
CS-E5520 Spring 2019 – Lehtinen !1

Solving The Rendering Equation I: Radiosity

CS-E5520 Spring 2019
Jaakko Lehtinen

es
tu

di
ba

si
c,

 R
en

de
re

d
us

in
g

M
ax

w
el

l

http://www.maxwellrender.com

What is the radiance hitting my sensor? <=>
Solution of the rendering equation

CS-E5520 Spring 2019 – Lehtinen

Today

!3

• Discretizing the rendering equation
– Radiosity (topic of your assignment!)

CS-E5520 Spring 2019 – Lehtinen !4
Mathias Paulin

CS-E5520 Spring 2019 – Lehtinen !5
Mathias Paulin

The appearance of diffuse surfaces
doesn’t change over view direction.

Outgoing radiance from diffuse
surface = radiosity

HOWEVER every surface point still
has its own radiosity value, and

there are infinitely many of them.

CS-E5520 Spring 2019 – Lehtinen !6
Mathias Paulin

So-called radiosity methods express
the infinitely complex solution as a

sum of simple basis functions.

This is the basis for light mapping, as
seen in many games.

We discretize the infinitely complex
rendering equation to get a finite

equation we can solve.

CS-E5520 Spring 2019 – Lehtinen !7
Mathias Paulin

Continuous

CS-E5520 Spring 2019 – Lehtinen !8
Mathias Paulin

Discretized

CS-E5520 Spring 2019 – Lehtinen !9
Mathias Paulin

“Basis function”?

Simplest version is to divide the
surfaces up to small patches and
approximate the radiosity of each
patch as constant.

Now there are only finitely many
unknowns: the radiosities of the
patches.

Discretized

Some Function on a Continuous
Domain

• Here each basis function is a box, translated
so that they don’t overlap

Unweighted Basis Functions

Bn(x)

Unweighted Basis Functions

B1(x) B2(x)

• Here each basis function is a box, translated
so that they don’t overlap

↵2B2(x)

↵nBn(x)

Approximation by Basis Functions

↵1B1(x)

• We can try to choose weights for the basis
functions such that together the boxes
approximate the input function well

• This is called projection

“Projection onto Finite Basis”

=
�

weighted basis functionsapproximation

Projection onto Finite Basis, Piecewise
Linear

=
�

approximation weighted basis functions

TODO Fourier

Piecewise Linear Basis Functions

• Each vertex has one
basis function
–1 at the vertex, falls linearly

to 0 inside the connected
triangles

–Easy to evaluate using
barycentrics: remember,
this is pretty much their
definition

–But remember each vertex
affects all connected tris!

Piecewise Linear Basis Functions

• Each vertex has one
basis function
–1 at the vertex, falls

linearly to 0 inside the
connected triangles

–Barycentrics!

• Sampling values at
vertices and
interpolating linearly
= piecewise linear

CS-E5520 Spring 2019 – Lehtinen

Flashback: Bilinear Texture Filtering

!19

• Tell OpenGL to use a tent filter instead of a box filter
• Magnification looks better, but blurry

–(texture is under-sampled for this resolution)
–Oh well...

Texture Maps

• A texel in a texture map is also a basis
function
–Think about it: it’s a finite set of numbers that

togethet define a function on the continuous 2D
domain

Texture Maps

• A texel in a texture map is also a basis
function
–Think about it: it’s a finite set of numbers that together

define a function on the continuous 2D domain

• The exact shape of the basis function
determined by the interpolation method used
–Most common: bilinear basis, here defined on [-1,1]2

Bilinear Basis Function
B(x, y) =

8
>>><

>>>:

(1� x)(1� y), 0 x, y 1

(1� x)(1 + y), 0 x 1,�1 y < 0

(1 + x)(1� y), �1 x < 0 y 1

(1 + x)(1 + y), �1 x, y < 0

“Projection Operators”

• What’s going on: we take a function defined
on a continuous domain, do something, and
get an approximate version out

“Projection Operators”

• Projection can be written as linear operator
• Take an arbitrary function L, return finite

approximation described by vector of
weights for basis functions

P

PL
(↵1,↵2, . . . ,↵n)

CS-E5520 Spring 2019 – Lehtinen

Different Projections

!25

• Sample at one point
– For vertex basis, look at value at the vertex and use as weight:

• This process takes samples at vertices and “smears”
them across the triangles to yield a continuously-
defined function

f(x) ⇡
X

i

Bi(x) f(xi)

Basis function
associated
with i:th vertex

Function value
at i:th vertex

CS-E5520 Spring 2019 – Lehtinen

Different Projections

L2

!26

• Sample at one point
– For vertex basis, look at value at the vertex and use as weight:

• “Least squares projection”, aka projection
– Find coefficients that minimize the squared norm of the error

integrated over the entire domain

f(x) ⇡
X

i

Bi(x) f(xi)

CS-E5520 Spring 2019 – Lehtinen

Least Squares Projection

(↵1,↵2, . . . ,↵n)
Z

S

f(x)�

NX

i=1

↵iBi(x)

!2

dx

!27

• Task: find such that the residual 
 
 
 
is minimized.

