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estudibasic, Rendered using Maxwell


http://www.maxwellrender.com

What is the radiance hitting my
Solution of the rendering equation




Today

 Discretizing the rendering equation

—Radiosity (topic of your assignment!)

CS-E5520 Spring 2019 — Lehtinen
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So0-called radiosity methods express
the Infinitely complex solution'as'a
sum of simple basis functions

This is the basis for light mapping;as
seen in many games

'We discretize the infinitely complex

b renderlng equation 1o getafinite
. equat| | We can solve.










sis function™?

Implest version is to divide the
surfaces up to small patches and

approximate the radiosity of each
patch as constan

Now there are only finitely

unknown the radiosities J] he
patc




Some Function on a Continuous
Domain



Unweighted Basis Functions

* Here each basis function is a box, translated
so that they don’t overlap




Unweighted Basis Functions

* Here each basis function is a box, translated
so that they don’t overlap

Bi(z) Ba(x Bn(aﬁ)
‘..; ‘




Approximation by Basis Functions

* We can try to choose weights for the basis
functions such that together the boxes
approximate the input function well

* This is called projection

o, By, ()




Projection onto Finite Basis”™

L7

approximation |
weighted basis functions




Projection onto Finite Basis, Piecewise
Linear

A~ =Y e N

approximation weighted basis functions
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TODO Fourier



Piecewise Linear Basis Functions

« Each vertex has one
basis function

—1 at the vertex, falls linearly
to 0 inside the connected
triangles

—Easy to evaluate using

definition ~
—But remember each vertex %@%%%

affects all connected tris!
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—Barycentrics!
- Sampling values at
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Flashback: Bilinear Texture Filtering

» Tell OpenGL to use a tent filter instead of a box filter

* Magnification looks better, but blurry

—(texture 1s under-sampled for this resolution)
—Oh well...

CS-E5520 Spring 2019 — Lehtinen 19



Texture Maps

* A texel in a texture map is also a basis
function

—Think about it: it’s a finite set of humbers that
togethet define a function on the continuous 2D
domain



Texture Maps

* A texel in a texture map is also a basis
function

—Think about it: it’s a finite set of numbers that together
define a function on the continuous 2D domain

* The exact shape of the basis function
determined by the interpolation method used

—Most common: bilinear basis, here defined on [-1,1]2
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“Projection Operators”

» What’s going on: we take a function defined
on a continuous domain, do something, and
get an approximate version out
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“Projection Operators”

* Projection can be written as linear operator P

- Take an arbitrary function L, return finite
approximation P described by vector of
weights (a1, as, . .., ) for basis functions
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Different Projections

» Sample at one point

—For vertex basis, look at value at the vertex and use as weight:

f(x) ~ Z Bi(x) f(x;)

[

Basis function Function value

associated at i:th vertex
with 1:th vertex

» This process takes samples at vertices and “smears”
them across the triangles to yield a continuously-
deﬁﬂed funCtiOn CS-E5520 Spring 2019 — Lehtinen 25



Different Projections

» Sample at one point

—For vertex basis, look at value at the vertex and use as weight:

f(x) ~ Z Bi(x) f(x;)

» “Least squares projection”, aka Lo projection

—Find coefficients that minimize the squared norm of the error
integrated over the entire domain

CS-E5520 Spring 2019 — Lehtinen 26



Least Squares Projection

» Task: find (ay,as,...,a,) such that the residual

R = /S(f(x);asz(x)) dx

1S minimized.

* Residual 1s mput function f minus the approximation
* Minimize the squared integral of R over the domain

—If approximation 1s exact, this i1s zero (never happens)
—Need to solve for the weights

CS-E5520 Spring 2019 — Lehtinen
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Turns Out To Be Simple

argmin,, /S (f(x) — Z:Zl oziBi(a:)) dx

CS-E5520 Spring 2019 — Lehtinen
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Turns Out To Be Simple

argmin,, /S (f(x) — Z:Zl oziBi(a:)) dx

< expand the square

/S (f(x)2 _ QZf(:E) o; Bi(z) + 22:2:04@- Oszi(aj)Bj(gj)) e

CS-E5520 Spring 2019 — Lehtinen 29



Turns Out To Be Simple

argmin,, /S (f(x) — Zzzl oziBi(a:‘)) dx

<~

/ (% XZf a; B +XLL04@ a; B )) dx

CS-E5520 Spring 2019 — Lehtinen 30



Turns Out To Be Simple

argmin,, /S (f(x) — Z:Zl ozz-Bi(:(;)> dx

CS-E5520 Spring 2019 — Lehtin



Turns Out To Be Simple

Zai/sf(x) Bi(x)da:—l—ZZozi ozj/SBi(a:)Bj(x)dx
N , i \ y
= (f, Bi) = (Bi, Bj)

