

Decision making and problem solving – Lecture 7

- From EUT to MAUT
- Axioms for preference relations
- Assessing attribute-specific utility functions and attribute weights
- Decision recommendations
- MAVT vs. MAUT

Liesiö, Punkka, Salo, Vilkkumaa

Motivation

Multiattribute <u>value</u> theory helps generate decision recommendations, when

- Alternatives are evaluated w.r.t. multiple attributes
- Alternatives' attribute-specific values are certain

□ What if the attribute-specific performances are *uncertain*?

- Planning a supply chain: minimize cost, minimize supply shortage, minimize storage costs
- Building an investment portfolio: maximize return, minimize risk

→ Multiattribute <u>utility</u> theory

From EUT to MAUT

EUT

- \Box Set of possible outcomes *T*:
 - E.g., revenue $T = \mathbb{R}$ euros, demand $T = \mathbb{N}$
- □ Set of all possible lotteries *L*:
 - A lottery $f \in L$ associates a probability $f(t) \in [0,1]$ with each possible outcome $t \in T$
- Deterministic outcomes are modeled as degenerate lotteries

Degenerate lottery

Probability distribution function

 $\frac{1}{1} \mathbf{1} \mathbf{M} \in f(t) = \begin{cases} 1, t = 1 \mathbf{M} \in \\ 0, elsewhere \end{cases}$

Aalto University School of Science

From EUT to MAUT

MAUT

Multidimensional set of outcomes X:

$$X = X_1 \times \cdots \times X_n$$

- E.g., X_1 = revenue (€), X_2 = market share
- □ Set of all possible lotteries *L*:
 - A lottery $f \in L$ associates a probability $f(t) \in [0,1]$ with each possible outcome $x = (x_1, ..., x_n) \in X$
- Deterministic outcomes are modelled as degenerate lotteries

Lottery

Degenerate lottery

Aggregation of utilities

Problem: How to measure the overall utility of alternative $x = (x_1, x_2, ..., x_n)$?

$$U(x_1, x_2, \dots x_n) = ?$$

Question: Could the overall utility be obtained by a weighted sum of the attribute-specific utilities?

$$U(x_{1}, x_{2}, \dots, x_{n}) = \sum_{i=1}^{n} w_{i} u_{i}(x_{i})?$$

□ Answer: Yes, if the attributes are

- Mutually preferentially independent and
- Additive independent (new)

Preferential independence (old)

- □ Definition: Attribute X is preferentially independent (PI) of the other attributes Y, if the preference order of degenerate lotteries that differ only in X does not depend on the levels of attributes Y $(x, y) \ge (x', y) \Rightarrow (x, y') \ge (x', y')$ for all $y' \in Y$
- Interpretation: Preference over the <u>certain</u> level of attribute X does not depend on the <u>certain</u> levels of the other attributes, as long as they stay the same

Same as in MAVT

Mutual preferential independence (old)

- □ Definition: Attributes A are mutually perferentially independent (MPI), if any subset X of attributes A is preferentially independent of the other attributes $Y = A \setminus X$. I.e., for any degenerate lotteries: $(x, y') \ge (x', y') \Rightarrow (x, y) \ge (x', y)$ for all $y \in Y$.
- Interpretation: Preference over the <u>certain</u> levels of attributes X does not depend on the <u>certain</u> levels of the other attributes, as long as they stay the same

Same as in MAVT

Additive independence (new)

□ Definition: Subset of attributes $X \subset A$ is additive independent (AI), if the DM is indifferent between lotteries I and II for any $(x, y), (x', y') \in A$

D Example:

- Profit is AI if the DM is indifferent between I and II
- However, she might prefer II, because it does not include an outcome where all attributes have very poor values. In this case profit is not AI.

Additive independence (new)

Example:

- A tourist is planning a downhill skiing weekend trip to the mountains
- 2 attributes: sunshine ({sunny, cloudy}) and snow conditions ({good, poor})
- Additive independence holds, if she is indifferent between I and II
 - In both, there is a 50 % probability of getting sunshine
 - In both, there is a 50 % probability of having good snow conditions
 - If the DM values sunshine and snow conditions independently of each other, then I and II can be equally preferred

Additive multiattribute utility function

□ Theorem: The attributes are mutually preferentially independent and single attributes are additive independent iff preference relation ≽ is represented by an additive multi-attribute utility function

$$U(x) = \sum_{i=1}^{n} w_i u_i^N(x_i)$$

where $u_i^N(x_i^0) = 0$, $u_i^N(x_i^*) = 1$, and $\sum_{i=1}^n w_i = 1$, $w_i \ge 0$.

What if the MPI & AI do not hold?

