Reflectance Equation,
Reflectance Models,
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with some slides from Fredo Durand of M.I.T.
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What is the radiance hitting my sensor? <=>
Solution of the “rendering equation”

: et Y N
" ~ LY >




Today

» Reflectance Equation
—Recap of the BRDF, plus details

 Global Illumination
—Rendering Equation
—Gets us indirect lighting

e Next time

—Monte Carlo integration
—Better sampling

* Importance
e stratification
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Recap, Last Week

* How ““bright” something 1s doesn’t directly tell you
how brightly it illuminates something

—The lamp appears just as bright from across the room and
when you stick your nose to it (“intensity does not attenuate™)

—Also, the lamp’s apparent brightness does not change much
with the angle of exitance

e However

—1f you take the receiving surface
further away, i1t will reflect
less light and appear darker

—If you tilt the rece1ving surface,
it will reflect less light and appear darker

CS-E5520 Spring 2019 — Lehtinen



Remember: “How Big Something Looks”

» Solid angle <=> projected area on unit sphere

CS-E5520 Spring 2079 — Lehtinen



Recap: Flux

* Flux ¢ measures luminous energy per unit time, 1.€.,

power, |&] = | J/s] = [W]

* You can think of photons/second, with the limit of
infinitely many infinitely low-energy photons

— (In reality, every photon carries some non-infinitesimal flux)
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Recap: Irradiance

* Irradiance E is the flux ¢ [W] per unit area [1/m?]

landing on a surface
dd W
E=— —
dA m?

—You can really think of counting photons N

* (Brightness of diffuse surface \ \ AN

determined directly by 1rradiance)
—(We’ll come to this 1n a bit)

CS-E5520 Spring 2019 — Lehtinen



Recap: Radiance

e Sensors are sensitive to radiance

—It’s what you assign to pixels
—The fundamental quantity in 1mage synthesis

* “Intensity does not attenuate with distance”
<=>radiance stays constant along straight lines**

* All relevant quantities (irradiance, etc.) can be
derived from radiance

**unless the medium is participating, e.g., smoke, fog

CS-E5520 Spring 2019 — Lehtinen



Constancy Along Straight Lines

L(x —y) = L(y < )

dA; L L(x — y)

L

CS-E5520 Spring 2019 — Lehtinen
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Constancy Along Straight Lines

L(x —y) = L(y < )

Radiance is what ‘\O Y
you think of as

“intensity” when you

look at a lamp, say. L(y < x)

dA, L L(z — y)

L
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Recap: Radiance

e Radiance L = L = de
flux per unit projected area dA-+ dw
per unit solid angle o

L= m? sr
dw

dA

9
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Recap: Radiance Notation

» L(x — v) denotes radiance leaving d4 located at point
x towards direction v

— Alternative notation: Lgut(z, V)

 L(z < 1) denotes radiance impinging on dA4 located at
point x from direction 1

— Alternative notation: Li,(x,1)

deo dw l

d A - dA

€T CS-E5520 Spring 2019 — Lehtinen 13



Recap: Irradiance

* Integrate incident radiance times cosine over the
hemisphere {2

E:/L(w) cos 6 dw
Q

Figure adapted from Pat Hanrahan CS-E5520 Spring 2019 — Lehtinen
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Recap: Differential Irradiance

» To measure 1rradiance, add up the radiance from all the
differential beams from all directions

dw

dd
= L(wq) cos O dw

da ~— 2 70
Differential irradiance

dA

CS-E5520 Spring 2019 — Lehtinen 15
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Recap: Irradiance to Radiosity

» The reflectivity of a diffuse surface
is determined by its albedo p € |0, 1)

—This 1s the “diffuse color kg from your ray tracer in 4310

* The flux emitted by a diffuse surface
per unit area 1s called radiosity B

—Same units as 1rradiance, [B] = [W/m”2]
—Hence

_rE

T

B

CS-E5520 Spring 2019 — Lehtinen
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Recap: Lambertian Soft Shadows

differential
solid angle
L QN 0d
out (T) = - in(2,w) cosfdw
?dui;?uosigg—ight albedo/pi £2 incident radiance cosine
N t
independent of =i
direction v)
ﬁ’ Lin
Lin Lin Sum (integrate)
v over every
direction on the
] hemisphere,
d modulate incident
’O(x) illumination by

is the albedo or reflectivity
(between 0,1)

of the surface at x

cosine, albedo/pi

CS-E5520 Spring 2019 — Lehtinen 20
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Quantifying Reflection — BRDF
A |

e Bidirectional Reflectance -
Distribution Function -

 “Ratio of light coming from one
direction that gets reflected 1n
another direction”

—Pure reflection, assumes no Y .. S
' . : Q« Incoming ©
light scatters into the material direction

Outgoing

» Focuses on angular aspects, not direction

spatial variation of the material

* How many dimensions?