» So the final task 1s to find alphas that minimize

=D _0i(fiBi)+ ) > aia; (B, Bj)

or, 1n matrix-vector form

—fla+ a’Ba

CS-E5520 Spring 2019 — Lehtinen 32



—f"a+a’Ba

» It’s a quadratic function in the vector alpha

—f, B are constants, given f (x) and the basis functions B; (x)

* What happens when you differentiate a quadratic
function and set to zero?

CS-E5520 Spring 2019 — Lehtinen
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A Linear System

 Least squares projection solution given by

Boa=7f

where f; = (f, B;) and B, j = (B, B;)

CS-E5520 Spring 2019 — Lehtinen
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Easy Special Case: Box Functions

 Least squares projection solution given by

Ba=f

where f; = (f, B;) and B, j = (B, B;)

 What if we use the piecewise constant box basis?
—Then B;; =0 when i !=;. (Why?)

CS-E5520 Spring 2019 — Lehtinen
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Easy Special Case: Box Functions

 Least squares projection solution given by

Ba=f

where f; = (f, B;) and B, j = (B, B;)

 What if we use the piecewise constant box basis?
—Then B;; =0 when i !=;. (Why?)
—In fact, the Bi; are just the areas under the boxes

—Convince yourself that then the basis coefficients are just area
averages of f over the boxes!

CS-E5520 Spring 2019 — Lehtinen 36



OK, Why all the Trouble?

* Video

CS-E5520 Spring 2019 — Lehtinen
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Radiosity Derivation

* Rendering equation
L=TL+E

* Now let’s search for an approximate solution in terms
of basis functions, 1.e. try to find coefficients s.t.

L(z) =~ Z o; B;(x)

CS-E5520 Spring 2019 — Lehtinen
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Radiosity Derivation

* Rendering equation

L=TL+E

» This amounts to applying the projection operator:

folowed by
/ poro(j);v(:?iony
PL ="PT(PL)+PE

[_— !

PL = approximate PE = projected
solution in terms emission function

of basis functions
CS-E5520 Spring 2019 — Lehtinen
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Lo and Behold

» The discretized rendering equation

PL = PT(PL)+ PE

1s actually a finite linear system. Let’s see why...

 Clearly both sides are finite basis expansions because
we always apply P to every term

 Hence, for the LHS and RHS to match, the basis
coefficients on both side must be equal

CS-E5520 Spring 2019 — Lehtinen
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* Let’s write things out a bit

Alphas are the unknowns we seek!

j T
TB;j is the once-bounce illumination received

by all surfaces when the basis function B;
acts as an emitter. P merely projects it!

CS-E5520 Spring 2019 — Lehtinen
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Visualizing PTB;

One sender basis function B;

Red = The one-
bounce
illumination
received by
other surfaces
when Bij is the
only emitter



Let's Finish It

» PT B; is the basis expansion of the one-bounce
illumination that results when the emission 1s B;j

* Because 1t 1s a basis expansion, 1t has 1ts own basis
coefficients. We’ll call them B; ;-

(PT B;)( Z B, : B;(

CS-E5520 Spring 2019 — Lehtinen
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Visualizing PTB}

0,
0,
One sender basis
function B;
0,
0,
0,

Viany receiving basis
functions whod@
coefficients are Bi,

O



Final Radiosity Equation

» The abstract projected equation

PL = PT(PL)+ PE

1s actually the linear system
oa=Ba-+e

where the components of alpha are the unknown
coefficients, the matrix B consists of the basis
coefficients of PTB;, for all j as shown before, and e 1s
the basis coefficient vector projected emission PE.

CS-E5520 Spring 2019 — Lehtinen
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Important Point

oa—=Boa+e

» This 1s all good, but we never ever form the matrix B
explicitly. Why?

CS-E5520 Spring 2019 — Lehtinen
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Important Point

oa—=Boa+e

» This 1s all good, but we never ever form the matrix B
explicitly. Why?