• Residual is input function f minus the approximation
• Minimize the squared integral of R over the domain

– If approximation is exact, this is zero (never happens)
– Need to solve for the weights

R :=

CS-E5520 Spring 2019 – Lehtinen

Turns Out To Be Simple

!28

Z

S

f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

CS-E5520 Spring 2019 – Lehtinen

Turns Out To Be Simple

!29

Z

S

f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

, expand the square

CS-E5520 Spring 2019 – Lehtinen

Turns Out To Be Simple

!30

Z

S

f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

,

✕ ✕ ✕

CS-E5520 Spring 2019 – Lehtinen

Turns Out To Be Simple

!31

Z

S

f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

,

,

✕ ✕ ✕

�
X

i

↵i

Z

S
f(x)Bi(x)dx+

X

i

X

j

↵i ↵j

Z

S
Bi(x)Bj(x)dx

(rearrange integration and summation)

CS-E5520 Spring 2019 – Lehtinen

Turns Out To Be Simple

!32

• So the final task is to find alphas that minimize  
 
 
 
or, in matrix-vector form

X

i

↵i

Z

S
f(x)Bi(x)dx+

X

i

X

j

↵i ↵j

Z

S
Bi(x)Bj(x)dx

:= hBi, Bji:= hf,Bii
| {z }| {z }

�
X

i

↵i hf,Bii+
X

i

X

j

↵i ↵j hBi, Bji

fi = hf,Bii
Bi,j = hBi, Bji

�fT ↵+↵TB↵

CS-E5520 Spring 2019 – Lehtinen !33

• It’s a quadratic function in the vector alpha
– f, B are constants, given f (x) and the basis functions Bi (x)

• What happens when you differentiate a quadratic
function and set to zero?

�fT ↵+↵TB↵

CS-E5520 Spring 2019 – Lehtinen

A Linear System

!34

• Least squares projection solution given by  
 
 
 
where and

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji

CS-E5520 Spring 2019 – Lehtinen

Easy Special Case: Box Functions

!35

• Least squares projection solution given by  
 
 
 
where and

• What if we use the piecewise constant box basis?
– Then Bi,j = 0 when i != j. (Why?)

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji

CS-E5520 Spring 2019 – Lehtinen

Easy Special Case: Box Functions

!36

• Least squares projection solution given by  
 
 
 
where and

• What if we use the piecewise constant box basis?
– Then Bi,j = 0 when i != j. (Why?)
– In fact, the Bi,j are just the areas under the boxes
– Convince yourself that then the basis coefficients are just area

averages of f over the boxes!

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji

CS-E5520 Spring 2019 – Lehtinen

OK, Why all the Trouble?

!37

• Video

CS-E5520 Spring 2019 – Lehtinen

Radiosity Derivation

!38

• Rendering equation

• Now let’s search for an approximate solution in terms
of basis functions, i.e. try to find coefficients s.t.

L = T L+ E

L(x) ⇡
X

i

↵i Bi(x)

CS-E5520 Spring 2019 – Lehtinen

Radiosity Derivation

!39

• Rendering equation

• This amounts to applying the projection operator:

L = T L+ E

PL = PT (PL) + PE

PL = approximate
solution in terms
of basis functions

PE = projected
emission function

PT = Transport
followed by
projection

CS-E5520 Spring 2019 – Lehtinen

Lo and Behold

!40

• The discretized rendering equation  
 
 
 
is actually a finite linear system. Let’s see why...

• Clearly both sides are finite basis expansions because
we always apply P to every term

• Hence, for the LHS and RHS to match, the basis
coefficients on both side must be equal

PL = PT (PL) + PE

CS-E5520 Spring 2019 – Lehtinen !41

• Let’s write things out a bit  

PL =
X

i

↵i Bi

= PT
X

j

↵j Bj + PE

=
X

j

↵j (PT Bj) + PE

TBj is the once-bounce illumination received
by all surfaces when the basis function Bj
acts as an emitter. P merely projects it!

Alphas are the unknowns we seek!

