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Motivation

q Multiattribute value theory helps generate decision
recommendations, when

– Alternatives are evaluated w.r.t. multiple attributes
– Alternatives’ attribute-specific values are certain

q What if the attribute-specific performances are uncertain?
– Planning a supply chain: minimize cost, minimize supply shortage,

minimize storage costs
– Building an investment portfolio: maximize return, minimize risk

→ Multiattribute utility theory
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From EUT to MAUT

q Set of possible outcomes T:
– E.g., revenue = ℝ euros, demand =

ℕ
q Set of all possible lotteries L:

– A lottery ∈ associates a probability
∈ [0,1] with each possible outcome

∈
q Deterministic outcomes are modeled

as degenerate lotteries
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From EUT to MAUT

q Multidimensional set of outcomes
X:

= × ⋯×
– E.g., = revenue (€), = market

share

q Set of all possible lotteries L:
– A lottery ∈ associates a

probability ∈ [0,1] with each
possible outcome = ( , … , ) ∈

q Deterministic outcomes are
modelled as degenerate lotteries
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Aggregation of utilities

q Problem: How to measure the overall utility of alternative =
, , … ?

, , … =?
q Question: Could the overall utility be obtained by a weighted sum of

the attribute-specific utilities?

, , … = ?

q Answer: Yes, if the attributes are
– Mutually preferentially independent and
– Additive independent (new)
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Preferential independence (old)

q Definition: Attribute X is preferentially independent (PI) of the
other attributes Y, if the preference order of degenerate lotteries
that differ only in X does not depend on the levels of attributes Y

( , ) ≽ ( , ) ⇒ , ′ ≽ , ′ for all ′ ∈ Y

q Interpretation: Preference over the certain level of attribute X does
not depend on the certain levels of the other attributes, as long as
they stay the same

q Same as in MAVT
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Mutual preferential independence (old)

q Definition: Attributes A are mutually perferentially independent
(MPI), if any subset X of attributes A is preferentially independent
of the other attributes Y=A\X. I.e., for any degenerate lotteries:

( , ) ≽ ( , ′) ⇒ , ≽ , for all y ∈ Y.

q Interpretation: Preference over the certain levels of attributes X
does not depend on the certain levels of the other attributes, as
long as they stay the same

q Same as in MAVT
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Additive independence (new)

q Definition: Subset of attributes X⊂A is additive
independent (AI), if the DM is indifferent between
lotteries I and II for any , , ( ′, ) ∈

q Example:
– Profit is AI if the DM is indifferent between I and II
– However, she might prefer II, because it does not include an

outcome where all attributes have very poor values. In this
case profit is not AI.
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Additive independence (new)

q Example:
– A tourist is planning a downhill skiing weekend trip to the mountains
– 2 attributes: sunshine ( {sunny, cloudy} ) and snow conditions ( {good, poor} )
– Additive independence holds, if she is indifferent between I and II

– In both, there is a 50 % probability of getting sunshine
– In both, there is a 50 % probability of having good snow conditions
– If the DM values sunshine and snow conditions independently of each other, then I and II can be equally

preferred
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Additive multiattribute utility function

q Theorem: The attributes are mutually preferentially
independent and single attributes are additive
independent iff preference relation ≽ is represented by an
additive multi-attribute utility function

= ( ) ,

where = 0, ∗ = 1, and ∑ = 1, ≥ 0.
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What if the MPI & AI do not hold?
q Definition: Attribute ∈ is utility independent (UI) if the preference order

between lotteries that have equal certain outcomes on attributes Y=A\X does
not depend on the level of these outcomes, i.e.,

, ≽ , ⇒ , ≽ , ∀ ′
q Example:

28.2.2019

11

0.6
0.3

0.1

(2M€,10%)

(1M€,10%)

(-0.5M€,10%)

(1M€,10%)

0.6
0.3

0.1

(2M€, a%)

(1M€, a%)

(-0.5M€, a%)

(1M€, a%)

If profit is UI, then the DM should prefer I for
any aAssume DM prefers I

I

However, for a small market share (a), the
DM may be more risk averse and choose II
→ profit is not UI

II

I

II



Mutual utility independence

q Definition: Attributes are mutually utility independent (MPI), if every
subset X ⊂ is the utility independent of the other attributes Y=A\X i.e.,

, ≽ , ⇒ , ≽ ,  ∀ ′
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Other multi-attribute utility functions

q If attributes are mutually utility independent, then preferences are
represented by a multiplicative utility function:

=
∏ [1 + ( )]

−
1

q If each single attribute is utility independent, then preferences are
represented by a so-called multilinear utility function

q AI is the strongest of the three preference assumptions
– Let X ⊂ A. Then, X is AI ⇒ X is UI ⇒ X is PI
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Assessing attribute-specific utility
functions
q Use the same techniques as with a unidimensional utility function

