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Solving The Rendering Equation I: Radiosity
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What is the radiance hitting my sensor? <=> 
Solution of the rendering equation
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Today

!3

• Discretizing the rendering equation 
– Radiosity (topic of your assignment!)
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The appearance of diffuse surfaces 
doesn’t change over view direction. 

Outgoing radiance from diffuse 
surface = radiosity 

HOWEVER every surface point still 
has its own radiosity value, and 

there are infinitely many of them.
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So-called radiosity methods express 
the infinitely complex solution as a 

sum of simple basis functions. 

This is the basis for light mapping, as 
seen in many games. 

We discretize the infinitely complex 
rendering equation to get a finite 

equation we can solve.
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Continuous
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Discretized
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“Basis function”? 

Simplest version is to divide the 
surfaces up to small patches and 
approximate the radiosity of each 
patch as constant. 

Now there are only finitely many 
unknowns: the radiosities of the 
patches.

Discretized



Some Function on a Continuous 
Domain



• Here each basis function is a box, translated 
so that they don’t overlap

Unweighted Basis Functions



Bn(x)

Unweighted Basis Functions

B1(x) B2(x)

• Here each basis function is a box, translated 
so that they don’t overlap



↵2B2(x)

↵nBn(x)

Approximation by Basis Functions

↵1B1(x)

• We can try to choose weights for the basis 
functions such that together the boxes 
approximate the input function well

• This is called projection



“Projection onto Finite Basis”

=
�

weighted basis functionsapproximation



Projection onto Finite Basis, Piecewise 
Linear

=
�

approximation weighted basis functions



TODO Fourier



Piecewise Linear Basis Functions

• Each vertex has one 
basis function
–1 at the vertex, falls linearly 

to 0 inside the connected 
triangles

–Easy to evaluate using 
barycentrics: remember, 
this is pretty much their 
definition

–But remember each vertex 
affects all connected tris!



Piecewise Linear Basis Functions

• Each vertex has one 
basis function
–1 at the vertex, falls 

linearly to 0 inside the 
connected triangles

–Barycentrics!

• Sampling values at 
vertices and 
interpolating linearly 
= piecewise linear 
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Flashback: Bilinear Texture Filtering
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• Tell OpenGL to use a tent filter instead of a box filter 
• Magnification looks better, but blurry 

–(texture is under-sampled for this resolution) 
–Oh well...



Texture Maps

• A texel in a texture map is also a basis 
function
–Think about it: it’s a finite set of numbers that 

togethet define a function on the continuous 2D 
domain



Texture Maps

• A texel in a texture map is also a basis 
function
–Think about it: it’s a finite set of numbers that together 

define a function on the continuous 2D domain

• The exact shape of the basis function 
determined by the interpolation method used
–Most common: bilinear basis, here defined on [-1,1]2 



Bilinear Basis Function
B(x, y) =

8
>>><

>>>:

(1� x)(1� y), 0  x, y  1

(1� x)(1 + y), 0  x  1,�1  y < 0

(1 + x)(1� y), �1  x < 0  y  1

(1 + x)(1 + y), �1  x, y < 0



“Projection Operators”

• What’s going on: we take a function defined 
on a continuous domain, do something, and 
get an approximate version out



“Projection Operators”

• Projection can be written as linear operator 
• Take an arbitrary function L, return finite 

approximation         described by vector of 
weights                       for basis functions

P

PL
(↵1,↵2, . . . ,↵n)
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Different Projections
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• Sample at one point 
– For vertex basis, look at value at the vertex and use as weight: 

• This process takes samples at vertices and “smears” 
them across the triangles to yield a continuously-
defined function

f(x) ⇡
X

i

Bi(x) f(xi)

Basis function 
associated 
with i:th vertex

Function value 
at i:th vertex
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Different Projections

L2

!26

• Sample at one point 
– For vertex basis, look at value at the vertex and use as weight: 

• “Least squares projection”, aka        projection 
– Find coefficients that minimize the squared norm of the error 

integrated over the entire domain

f(x) ⇡
X

i

Bi(x) f(xi)
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Least Squares Projection

(↵1,↵2, . . . ,↵n)
Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dx

!27

• Task: find                             such that the residual 
 
 
 
is minimized. 

