: Marginal Likelihood

@ For both models, the likelihood is
P(Yk | Xk, uk) = N(Yk | hx(uk) + Hi(ux)xk, Ric(uk))
@ Marginal likelihood
P(Yk | Yok Y1:k-1)
= /P(Vk | Xk, Uk)P(Xk | Uo:ks Y1:k—1)dXk
= /N(Vk | hi(ug) + Hy(ug) Xk, Re(ug)) N(Xx | my, Py )dx
= N(Y« | Vi Sk)

with y,- and Sy as in the measurement update
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Rao—Blackwellized Particle Filter: Algorithm
Rao—Blackwellized Particle Filter

For each particle uf(’) (i=1,...,N):

@ Sample uf(’):
U ~ (U | UGy V).

@ Predict the means m;(i) and covariances P;(i)
@ Update the means mf(i) and covariances Pf(i)

@ Calculate and normalize the weights w,ﬂi)

0 iy P(Yk | Ug;)k,Y1:k—1)P(U§<’) | Ug;)k,p)’tkq)
Wi o Wi NG
(U’ | Uy 1, Y1:k)

@ If the effective number of particles is too low, resample.
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Rao—Blackwellized Particle Filter: Properties [1/2]

@ The optimal importance distribution is given by

p(u | y1:k,ug:)k_1) o< p(Yk | Uk, Ug;)k_1)P(Uk | Ug;)k_pyhkq)
@ The Rao—-Blackwellized Bootstrap Particle Filter samples
from the marginal dynamics, that is, from

m(Uk | Uo:k—1,Y1:k) = P(Uk | Uo:k—1,Y1:k-1)

@ During resampling, the means mg) and covariances Pg)
must be resampled too

@ Special cases of the models may simplify the updates for
the linear states x, (e.g. only one covariance matrix Py for
all particles)
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Rao—Blackwellized Particle Filter: Properties [2/2]

@ The Rao—BIackweIIized particle filter produces a set of
weighted samples {w",ul). m{) P . j—1 . N}
@ The expectation of a function g(-) can be approximated as

N
Elgxe,u) [yl ~ >l [ g, u?) Noxi | m?. P) ax
i=

@ Approximation of the filtering distribution is

p(xkvuk|y1k ZWK k_u )) N(xk’mg(’)7pg(’))
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Rao—Blackwellization is a variance reduction technique
that can be used to handle analytically tractable
substructures

In Rao—Blackwellized particle filters a part of the state is
sampled and part is integrated in closed form with Kalman
filter

Rao—Blackwellized particle filters use a Gaussian mixture
for approximating the filtering distributions
Rao—Blackwellization may significantly reduce the number
of particles required in a particle filter

It is possible to do approximate Rao—Blackwellization by
replacing the Kalman filter with a Gaussian filter
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