One sender basis function Bj

Visualizing PTBj

Red = The one-
bounce

illumination
received by

other surfaces
when Bj is the
only emitter

CS-E5520 Spring 2019 – Lehtinen

Let’s Finish It

!43

• is the basis expansion of the one-bounce
illumination that results when the emission is Bj

• Because it is a basis expansion, it has its own basis
coefficients. We’ll call them :

PT Bj

Bi,j

(PT Bj)(x) =
X

i

Bi,j Bi(x)

One sender basis
function Bj

Many receiving basis
functions whose

coefficients are Bi,j

Visualizing PTBj

CS-E5520 Spring 2019 – Lehtinen

Final Radiosity Equation

!45

• The abstract projected equation  
 
 
 
is actually the linear system  
 
 
 
where the components of alpha are the unknown
coefficients, the matrix B consists of the basis
coefficients of PTBj for all j as shown before, and e is
the basis coefficient vector projected emission PE.  
 

PL = PT (PL) + PE

↵ = B↵+ e

CS-E5520 Spring 2019 – Lehtinen

Important Point

!46

• This is all good, but we never ever form the matrix B
explicitly. Why?

↵ = B↵+ e

CS-E5520 Spring 2019 – Lehtinen

Important Point

!47

• This is all good, but we never ever form the matrix B
explicitly. Why?

• We can easily have 10M basis functions in the scene
=> matrix is 10M2 = 1014 float3 entries = 1015 bytes
– We really don’t have the time to compute them
– Nor space to store them

• Solution: use iterative methods

↵ = B↵+ e

CS-E5520 Spring 2019 – Lehtinen

Iterative Linear Solver

!48

• Iterative method means we don’t first compute the
matrix and then use a direct solver like Gaussian
elimination; instead, we compute matrix-vector
products Be directly and iterate

• Yes, you don’t need the full matrix to compute matrix-
vector products
– This is the basis for all iterative methods
– See Jacobi iteration, Gauss-Seidel iteration, conjugate gradient

method, Krylov subspace methods
– Some very smart approximate product algorithms are known

for some particular matrices/operators

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Gauss%25E2%2580%2593Seidel_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Krylov_subspace
http://en.wikipedia.org/wiki/Fast_multipole_method

CS-E5520 Spring 2019 – Lehtinen

Let’s Get Concrete

!49

• Turns out we can apply the Neumann series here, too!

• ... and this is precisely what Max Payne’s lighting
solver does, as well as you in Assn 2!
– Just one possible iteration for this equation, you’ll find lots of

others in textbooks (Jacobi, Gauss-Seidel, Southwell)
– Max Payne 2 does Southwell + smart partitioning, ask me

↵ = B↵+ e

↵ = e+Be+B2e+ . . .

CS-E5520 Spring 2019 – Lehtinen

Iterative Radiosity Solution

!50

• e is the vertex color vector where only the emitting
polygons’ vertices have a nonzero radiosity

• Initialize alpha = e, temp = e
• Then iterate:

– temp = B times temp
– alpha = alpha + temp

• Done!
– temp = {e, Be, BBe, ...}, alpha = {e, e+Be, e+Be+BBe, ...}

↵ = e+Be+B2e+ . . .

CS-E5520 Spring 2019 – Lehtinen

Computing the Product

!51

• How to compute B times temp?
– Using the basis expansion with coefficients temp as the

emission, compute at the one-bounce illumination cast on the
scene and determine its projection coefficients.

– When using vertex basis, very simple: evaluate the
hemispherical irradiance integral at each vertex and turn it into
outgoing radiance using albedo

– And don’t forget to divide by pi :)

CS-E5520 Spring 2019 – Lehtinen

One Last Practical Detail

!52

• We don’t actually store outgoing radiosity, but incident
irradiance instead
– Why? So that we can modulate the lighting using textures

• So, our basis expansion gives us irradiance, we turn it
into radiosity by dividing by pi and multiplying by
albedo in the shader

CS-E5520 Spring 2019 – Lehtinen

Pseudocode Using Vertex Basis

!53

// these are vectors of length N, where N is the number of vertices
// they store radiosity before multiplied by albedo
vector temp, temp2, alpha, e;
e = project(E); // set the colors of emitter vertices
temp = alpha = e; // init

for bounce=1 to numBounces
 clear(temp2); // set to zero
 for i=1 to N // loop over vertices

B = formBasis(vertices[i]); // you already know how
res = Vec3f(0);
// M is the number of rays to sample hemisphere with

 for j=1 to M
 Wi = drawCosineWeightedDirection(); // you know how
 y = rayCast(vertices[i], Wi); // you know how
 // get the radiosity for the hit point y, rho/pi is BRDF!
 Li = rho(y)/pi * interpolateIrradiance(y, temp);
 res = res + Li;
 end
 temp2[i] = res/M; // fixed bug noted on lecture 22.2.17!

 end
 temp = temp2;

 alpha = alpha + temp;
end

CS-E5520 Spring 2019 – Lehtinen

Interpolation

!54

• interpolateIrradiance(y, temp) takes the
hit point y and interpolates the irradiance values from
the corresponding corner vertices using barycentrics

• You remember this from C3100...