• Residual is input function f minus the approximation 
• Minimize the squared integral of R over the domain 

– If approximation is exact, this is zero (never happens) 
– Need to solve for the weights

R :=
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Turns Out To Be Simple

!28

Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵
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Turns Out To Be Simple
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Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

, expand the square
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Turns Out To Be Simple

!30

Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

,

✕ ✕ ✕
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Turns Out To Be Simple

!31

Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

,

,

✕ ✕ ✕

�
X

i

↵i

Z

S
f(x)Bi(x)dx+

X

i

X

j

↵i ↵j

Z

S
Bi(x)Bj(x)dx

(rearrange integration and summation)
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Turns Out To Be Simple

!32

• So the final task is to find alphas that minimize  
 
 
 
or, in matrix-vector form

X

i

↵i

Z

S
f(x)Bi(x)dx+

X

i

X

j

↵i ↵j

Z

S
Bi(x)Bj(x)dx

:= hBi, Bji:= hf,Bii
| {z }| {z }

�
X

i

↵i hf,Bii+
X

i

X

j

↵i ↵j hBi, Bji

fi = hf,Bii
Bi,j = hBi, Bji

�fT ↵+↵TB↵
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• It’s a quadratic function in the vector alpha 
– f, B are constants, given f (x) and the basis functions Bi (x) 

• What happens when you differentiate a quadratic 
function and set to zero?

�fT ↵+↵TB↵
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A Linear System

!34

• Least squares projection solution given by  
 
 
 
where                       and

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji
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Easy Special Case: Box Functions

!35

• Least squares projection solution given by  
 
 
 
where                       and 

• What if we use the piecewise constant box basis? 
– Then Bi,j = 0 when i != j. (Why?)

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji
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Easy Special Case: Box Functions

!36

• Least squares projection solution given by  
 
 
 
where                       and 

• What if we use the piecewise constant box basis? 
– Then Bi,j = 0 when i != j. (Why?) 
– In fact, the Bi,j are just the areas under the boxes 
– Convince yourself that then the basis coefficients are just area 

averages of f over the boxes!

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji
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OK, Why all the Trouble?

!37

• Video
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Radiosity Derivation

!38

• Rendering equation 

• Now let’s search for an approximate solution in terms 
of basis functions, i.e. try to find coefficients s.t.

L = T L+ E

L(x) ⇡
X

i

↵i Bi(x)
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Radiosity Derivation

!39

• Rendering equation 

• This amounts to applying the projection operator:

L = T L+ E

PL = PT (PL) + PE

PL = approximate 
solution in terms 
of basis functions

PE = projected 
emission function

PT = Transport 
followed by 
projection
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Lo and Behold
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• The discretized rendering equation  
 
 
 
is actually a finite linear system. Let’s see why... 

• Clearly both sides are finite basis expansions because 
we always apply P to every term 

• Hence, for the LHS and RHS to match, the basis 
coefficients on both side must be equal

PL = PT (PL) + PE
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• Let’s write things out a bit  

PL =
X

i

↵i Bi

= PT
X

j

↵j Bj + PE

=
X

j

↵j (PT Bj) + PE

TBj is the once-bounce illumination received 
by all surfaces when the basis function Bj 
acts as an emitter. P merely projects it!

Alphas are the unknowns we seek!



One sender basis function Bj

Visualizing PTBj

Red = The one-
bounce 

illumination 
received by 

other surfaces 
when Bj is the 
only emitter
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Let’s Finish It
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•                 is the basis expansion of the one-bounce 
illumination that results when the emission is Bj 

• Because it is a basis expansion, it has its own basis 
coefficients. We’ll call them         : 

PT Bj

Bi,j

(PT Bj)(x) =
X

i

Bi,j Bi(x)



One sender basis 
function Bj

Many receiving basis 
functions whose 

coefficients are Bi,j

Visualizing PTBj
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Final Radiosity Equation

!45

• The abstract projected equation  
 
 
 
is actually the linear system  
 
 
 
where the components of alpha are the unknown 
coefficients, the matrix B consists of the basis 
coefficients of PTBj for all j as shown before, and e is 
the basis coefficient vector projected emission PE.  
 