– Certainty equivalent, probability equivalent, etc. & scale such that = 0, ∗ = 1.
– Also direct rating often applied in practice

q What about the other attributes?
– Fix them at the same level in every outcome
– Do not matter! → Usually not even explicitly

shown to the DM
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Example: Choosing a software supplier

q Three attributes: cost, delay, quality
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i Name Xi
∗

1 Cost [10,40] k€ 40 10

2 Delay {1,2,…,30} days 30 1

3 Quality {fair, good, excellent} fair excellent



Example: Choosing a software supplier

q Assessment of the attribute-specific utility
functions

– Quality: Direct assessment
o (fair)=0, (good)=0.4, (excellent)=1

– Cost: Linear decreasing utility function
o =

– Delay: Assessment with certainty equivalent (CE)
approach
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Example: Choosing a software supplier
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Assessing attribute weights

q Attribute weights are elicited by constructing two equally preferred
degenerate lotteries

– E.g., ask the DM to establish a preference order for n hypothetical
alternatives specified so that , … , ∗, … , , = 1, … , .

– Assume that ∗, , … , ≽ , ∗, … , ≽ ⋯ ≽ , , … , ∗

– Then, for each i=1,…,n-1 ask the DM to define ∈ such that
… , , … ~ … , ∗ , …

⇒ … , , … = … , ∗ , …
⇒ ( )  =

– n-1 such comparisons + 1 normalization constraint ⇒ unique set of
weights
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Example: Choosing a software supplier
q Assessment of the attribute weights

– Assume preferences 40k€, 1 day, fair ≽ 10k€, 30 days, fair ≽ 40k€, 30 days,  exc.
– Choose delay ∈ {1, … , 30} such that 40, , ~ 10,30,
– Answer = 8 gives

40 + 8 + = 10 + 30 +
8 =

⇔ 0.9028 =
– Choose cost ∈ 10,40 such that , , fair ~ 40, , excellent
– Answer = 20 gives

20 + + fair = 40 + + excellent
20 =

⇔
2
3 =

– Attribute weights: ≈ , ,
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MAUT: Decision recommendations

q Consider m decision alternatives = , … , , = 1, … , ,
where is a random variable with PDF ( )

q Alternatives are ranked by their expected (multiattribute) utilities

= ( ) ( )
 

∈

= ( ) ( )
  

∈
– Integral for continuous random variables

q In a decision tree, MAU is used just like unidimensional utility
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Example: Choosing a software supplier
q Consider three suppliers:

– Supplier 1: Expensive, fair quality, can deliver
without delay

= (35 €, 1 day, )
– Supplier 2: Cheap, good quality, can deliver in 1

week
= (21 €, 7 days, )

– Supplier 3: Moderate price, good quality, 20%
chance of 1-week delay and 10% chance of 2-week
delay

= 24 €, , ,

=
0.7, = (24 €, 1 day, )
0.2, = (24 €, 8 days, )

0.1, = (24 €, 15 days, )
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Example: Choosing a software supplier

E[ ]

0.17 1.00 0.00 0.46 1 0.46
0.63 0.92 0.40 0.69 1 0.69

 ( ) 0.53 1.00 0.40 0.69 0.7 0.67
 ( ) 0.53 0.90 0.40 0.65 0.2
 ( ) 0.53 0.75 0.40 0.59 0.1

0.36 0.40 0.24
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MAVT vs. MAUT

q MAVT: Preference between alternatives with certain outcomes can be
represented by an additive multiattribute value function, iff the
attributes are

– Mutually preferentially independent
– Difference independent

q MAUT: Preference between lotteries with uncertain outcomes can be
represented by additive multiattribute utility function, iff the attributes
are

– Mutually preferentially independent
– Additive independent
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MAVT vs. MAUT
q Attribute-specific value functions are elicited by asking the DM

to specify equally preferred differences in attribute levels
– E.g., ”Specify salary x such that you would be indifferent between change

1500€ → x€ and x€ → 2000€”

q Attribute-specific utility functions are elicited by asking the DM
to specify equally preferred lotteries

– E.g., ”Specify salary x such that you would be indifferent between getting
x€ for certain and a 50-50 gamble between getting 1500€ or 2000€”

q Attribute weights are elicited similarly in MAVT and MAUT
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MAVT vs. MAUT

q In principal, the natural /
measurement scale is first
mapped to value scale and
then (if needed) to utility scale

q Yet, in practice the value
function is ”hidden” in the utility
function

– E.g, if certainty equivalent of 50-50
gamble between 3k€ and 5k€ salary
is 3.9k€, is this a sign of risk aversion
or decreasing marginal value of
salary?
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Summary

q Multiattribute utility theory helps establish a preference relation
between alternatives with uncertain outcomes on multiple attributes

q Preference relation is represented by an additive utility function, iff the
attributes are mutually preferentially independent and additive
independent

q Attribute-specific utility functions are elicited as in the unidimensional
case

q Attribute weights are elicited as in MAVT
q Decision recommendation: the alternative with highest expected utility
q Robust methods can also be used with MAUT
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