CS-E5520 Spring 2019 — Lehtinen 22



BRDF f;

e Bidirectional Reflectance
Distribution Function

—4D: 2 angles for each direction
—BRDF = f; (61 a(l)i ; 60, (I)o)

—Or just two unit vectors:

BRDF = f; (I, v)

o] = light direction
e v = view direction

-

CS-E5520 Spring 2019 — Lehtinen
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2D Slice at Constant Incidence

 For a fixed incoming direction 1,
view dependence 1s a 2D
spherical function

—Here a moderate glossy component

towards mirror direction R
N

R highlight Incoming

N, L
h

B

;

incoming




BRDF f;

* Bidirectional Reflectance Mirror BRDF:
Distribution Function Infinitely thin and tall
—4D: 2 angles for each direction spike ("Dirac delta’)

INn mirror direction
—~BRDF = ff (61 9(|)i ) 609 (I)o)

—Or just two unit vectors: A
BRDF = f; (1, v) y O
o] = light direction

-

4V »
1
®)
(&

v = view direction

—The BRDF 1s aligned
with the surface; t
the vectors 1 and v must

-

CS-E5520 Spring 2019 — Lehtinen 25



BRDF Definition, For Real This Time

e Relates incident differential irradiance from
every direction to outgoing radiance. How?

CS-E5520 Spring 2019 — Lehtinen
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Reflectance Equation

L(QE%V):<\]:

£\

integral
over
hemisphere

---
= -
-
-

:>/fr($,l%V)L(ai%l) cos 0.dl
Q

outgoing radiance

L in*cos =
incident
differential
G /\ irradiance

incoming cosine of

radiance incident
angle

CS-E5520 Spring 2019 — Lehtinen 27



Compare to Diffuse Case

L(x —v) =
L in*cos =
/ L(x < 1) cos@dl incident
$2 differential
/\ irradiance
BRDF

U
Lout(2) — /Q dw

CS-E5520 Spring 2019 — Lehtinen
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Diffuse BRDF

Louwt(x) = p(z) /QLin(:L‘,w) cos 0 dw

.

» Diffuse reflectance independent of outgoing angle
 Hence, the diffuse BRDF 1s

fr(z) = %

— (P 1s the albedo, remember)

* Note: no cosing, 1t’s included 1n the reflectance eq.!

CS-E5520 Spring 2019 — Lehtinen
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BRDF Properties

 Reciprocity: f.(1 - v) = f.(v =1

* Energy conservation: / fr(1 = v)cosf,dv <1

—Intuitive: the BRDF tells you how a single beam of incident
illumination from direction 1 is spread into all reflected
directions v; you can’t have more energy coming out than
going 1n.

—But also, due to reciprocity, the same must hold 1f you swap
the incident and outgoing directions.

* Non-negativity: f,.(1 = v) > 0

CS-E5520 Spring 2019 — Lehtinen 30



Isotropic vs. Anisotropic

* When keeping 1 and v fixed, if rotation of surface
around the normal doesn’t change the reflection, the
material 1s called 1sotropic

» Surfaces with strongly oriented microgeometry
elements are anisotropic

* Examples:

—brushed metals,
—hair, fur, cloth, velvet

Westin et.al 92
CS-E5520 Spring 2019 — Lehtinen 31






Hmmh

 The BRDF 1s a 4D function for a single surface point

 When you make 1t vary over surfaces, you add two
more dimensions

—The Spatially Varying BRDF (SVBRDF) 1s 6D!

CS-E5520 Spring 2019 — Lehtinen
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Spatially Varying Reflectance

* Very, very, VERY 1mportant for realistic surface
appearance

* VIDEO

fabric_zigzag

Aittala, Weyrich, Lehtinen 2015
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http://tinyurl.com/TwoShotSVBRDF

Spatially Varying Reflectance

* You can find these SVBRDF material models online
and use them 1n your assignments!