* We can easily have 10M basis functions 1n the scene
=> matrix 1s 10M2= 1014 float3 entries = 1015 bytes

— We really don’t have the time to compute them
—Nor space to store them

e Solution: use 1terative methods

CS-E5520 Spring 2019 — Lehtinen
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Iterative Linear Solver

o [terative method means we don’t first compute the
matrix and then use a direct solver like Gaussian
elimination; instead, we compute matrix-vector
products Be directly and iterate

* Yes, you don’t need the full matrix to compute matrix-
vector products
—This 1s the basis for all iterative methods

—See Jacobi iteration, Gauss-Seidel iteration, conjugate gradient
method, Krylov subspace methods

—Some very smart approximate product algorithms are known

for some particular matrices/operators
CS-E5520 Spring 2019 — Lehtinen 48



http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Gauss%25E2%2580%2593Seidel_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Krylov_subspace
http://en.wikipedia.org/wiki/Fast_multipole_method

Let’'s Get Concrete

oa=DBa+e
» Turns out we can apply the Neumann series here, too!

o =e-+ Be-+ B’e+ ...

* ... and this 1s precisely what Max Payne’s lighting
solver does, as well as you 1n Assn 2!

— Just one possible 1teration for this equation, you’ll find lots of
others 1n textbooks (Jacobi, Gauss-Seidel, Southwell)

—Max Payne 2 does Southwell + smart partitioning, ask me
CS-E5520 Spring 2019 — Lehtinen 49



Iterative Radiosity Solution

o =e-+ Be-+ B’e+ ...

* ¢ 1s the vertex color vector where only the emitting
polygons’ vertices have a nonzero radiosity

* Initialize alpha = e, temp = ¢
* Then 1terate:
—temp = B times temp
—alpha = alpha + temp
* Done!
—temp = {e, Be, BBe, ...}, alpha = {e, e+tBe, etBe+BBe, ...}

CS-E5520 Spring 2019 — Lehtinen
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Computing the Product

* How to compute B times temp?

—Using the basis expansion with coefficients temp as the
emission, compute at the one-bounce 1llumination cast on the
scene and determine 1ts projection coefficients.

—When using vertex basis, very simple: evaluate the
hemispherical irradiance integral at each vertex and turn 1t into
outgoing radiance using albedo

—And don’t forget to divide by p1 :)

CS-E5520 Spring 2019 — Lehtinen 91



One Last Practical Detall

* We don’t actually store outgoing radiosity, but incident
irradiance instead

—Why? So that we can modulate the lighting using textures

* So, our basis expansion gives us irradiance, we turn 1t
into radiosity by dividing by p1 and multiplying by
albedo 1n the shader

CS-E5520 Spring 2019 — Lehtinen 52



Pseudocode Using Vertex Basis

// these are vectors of length N, where N is the number of vertices

// they store radiosity before multiplied by albedo

vector temp, temp2, alpha, e;

e = project(E); // set the colors of emitter vertices
temp = alpha = e; // init

for bounce=1 to numBounces

clear(temp2); // set to zero
for i=1 to N // loop over vertices
B = formBasis(vertices([i]); // you already know how

res = Vec3f(0);
// M is the number of rays to sample hemisphere with
for j=1 to M
Wi = drawCosineWeightedDirection(); // you know how
y = rayCast( vertices[i], Wi ); // you know how
// get the radiosity for the hit point y, rho/pi is BRDF!
Li = rho(y)/pi * interpolatelIrradiance( y, temp );
res = res + Li;
end
temp2[i] = res/M;
end
temp = temp2;
alpha = alpha + temp;

CS-E5520 Spring 2019 — Lehtinen 53
end



Interpolation

* interpolateIrradiance(y, temp) takes the
hit point y and interpolates the irradiance values from
the corresponding corner vertices using barycentrics

* You remember this from C3100...

CS-E5520 Spring 2019 — Lehtinen
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Barycentric Interpolation Recap

e Values vi, v2, vadefined at a, b, ¢

—Colors, normal, texture coordinates, etc.

e P(a, B, y) = aa + b + ye¢ 1s the point...

e v(a, B, Y) = avi

barycentric interpolation of

vi-v3 at point P

—Sanity check: v(1,0,0) = vi, etc.
e I.e, once you know o, B,y, Vi1

you can interpolate values o
using the same weights.

—Convenient!