□ Definition: Attribute $X \in A$ is utility independent (UI) if the preference order between lotteries that have equal <u>certain</u> outcomes on attributes $Y=A\setminus X$ does not depend on the level of these outcomes, i.e.,

 $(\tilde{x}, y) \geq (\tilde{x}', y) \Rightarrow (\tilde{x}, y') \geq (\tilde{x}', y') \forall y'$

Mutual utility independence

□ Definition: Attributes *A* are mutually utility independent (MPI), if every subset $X \subset A$ is the utility independent of the other attributes $Y = A \setminus X$ i.e., $(\tilde{x}, y) \ge (\tilde{x}', y) \Rightarrow (\tilde{x}, y') \ge (\tilde{x}', y') \forall y'$

Other multi-attribute utility functions

□ If attributes are **mutually utility independent**, then preferences are represented by a multiplicative utility function:

$$U(x) = \frac{\prod_{i=1}^{n} [1 + kw_i u_i(x_i)]}{k} - \frac{1}{k}$$

□ If each single attribute is **utility independent**, then preferences are represented by a so-called multilinear utility function

□ AI is the strongest of the three preference assumptions

- Let $X \subset A$. Then, X is $AI \Rightarrow X$ is $UI \Rightarrow X$ is PI

Assessing attribute-specific utility functions

□ Use the same techniques as with a unidimensional utility function

- Certainty equivalent, probability equivalent, etc. & scale such that $u_i^N(x_i^0) = 0$, $u_i^N(x_i^*) = 1$.
- Also direct rating often applied in practice

□ What about the other attributes?

- Fix them at the same level in every outcome
- Do not matter! → Usually not even explicitly shown to the DM

$$U(x_{1}, 4) = 0.5U(50, 4) + 0.5U(-10, 4)$$

$$\Leftrightarrow w_{1}u_{1}(x_{1}) + w_{2}u_{2}(4) = 0.5w_{1}u_{1}(50) + 0.5w_{2}u_{2}(4) + 0.5w_{1}u_{1}(-10) + 0.5w_{2}u_{2}(4)$$

$$\Leftrightarrow w_{1}u_{1}(x_{1}) = 0.5w_{1}u_{1}(50) + 0.5w_{1}u_{1}(-10)$$

$$\Leftrightarrow u_{1}(x_{1}) = 0.5u_{1}(50) + 0.5u_{1}(-10)$$

□ Three attributes: cost, delay, quality

i	Name	X i	x_i^0	x_i^*
1	Cost	[10,40] k€	40	10
2	Delay	{1,2,,30} days	30	1
3	Quality	{fair, good, excellent}	fair	excellent

- Assessment of the attribute-specific utility functions
 - Quality: Direct assessment
 - o $u_3(fair)=0, u_3(good)=0.4, u_3(excellent)=1$
 - Cost: Linear decreasing utility function

$$\circ \quad u_1(x_1) = \frac{40 - x_1}{30}$$

Delay: Assessment with certainty equivalent (CE) approach

i	Name	X i	x_i^0	x_i^*
1	Cost	[10,40] k€	40	10
2	Delay	{1,2,,30} days	30	1
3	Quality	{fair, good, exc.}	fair	exc.

<i>x</i> ₂	$u_2(x_2)$	<i>x</i> ₂	$u_2(x_2)$	
1	1	16	0.7143	
2	0.9861	17	0.6786	
3	0.9722	18	0.6429	
4	0.9583	19	0.6071	
5	0.9444	20	0.5714	
6	0.9306	21	0.5357	
7	0.9167	22	0.5	
8	0.9028	23	0.4375	
9	0.8889	24	0.375	
10	0.875	25	0.3125	
11	0.85	26	0.25	
12	0.825	27	0.1875	
13	0.8	28	0.125	
14	0.775	29	0.0625	
15	0.75	30	0	

Assessing attribute weights

- Attribute weights are elicited by constructing two equally preferred degenerate lotteries
 - E.g., ask the DM to establish a preference order for n hypothetical alternatives specified so that $(x_1^0, \dots, x_i^*, \dots, x_n^0)$, $i = 1, \dots, n$.
 - Assume that $(x_1^*, x_2^0, ..., x_n^0) \ge (x_1^0, x_2^*, ..., x_n^0) \ge \cdots \ge (x_1^0, x_2^0, ..., x_n^*)$
 - Then, for each i=1,...,n-1 ask the DM to define $x_i \in X_i$ such that $(\dots x_i, x_{i+1}^0, \dots) \sim (\dots x_i^0, x_{i+1}^*, \dots)$ $\Rightarrow U(\dots x_i, x_{i+1}^0, \dots) = U(\dots x_i^0, x_{i+1}^*, \dots)$ $\Rightarrow w_i u_i(x_i) = w_{i+1}$
 - n-1 such comparisons + 1 normalization constraint ⇒ unique set of weights