PL = PT (PL) + PE

↵ = B↵+ e
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Important Point

!46

• This is all good, but we never ever form the matrix B 
explicitly. Why?

↵ = B↵+ e
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Important Point

!47

• This is all good, but we never ever form the matrix B 
explicitly. Why? 

• We can easily have 10M basis functions in the scene 
=> matrix is 10M2 = 1014 float3 entries = 1015 bytes 
– We really don’t have the time to compute them 
– Nor space to store them 

• Solution: use iterative methods

↵ = B↵+ e
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Iterative Linear Solver
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• Iterative method means we don’t first compute the 
matrix and then use a direct solver like Gaussian 
elimination; instead, we compute matrix-vector 
products Be directly and iterate 

• Yes, you don’t need the full matrix to compute matrix-
vector products 
– This is the basis for all iterative methods 
– See Jacobi iteration, Gauss-Seidel iteration, conjugate gradient 

method, Krylov subspace methods 
– Some very smart approximate product algorithms are known 

for some particular matrices/operators

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Gauss%25E2%2580%2593Seidel_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Krylov_subspace
http://en.wikipedia.org/wiki/Fast_multipole_method
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Let’s Get Concrete
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• Turns out we can apply the Neumann series here, too! 

• ... and this is precisely what Max Payne’s lighting 
solver does, as well as you in Assn 2! 
– Just one possible iteration for this equation, you’ll find lots of 

others in textbooks (Jacobi, Gauss-Seidel, Southwell) 
– Max Payne 2 does Southwell + smart partitioning, ask me

↵ = B↵+ e

↵ = e+Be+B2e+ . . .
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Iterative Radiosity Solution
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• e is the vertex color vector where only the emitting 
polygons’ vertices have a nonzero radiosity 

• Initialize alpha = e, temp = e 
• Then iterate: 

– temp = B times temp 
– alpha = alpha + temp 

• Done! 
– temp = {e, Be, BBe, ...}, alpha = {e, e+Be, e+Be+BBe, ...}

↵ = e+Be+B2e+ . . .
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Computing the Product

!51

• How to compute B times temp? 
– Using the basis expansion with coefficients temp as the 

emission, compute at the one-bounce illumination cast on the 
scene and determine its projection coefficients. 

– When using vertex basis, very simple: evaluate the 
hemispherical irradiance integral at each vertex and turn it into 
outgoing radiance using albedo 

– And don’t forget to divide by pi :)
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One Last Practical Detail
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• We don’t actually store outgoing radiosity, but incident 
irradiance instead 
– Why? So that we can modulate the lighting using textures 

• So, our basis expansion gives us irradiance, we turn it 
into radiosity by dividing by pi and multiplying by 
albedo in the shader
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Pseudocode Using Vertex Basis
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// these are vectors of length N, where N is the number of vertices
// they store radiosity before multiplied by albedo
vector temp, temp2, alpha, e;
e = project(E);                      // set the colors of emitter vertices
temp = alpha = e;                    // init

for bounce=1 to numBounces
    clear(temp2);                     // set to zero
    for i=1 to N                     // loop over vertices

B = formBasis(vertices[i]);  // you already know how
res = Vec3f(0);
// M is the number of rays to sample hemisphere with

        for j=1 to M
            Wi = drawCosineWeightedDirection();   // you know how
            y = rayCast( vertices[i], Wi );       // you know how
            // get the radiosity for the hit point y, rho/pi is BRDF!
            Li = rho(y)/pi * interpolateIrradiance( y, temp );
            res = res + Li;
        end
        temp2[i] = res/M; // fixed bug noted on lecture 22.2.17!

    end
 temp = temp2;

    alpha = alpha + temp;
end
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Interpolation
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• interpolateIrradiance(y, temp) takes the 
hit point y and interpolates the irradiance values from 
the corresponding corner vertices using barycentrics 

• You remember this from C3100...
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Barycentric Interpolation Recap
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• Values v1, v2, v3 defined at a, b, c 
– Colors, normal, texture coordinates, etc. 