Bva

CS-E5520 Spring 2019 — Lehtinen
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adapted from Pat Hanrahan, Spring 2010



Discussion

» This was for vertex-based interpolation

» Often one uses texture maps, so-called lightmaps, for
storing the 1rradiance

—This 1s what we did (video)

—Why? To get detailed 1llumination, you need many vertices
—Downside: building UV parameterizations over the scene hard

—Also, we computed the hemispherical integrals using the GPU
using a so-called hemicube technique

* However, the main ingredients of the lighting solver
are precisely the same

CS-E5520 Spring 2019 — Lehtinen 57


http://dl.acm.org/citation.cfm?id=325171

Discussion 2

* The loop over vertices 1s embarrassingly parallel

—We had a simple distributed cluster running this in Max Payne
—But need to synchronize across bounces

* But you can be even smarter

—In Max Payne 2, we solved each room 1n the scene separately
in 1ts own cluster node
* Less data to transfer over network, faster gathering integrals

—Then, light was propagated between the rooms through 4D
light fields or Lumigraphs

—Corresponds to a two-level block-structured iteration on the

large linear system
CS-E5520 Spring 2019 — Lehtinen 58


http://dl.acm.org/citation.cfm?id=237200

Discussion 3

* You can also store directional information, not just
irradiance

—This allows you to combine radiosity and normal maps

—Even 1if the 1rradiance 1s coarsely-sampled, you still get nice
surface detail

—“Spherical Harmonics” and “vector irradiance” are keywords

—Extra credit in your assignment!

* Also, as you notice, the lighting 1s static

—But you can allow the lighting to vary in some predetermined
linear space => Precompute Radiance Transfer (VIDEO)

—See my master’s thesis and ToG paper for an in-depth
introduction to PRT

CS-E5520 Spring 2019 — Lehtinen 59



http://www.tml.tkk.fi/~jaakko/dt/JaakkoLehtinen_MSc_thesis.pdf
http://dl.acm.org/citation.cfm?doid=1289603.1289604

Radiosity + Normals in Half-Life 2

Slide by Gary McTaggart (Valve)

Radiosity




Slide by Gary McTaggart (Valve)
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Slide by Gary McTaggart (Valve)

Normal Mapped Radiosity




Albedo
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Slide by Gary McTaggart (Valve)

Albedo * Normal Mapped Radiosity
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Discussion 4

o It often makes sense to compute direct lighting
separately and only use basis functions for indirect

* Also, does 1t make sense to compute the lighting at a
high resolution where 1t doesn’t vary very fast..?

CS-E5520 Spring 2019 — Lehtinen 66



Discussion 4

o It often makes sense to compute direct lighting
separately and only use basis functions for indirect

* Also, does 1t make sense to compute the lighting at a
high resolution where 1t doesn’t vary very fast..?

—You’re right, it doesn’t

» Adaptive refinement means you compute coarsely, then
subdivide where you think you need to
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Adaptive Refinement Example

Krivanek 2004

NN

(a) (b)

Figure 5: (a) Uniform subdivision (1953 vertices and 3504 triangles). (b) Adaptive subdivision (1540 vertices, 3720
triangles).
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http://dcgi.felk.cvut.cz/publications/2004/krivanek-sccg-amsp

Final Conclusions

* Meshing 1s hard
* Lightmaps are hard (but they are still used)

* You can get around limitations of both by using
meshless basis functions (Lehtinen et al. 2008)

— Also supports adaptive refinement
—Rendering cost 1s pretty high, though.

CS-E5520 Spring 2019 — Lehtinen
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http://people.csail.mit.edu/jaakko/meshless/

Modern Take (link)

Multi-Scale Global
lllumination in Quantum Break

Ari Silvennoinen Ville Timonen

Remedy Entertainment Remedy Entertainment
Aalto University

REMEDY

@ SIGGRAPH2015 @
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https://users.aalto.fi/~silvena4/Publications/SIGGRAPH_2015_Remedy_Notes.pdf
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Direct-to-indirect precomputed light transport
using meshless hierarchical basis functions



That’s’i%c for Today

. Further reading

—Pat Hanrahan’s slides on MC
integration I, MC integration II

— My master’s thesis mtroduces math
behind discretized global
1llumination

—Cohen & Wallace: Radiosity and
Realistic Image Synthesis



https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloILecture
https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloILecture
https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloIILecture
http://www.tml.tkk.fi/~jaakko/dt/JaakkoLehtinen_MSc_thesis.pdf