CS-E5520 Spring 2019 – Lehtinen

Barycentric Interpolation Recap

!55

• Values v1, v2, v3 defined at a, b, c
– Colors, normal, texture coordinates, etc.

• P(α, β, γ) = αa + βb + γc is the point...
• v(α, β, γ) = αv1 + βv2 + γv3 is the 

barycentric interpolation of  
v1-v3 at point P
– Sanity check: v(1,0,0) = v1, etc.

• I.e, once you know α, β, γ,  
you can interpolate values  
using the same weights.
– Convenient!

v1

v2

v3

P

CS-E5520 Spring 2019 – Lehtinen

mail

!56

E T E T T E T T T E

adapted from

E E + T E

+T 2E

E + T E

+T 2E

E + T E

+T 3E

CS-E5520 Spring 2019 – Lehtinen

Discussion

!57

• This was for vertex-based interpolation
• Often one uses texture maps, so-called lightmaps, for

storing the irradiance
– This is what we did (video)
– Why? To get detailed illumination, you need many vertices
– Downside: building UV parameterizations over the scene hard
– Also, we computed the hemispherical integrals using the GPU

using a so-called hemicube technique

• However, the main ingredients of the lighting solver
are precisely the same

http://dl.acm.org/citation.cfm?id=325171

CS-E5520 Spring 2019 – Lehtinen

Discussion 2

!58

• The loop over vertices is embarrassingly parallel
– We had a simple distributed cluster running this in Max Payne
– But need to synchronize across bounces

• But you can be even smarter
– In Max Payne 2, we solved each room in the scene separately

in its own cluster node
• Less data to transfer over network, faster gathering integrals

– Then, light was propagated between the rooms through 4D
light fields or Lumigraphs

– Corresponds to a two-level block-structured iteration on the
large linear system

http://dl.acm.org/citation.cfm?id=237200

CS-E5520 Spring 2019 – Lehtinen

Discussion 3

!59

• You can also store directional information, not just
irradiance
– This allows you to combine radiosity and normal maps
– Even if the irradiance is coarsely-sampled, you still get nice

surface detail
– “Spherical Harmonics” and “vector irradiance” are keywords
– Extra credit in your assignment!

• Also, as you notice, the lighting is static
– But you can allow the lighting to vary in some predetermined

linear space => Precompute Radiance Transfer (VIDEO)
– See my master’s thesis and ToG paper for an in-depth

introduction to PRT

http://www.tml.tkk.fi/~jaakko/dt/JaakkoLehtinen_MSc_thesis.pdf
http://dl.acm.org/citation.cfm?doid=1289603.1289604

Radiosity + Normals in Half-Life 2
Slide by Gary McTaggart (Valve)

Slide by Gary McTaggart (Valve)

Slide by Gary McTaggart (Valve)

Slide by Gary McTaggart (Valve)

Slide by Gary McTaggart (Valve)

CS-E5520 Spring 2019 – Lehtinen

Discussion 4

!66

• It often makes sense to compute direct lighting
separately and only use basis functions for indirect

• Also, does it make sense to compute the lighting at a
high resolution where it doesn’t vary very fast..?

CS-E5520 Spring 2019 – Lehtinen

Discussion 4

!67

• It often makes sense to compute direct lighting
separately and only use basis functions for indirect

• Also, does it make sense to compute the lighting at a
high resolution where it doesn’t vary very fast..?
– You’re right, it doesn’t

• Adaptive refinement means you compute coarsely, then
subdivide where you think you need to

CS-E5520 Spring 2019 – Lehtinen

Adaptive Refinement Example

!68

Krivanek 2004

http://dcgi.felk.cvut.cz/publications/2004/krivanek-sccg-amsp

CS-E5520 Spring 2019 – Lehtinen

Final Conclusions

!69

• Meshing is hard
• Lightmaps are hard (but they are still used)

• You can get around limitations of both by using
meshless basis functions (Lehtinen et al. 2008)
– Also supports adaptive refinement
– Rendering cost is pretty high, though.

http://people.csail.mit.edu/jaakko/meshless/

CS-E5520 Spring 2019 – Lehtinen

Modern Take (link)

!70

https://users.aalto.fi/~silvena4/Publications/SIGGRAPH_2015_Remedy_Notes.pdf

CS-E5520 Spring 2019 – Lehtinen !71

Direct-to-indirect precomputed light transport 
using meshless hierarchical basis functions

CS-E5520 Spring 2019 – Lehtinen

That’s it for Today

!72

• Further reading
– Pat Hanrahan’s slides on MC

integration I, MC integration II
– My master’s thesis introduces math

behind discretized global
illumination

– Cohen & Wallace: Radiosity and
Realistic Image Synthesis

https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloILecture
https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloILecture
https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloIILecture
http://www.tml.tkk.fi/~jaakko/dt/JaakkoLehtinen_MSc_thesis.pdf