Aittala, Weyrich, Lehtinen 2015
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https://mediatech.aalto.fi/publications/graphics/TwoShotSVBRDF/
http://tinyurl.com/TwoShotSVBRDF

Parametric BRDF Models

* BRDFs can be measured from real data

—But storage and computation using arbitrary 4D or 6D
functions 1s unwieldy, must do something smarter

CS-E5520 Spring 2019 — Lehtinen
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Parametric BRDF Models

* BRDFs can be measured from real data

—But storage and computation using arbitrary 4D or 6D
functions 1s unwieldy, must do something smarter

* Solution: parametric models

— What this means: use a small set of (hopefully intuitive)
parameters that determine reflectance at each point

* We’ve seen one model already: diffuse reflectance
determined by one parameter, the albedo

—Well, 3 actually (RGB)

CS-E5520 Spring 2019 — Lehtinen
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Parametric BRDF Models

» Parametric BRDF models represent the relationship
between incident and outgoing light by some
mathematical formula with tunable parameters

—The appearance can then be tuned by setting parameters
 “Color”, “Shininess”, “anisotropy”’, etc.

—Many ways of coming up with these
—Can models with measured data (examples later)

* Popular models: Diffuse, Blinn-Phong, Cook-Torrance,
Lafortune, Ward, Oren-Nayar, etc.

CS-E5520 Spring 2019 — Lehtinen 38



Parametric SVBRDF Example

0= g

P /
g &l
&?-\\\:f -~ B )q :.{#"; |

Diffuse albedo (color)

These are just
parameters to a
Fresnel-modulated

Surface normal
Blinn-Phong model!

39



How do we obtain BRDFs?

* One possibility: Gonioreflectometer
—4 degrees of freedom

Source Driver Hoop

Reflectance Detector =

Source: Greg Ward

CS-E5520 Spring 2019 — Lehtinen 1 Fansmittance Detector

40



How do we obtain BRDFs?




Image-Based Acquisition

e See W. Matusik et al. for how

— A Data-Driven Reflectance Model, SIGGRAPH 2003
—The data 1s available from MERL

CS-E5520 Spring 2019 — Lehtinen 42


http://doi.acm.org/10.1145/882262.882343
http://www.merl.com/brdf/

State Of The Art Aittala, Weyrich, Lehtinen, Practical SVBRDF

Capture in the Frequency Domain, SIGGRAPH 2013

™)
x|

LCD
screen



https://mediatech.aalto.fi/publications/graphics/FourierSVBRDF
https://mediatech.aalto.fi/publications/graphics/FourierSVBRDF
https://mediatech.aalto.fi/publications/graphics/FourierSVBRDF

with some restrictions on what
Even IeSS effO rt = an materials can be captured

 SIGGRAPH 2015, http://tinyurl.com/TwoShotSVBRDF

Two-Shot SVBRDF Capture for Stationary Materials

Miika Aittala Tim Weyrich Jaakko Lehtinen
Aalto University University College London Aalto University, NVIDIA

Capture Flash image No-flash image SVBRDF Decomposition

Figure 1: Given an flash-no-flash image pair of a “textured” material sample, our system produces a set of spatially varying BRDF parameters
(an SVBRDF, right) that can be used for relighting the surface. The capture (left) happens in-situ using a mobile phone.

CS-E5520 Spring 2019 — Lehtinen 44


http://tinyurl.com/TwoShotSVBRDF

Questions?

CS-E5520 Spring 2019 — Lehtinen

45



Microfacet Theory

* Example

—Think of water surface as lots of tiny mirrors (microfacets)

—“Bright” pixels are
» Microfacets aligned with the vector between sun and eye

 But not the ones 1in shadow
 And not the ones that are occluded

46



Microfacet Theory

* Model surface by tiny mirrors
| Torrance & Sparrow 1967]

47


http://www-inst.cs.berkeley.edu/~cs294-13/fa09/lectures/TorranceSparrow.pdf

Microfacet Theory

* Value of BRDF at (L,V) 1s a product of

—number of mirrors oriented halfway between L and V

48



Microfacet Theory

* Value of BRDF at (L,V) 1s a product of

—number of mirrors oriented halfway between L and V
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Microfacet Theory

* Value of BRDF at (L,V) 1s a product of

—number of mirrors oriented halfway between L and V

50



Microfacet Theory

* Value of BRDF at (L,V) 1s a product of

—number of mirrors oriented halfway between L and V
—rat10 of the un(shadowed/masked) mirrors

91



Microfacet Theory

* Value of BRDF at (L,V) 1s a product of

—number of mirrors oriented halfway between L and V
—rat10 of the un(shadowed/masked) mirrors
—Fresnel coefficient