• P(α, β, γ) = αa + βb + γc is the point... 
• v(α, β, γ) = αv1 + βv2 + γv3 is the 

barycentric interpolation of  
v1-v3 at point P 
– Sanity check: v(1,0,0) = v1, etc. 

• I.e, once you know α, β, γ,  
you can interpolate values  
using the same weights. 
– Convenient!

v1

v2

v3

P
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mail
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E T E T T E T T T E

adapted from

E E + T E

+T 2E

E + T E

+T 2E

E + T E

+T 3E
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Discussion

!57

• This was for vertex-based interpolation 
• Often one uses texture maps, so-called lightmaps, for 

storing the irradiance 
– This is what we did (video) 
– Why? To get detailed illumination, you need many vertices  
– Downside: building UV parameterizations over the scene hard  
– Also, we computed the hemispherical integrals using the GPU 

using a so-called hemicube technique 

• However, the main ingredients of the lighting solver 
are precisely the same

http://dl.acm.org/citation.cfm?id=325171
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Discussion 2

!58

• The loop over vertices is embarrassingly parallel 
– We had a simple distributed cluster running this in Max Payne 
– But need to synchronize across bounces 

• But you can be even smarter 
– In Max Payne 2, we solved each room in the scene separately 

in its own cluster node 
• Less data to transfer over network, faster gathering integrals 

– Then, light was propagated between the rooms through 4D 
light fields or Lumigraphs 

– Corresponds to a two-level block-structured iteration on the 
large linear system

http://dl.acm.org/citation.cfm?id=237200
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Discussion 3
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• You can also store directional information, not just 
irradiance 
– This allows you to combine radiosity and normal maps 
– Even if the irradiance is coarsely-sampled, you still get nice 

surface detail 
– “Spherical Harmonics” and “vector irradiance” are keywords 
– Extra credit in your assignment! 

• Also, as you notice, the lighting is static 
– But you can allow the lighting to vary in some predetermined 

linear space => Precompute Radiance Transfer (VIDEO) 
– See my master’s thesis and ToG paper for an in-depth 

introduction to PRT

http://www.tml.tkk.fi/~jaakko/dt/JaakkoLehtinen_MSc_thesis.pdf
http://dl.acm.org/citation.cfm?doid=1289603.1289604


Radiosity + Normals in Half-Life 2
Slide by Gary McTaggart (Valve)



Slide by Gary McTaggart (Valve)



Slide by Gary McTaggart (Valve)



Slide by Gary McTaggart (Valve)



Slide by Gary McTaggart (Valve)
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Discussion 4

!66

• It often makes sense to compute direct lighting 
separately and only use basis functions for indirect 

• Also, does it make sense to compute the lighting at a 
high resolution where it doesn’t vary very fast..?
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Discussion 4

!67

• It often makes sense to compute direct lighting 
separately and only use basis functions for indirect 

• Also, does it make sense to compute the lighting at a 
high resolution where it doesn’t vary very fast..? 
– You’re right, it doesn’t 

• Adaptive refinement means you compute coarsely, then 
subdivide where you think you need to
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Adaptive Refinement Example

!68

Krivanek 2004

http://dcgi.felk.cvut.cz/publications/2004/krivanek-sccg-amsp
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Final Conclusions
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• Meshing is hard 
• Lightmaps are hard (but they are still used) 

• You can get around limitations of both by using 
meshless basis functions (Lehtinen et al. 2008) 
– Also supports adaptive refinement 
– Rendering cost is pretty high, though.

http://people.csail.mit.edu/jaakko/meshless/
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Modern Take (link)

!70

https://users.aalto.fi/~silvena4/Publications/SIGGRAPH_2015_Remedy_Notes.pdf
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Direct-to-indirect precomputed light transport 
using meshless hierarchical basis functions
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That’s it for Today

!72

• Further reading 
– Pat Hanrahan’s slides on MC 

integration I, MC integration II 
– My master’s thesis introduces math 

behind discretized global 
illumination 

– Cohen & Wallace: Radiosity and 
Realistic Image Synthesis

https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloILecture
https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloILecture
https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloIILecture
http://www.tml.tkk.fi/~jaakko/dt/JaakkoLehtinen_MSc_thesis.pdf