□ Assessment of the attribute weights

- Assume preferences (40k€, 1 day, fair) \geq (10k€, 30 days, fair) \geq (40k€, 30 days, exc.)
- Choose delay $x_2 \in \{1, ..., 30\}$ such that $(40, x_2, x_3) \sim (10, 30, x_3)$
- Answer $x_2 = 8$ gives

$$w_1u_1(40) + w_2u_2(8) + w_3u_3(x_3) = w_1u_1(10) + w_2u_2(30) + w_3u_3(x_3)$$
$$w_2u_2(8) = w_1$$
$$\Leftrightarrow w_2 \cdot 0.9028 = w_1$$

- Choose cost $x_1 \in [10,40]$ such that $(x_1, x_2, fair) \sim (40, x_2, excellent)$

- Answer
$$x_1 = 20$$
 gives
 $w_1u_1(20) + w_2u_2(x_2) + w_3u_3(\text{fair}) = w_1u_1(40) + w_2u_2(x_2) + w_3u_3(\text{excellent})$
 $w_1u_1(20) = w_3$
 $\Leftrightarrow w_1 \cdot \frac{2}{3} = w_3$
- Attribute weights: $w \approx \left(\frac{9}{25}, \frac{10}{25}, \frac{6}{25}\right)$

MAUT: Decision recommendations

- □ Consider *m* decision alternatives $x^j = (x_1^j, ..., x_n^j)$, j = 1, ..., m, where x^j is a random variable with PDF $f_{x^j}(x)$
- □ Alternatives are ranked by their expected (multiattribute) utilities

$$E[U(x^j)] = \sum_{x \in A} f_{x^j}(x) \ U(x) = \sum_{x \in A} f_{x^j}(x) \ \sum_i w_i u_i(x)$$

– Integral for continuous random variables

□ In a decision tree, MAU is used just like unidimensional utility

□ Consider three suppliers:

Supplier 1: Expensive, fair quality, can deliver without delay

 $x^1 = (35k \in 1 \text{ day}, fair)$

Supplier 2: Cheap, good quality, can deliver in 1 week

 $x^2 = (21k \in 7 \text{ days}, good)$

Supplier 3: Moderate price, good quality, 20% chance of 1-week delay and 10% chance of 2-week delay

$$x^{3} = (24k \in \tilde{x}_{2}^{3}, good),$$

$$f_{\tilde{x}_{2}^{3}}(x) = \begin{cases} 0.7, x = (24k \in 1 \text{ day}, good) \\ 0.2, x = (24k \in 8 \text{ days}, good) \\ 0.1, x = (24k \in 15 \text{ days}, good) \end{cases}$$

	u_1^N	u_2^N	u_3^N	U	$f_{x_k^j}$	E[U]
x^1	0.17	1.00	0.00	0.46	1	0.46
<i>x</i> ²	0.63	0.92	0.40	0.69	1	0.69
$x^{3}(s_{1})$	0.53	1.00	0.40	0.69	0.7	0.67
$x^{3}(s_{2})$	0.53	0.90	0.40	0.65	0.2	
$x^{3}(s_{3})$	0.53	0.75	0.40	0.59	0.1	
W	0.36	0.40	0.24			

MAVT vs. MAUT

- MAVT: Preference between <u>alternatives with certain outcomes</u> can be represented by an additive multiattribute value function, iff the attributes are
 - Mutually preferentially independent
 - Difference independent
- MAUT: Preference between <u>lotteries with uncertain outcomes</u> can be represented by additive multiattribute utility function, iff the attributes are
 - Mutually preferentially independent
 - Additive independent

MAVT vs. MAUT

- Attribute-specific value functions are elicited by asking the DM to specify equally preferred differences in attribute levels
 - E.g., "Specify salary x such that you would be indifferent between change 1500€ → x€ and x€ → 2000€"
- Attribute-specific <u>utility</u> functions are elicited by asking the DM to specify equally preferred lotteries
 - E.g., "Specify salary x such that you would be indifferent between getting x€ for certain and a 50-50 gamble between getting 1500€ or 2000€"

□ Attribute weights are elicited similarly in MAVT and MAUT

MAVT vs. MAUT

- In principal, the natural / measurement scale is first mapped to value scale and then (if needed) to utility scale
- Yet, in practice the value function is "hidden" in the utility function
 - E.g, if certainty equivalent of 50-50 gamble between 3k€ and 5k€ salary is 3.9k€, is this a sign of risk aversion or decreasing marginal value of salary?

Aalto University School of Science

Summary

- Multiattribute utility theory helps establish a preference relation between alternatives with uncertain outcomes on multiple attributes
- Preference relation is represented by an additive utility function, iff the attributes are mutually preferentially independent and additive independent
- Attribute-specific utility functions are elicited as in the unidimensional case
- □ Attribute weights are elicited as in MAVT
- Decision recommendation: the alternative with highest expected utility
- Robust methods can also be used with MAUT

Aalto University School of Science