52



Microfacet Theory-based Models

* Develop BRDF models by imposing simplifications

| Torrance-Sparrow 67], [Blinn 77], [Cook-Torrance
81], [Ashikhmin et al. 2000]

* Model the distribution D(h) of
microfacet normals

—Also, statistical models
for shadows and masking

* As always, h =

1+ v

spherical plot of a
Gaussian-like p(H)

CS-E5520 Spring 2019 — Lehtinen 53


http://www-inst.cs.berkeley.edu/~cs294-13/fa09/lectures/TorranceSparrow.pdf
http://portal.acm.org/citation.cfm?id=965141.563893
http://portal.acm.org/citation.cfm?id=806819
http://portal.acm.org/citation.cfm?id=806819
http://portal.acm.org/citation.cfm?id=344779.344814

General Microfacet BRDFE (Cook-Torrance)

* Sum of Diffuse and Specular terms:

[ Pd Ps EF(l-h) D(h)G(1,v)

T T (n-1)(n-v)

» ['1s the Fresnel term that accounts for increasing
reflection towards grazing angle

* D 1s the microfacet distribution (common models
include Gaussian, Blinn-Phong, Beckmann

— Shifted Gamma 1s the new king of the hill
* (5 1s the geometric (shadowing, masking) term

* See linked papers 1Qr.details.o_ o

54


http://en.wikipedia.org/wiki/Fresnel_equations
http://hal.inria.fr/docs/00/70/23/04/PDF/paper.pdf
http://dl.acm.org/citation.cfm?id=357293

Blinn-Torrance Variation of Phong

» Uses the “halfway vector” h between 1 and v.

D(h) = N, (n - h)* L
[+ o]

Ly

Camera

n -+ 1

2T

IS @ normalization |
faCtOr CS-E5520 Spring 2019 — Lehtinen

N, =




Geometric (Shadowing, Masking) Term

* Can be computed from microfacet distribution by
integration

 Cook and Torrance used a heuristic formula

, { 2(IN-H)(N-V) 2(N-H)(N-L)}
G = min} 1, -

(V.H) ~ (V-H)

e Current models are more well-founded than this, see
e.g. this paper

CS-E5520 Spring 2019 — Lehtinen
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https://hal.inria.fr/hal-00702304

BRDF Examples: see Ngan et al.

Lighting

Material — Dark blue paint
CS-E5520 Spring 2019 — Lehtinen
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http://www.merl.com/reports/docs/TR2005-151.pdf

Questions?

* “Designer BRDFs” by Ashikhmin et al.

CS-E5520 Spring 2019 — Lehtinen
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http://portal.acm.org/citation.cfm?id=344779.344814

Reflectance

» Careful optimization + milling allows one to create a
surface that reflects light 1n such funky ways

» Weyrich, Peers, Matusik, Rusinkiewicz SIGGRAPH
2009, Fabricating Microgeometry for Custom Surface

Reflectance

Fabricating Microgeometry for Custom Surface Reflectance

Tim Weyrich Pieter Peers Wojciech Matusik Szymon Rusinkiewicz
University College London University of Southern California, Adobe Systems, Inc. Princeton University,
Institute for Creative Technologies Adobe Systems, Inc.

/ %
/49 /\% \
N\, K__/b /|

N el

Figure 1: From left: a user-designed highlight is converted to an optimized microfacet height field. A computer-controlled milling machine
is used to manufacture the surface (30 X 30 facets, each approximately 1 mm X I mm), which exhibits the desired reflectance.

59


http://web4.cs.ucl.ac.uk/staff/t.weyrich/projects/mmill/weyrich09fabricating.pdf
http://web4.cs.ucl.ac.uk/staff/t.weyrich/projects/mmill/weyrich09fabricating.pdf
http://web4.cs.ucl.ac.uk/staff/t.weyrich/projects/mmill/weyrich09fabricating.pdf

Pure Reflection (BRDF)

BRDF: Light reflects off exactly the same point

T_ng 2019 — Lehtinen
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Subsurface Scattering (BSSRDF

Some light enters material, exits at another point

BSSRDF = Bldlrectlonal Surface Scattering Distribution Function
(See Henrik's | =

paperhnked ““ﬁ&ﬁ
to the title)

-, -

- N
X
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http://graphics.ucsd.edu/~henrik/papers/bssrdf/bssrdf.pdf

Subsurface |



http://dx.doi.org/10.1145/2010324.1964951

BRDF VS. BSS RDF Jensen et al. SIGGRAPH 2001

I

QL
N\

() (b)
Figure 1: Scattering of light in (a) a BRDF, and (b) a BSSRDE

CS-E5520 Spring 2019 — Lehtinen 63


http://graphics.ucsd.edu/~henrik/papers/bssrdf/bssrdf.pdf
http://graphics.ucsd.edu/~henrik/papers/bssrdf/bssrdf.pdf

BSSRDF Definition

» Relates differential irradiance at all points and all
directions to outgoing radiance at every other point and
all outgoing directions

—38D! Ouch!

L(x%v)://L(y%l)f,,a(x,y,l,v) cosfdldA,
AJo

» To get outgoing light at point x, integrate over all other
points y and all incident directions at those points

—Crazy complicated! Must do something smarter, 1.¢., cache

incident illumination, assume diffuse scattering, etc. (See
Henrik)

CS-E5520 Spring 2019 — Lehtinen 64


http://graphics.ucsd.edu/~henrik/papers/bssrdf/bssrdf.pdf

":

‘

J

S
)



http://www.maxwellrender.com

The Way To Global lllumination

Lix —v) = /QL(x — 1) fr(x,]1 > v) cosfdl

reflectance
o equation
e Where does incident L conie from?

CS-E5520 Spring 2019 — Lehtinen
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The Way To Global lllumination

Lix —v) = /QL(x — 1) fr(x,]1 = v) cosfdl

e Where does incident L come from?

—1It 1s the light reflected towards x from the surface point y in
direction / ==> must compute similar integral for every /!

e Recursive!

CS-E5520 Spring 2019 — Lehtinen 67



Rendering Equation

Lix —v) = / L(x <1 f.(x,]1 = v) cosfdl
: + F(x — V)

e Where does incident L come from?

—1It 1s the light reflected towards x from the surface point y in
direction / ==> must compute similar integral for every /!

e Recursive!

e ...and 1f x happens
to be on a light source,
we add its emitted
contribution £

CS-E5520 Spring 2019 — Lehtinen 68



r— V)= x <+ 1) f(x,] = v) cosfdl

Q
+ F (1 =




The Rendering Equation

Lix —v) = / L(x <1 f.(x,]1 = v) cosfdl
: + F(x — V)

» The rendering equation describes the appearance of the
scene, including direct and indirect illumination

—An “integral equation”, the unknown solution function L 1s
both on the LHS (left-hand side) and on the RHS inside the
integral

CS-E5520 Spring 2019 — Lehtinen 70



Hmmnh..

e “the unknown solution function L 1s

both on the LHS and on the RHS dA,

inside the integral”

—Why? \O Y
* Radiance 1s constant along straight

lines, so radiance coming in to y L(y < )

1s the radiance leaving x

¢%}’l@%w L(z —y) = L(y < )

L

CS-E5520 Spring 2019 — Lehtinen 71



The Rendering Equation

Lix —v) = / L(x <1 f.(x,]1 = v) cosfdl
QO
+ F(x — V)
» The rendering equation describes the appearance of the

scene, including direct and indirect illumination

—An “integral equation”, the unknown solution function L 1s
both on the LHS and on the RHS inside the integral

* More precisely: a “Fredholm equation of the 2nd kind”

—Originally described by Kajiya and Immel et al. in 1986

—Take a class in Functional Analysis to learn more!

CS-E5520 Spring 2019 — Lehtinen 72


https://en.wikipedia.org/wiki/Integral_equation
http://doi.acm.org/10.1145/15922.15902
http://doi.acm.org/10.1145/15922.15901

The Rendering Equation

* The unknown in this equation is the function L(x — V)
defined for all points x and all directions v

* Analytic (exact) solution i1s impossible 1n all cases of
practical interest

 Lots of ways to solve approximately

—Monte Carlo techniques use random samples for evaluating
the integrals

—Finite element methods (FEM) discretize the solution using
basis functions
« Radiosity, wavelets, precomputed radiance transfer, etc.

—Topic of next lecture!

CS-E5520 Spring 2019 — Lehtinen 73



Questions?

re
StacksStudios, Rendered using Maxwe


http://www.maxwellrender.com

The Rendering Equation

Lix —v) = / L(x <1 f.(x,]1 = v) cosfdl
: + F(x — V)

e Recursive!

—To know incident radiance at x, must
know outgoing radiance at
all points y seen by x

CS-E5520 Spring 2019 — Lehtinen
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Recap: Radiance Notation

» L(x — v) denotes radiance leaving d4 located at point
x towards direction v

— Alternative notation: Lgut(z, V)

 L(z < 1) denotes radiance impinging on dA4 located at
point x from direction 1

— Alternative notation: Li,(x,1)

deo dw l

d A - dA

T CS-E5520 Spring 2019 — Lehtinen 76



Operator Formulation 1

* “The lighting incident to x from 1 1s the
light exiting to the opposite direction from
the point r(x,1) where the ray
from x towards 1 hits”
—Constancy of radiance along rays

—*“Ray-cast function” r(x,l)
returns point hit by
ray from x towards 1

CS-E5520 Spring 2019 — Lehtinen
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Operator Formulation 1

» Let’s define the propagation operator G
def
Lin(xa l) — (gLout) = Lout (7“(33, l) — _l)

* “The lighting incident to x from 11s the

light exiting to the opposite direction from 7“( )
)

the point r(x,1) where the ray
from x towards 1 hits”

—Constancy of radiance along rays

—*“Ray-cast function” r(x,l)
returns point hit by
ray from x towards 1

CS-E5520 Spring 2019 — Lehtinen
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Operator Formulation 1

» Let’s define the propagation operator G

Lin(2,1) = (GLout) = Lows(r(z,1) — —1)

» G takes an outgoing radiance function,
propagates 1t along straight lines,
o . . r(z,l)
produces an incident radiance function

CS-E5520 Spring 2019 — Lehtinen 79



Operator Formulation cont'd

» ..and the local reflection operator R

Lout (SB,V) — (RLIH) —
/ Lin(x,1) fr(x,1 = v) cosfdl
Q

» Takes incident radiance function (defined for all points
and directions), produces outgoing radiance function
(defined for all points and directions)

 This 1s just another way of writing the reflectance
integral you saw alrgady.

2019 — Lehtinen 80



runes.nu, rendered using Maxwell




Operator Form of Rendering Eq.

Louwt (2, V) = / Lin(z,1) f.(x,1 = v) cos b, dl
Q
_|_ Eout (ZIZ’, V)

* Propagation + reflectance operators
Lout — RLin
Lin — gLout

CS-E5520 Spring 2019 — Lehtinen
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Operator Form of Rendering Eq.

Louwt (2, V) = / Lin(z,1) f.(x,1 = v) cos b, dl
Q

_I_ Eout (ZC, V)
* Propagation + reflectance operators
Lout — RLin
Lin — gLout

» Let’s put them together (I 1s 1dentity):
Lout — 7szout + b < (I — T)Lout =)

CS-E5520 Spring 2019 — Lehtinen 83



Operator Form of Rendering Eq.

Lout — 7szout i)

 Let’s call RG, propagation followed by retlection,
the transport operator T
* Looks a lot like a linear system Ax=b, doesn’t 1t?

—Well, 1t is a linear system.
Just with functions instead of vectors.

—Easy to verify linearity: T(aX+bY) =aTX + bTY for any
functions X,Y and scalars a.b

(I — T)LOut — E

CS-E5520 Spring 2019 — Lehtinen 84



Consequence of Linearity

(I — T)Lout — E

N Lout — (I — T)_l E

 This 1s kind of a deep result, although simple:

the lighting solution is linear w.r.t. the emission.

—I.e., solution 18 a linear function of the emission.

CS-E5520 Spring 2019 — Lehtinen
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Consequence of Linearity, Pt 2

(I — T)Lout — E

N Lout — (I — T)_l E

» Light 1s additive, 1.€., we can break emission 1nto parts
—1
Lowt =(Z—T) " (E1 + E>)

—((Z—-T) "E\+H(Z -T) " E;
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“Wu See link by clicking title!

<~ Lout — (I — T)_l E

* The Neumann series says
O
Z-T)'=>T
1=0

=T+T+T*+T°+...

ele. | Low=FE+TE+TTE+ ...
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http://en.wikipedia.org/wiki/Neumann_series

Neumann Series

* The lighting solution 1s the sum of
—emitted light E,

By

—light reflected once TE,

ected twice TTE, etc.

(]

—light ref]

* Monte Carlo methods compute these integrals
probabilistically
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Note: Pat uses L_e instead of E, Kinstead of T

[,(}+Ko[,( L(,+"'K2 OL(, L(..'*'"'K';OL(»

CS348B Lecture 13 Pat Hanrahan, Spring 2010



E = Emitted Radiance (Light sources)
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TE = Direct Lighting
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TTE = First Indirect Bounce
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TTTE = Second Indirect Bounce
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Questions?




