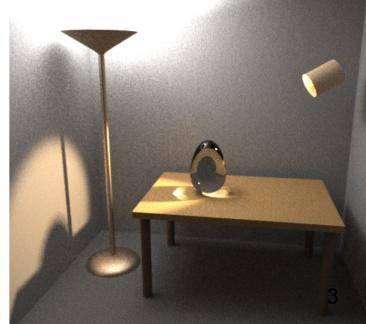


Today

- Discretizing the rendering equation
 - -Radiosity (topic of your assignment!)



The appearance of diffuse surfaces doesn't change over view direction.

Outgoing radiance from diffuse surface = radiosity

HOWEVER every surface point still has its own radiosity value, and there are infinitely many of them.

So-called *radiosity methods* express the infinitely complex solution as a sum of simple *basis functions*.

This is the basis for *light mapping*, as seen in many games.

We *discretize* the infinitely complex rendering equation to get a finite equation we can solve.

Continuous

Discretized

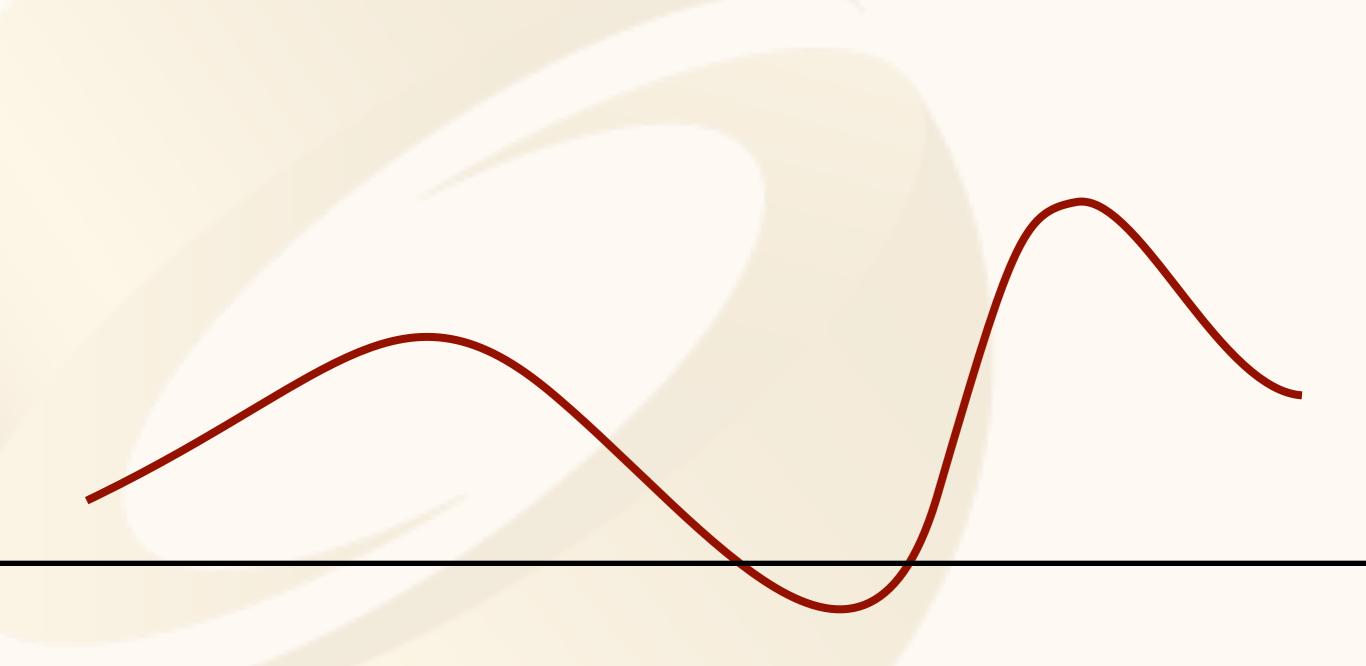
Discretized

"Basis function"?

Simplest version is to divide the surfaces up to small patches and approximate the radiosity of each patch as constant.

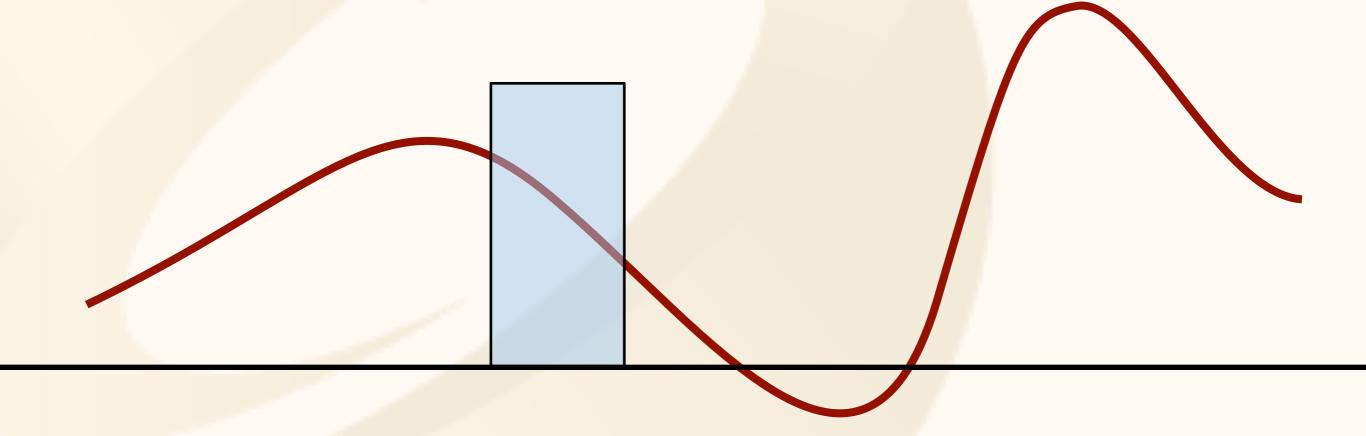
Now there are only *finitely many* unknowns: the radiosities of the patches.

Some Function on a Continuous Domain



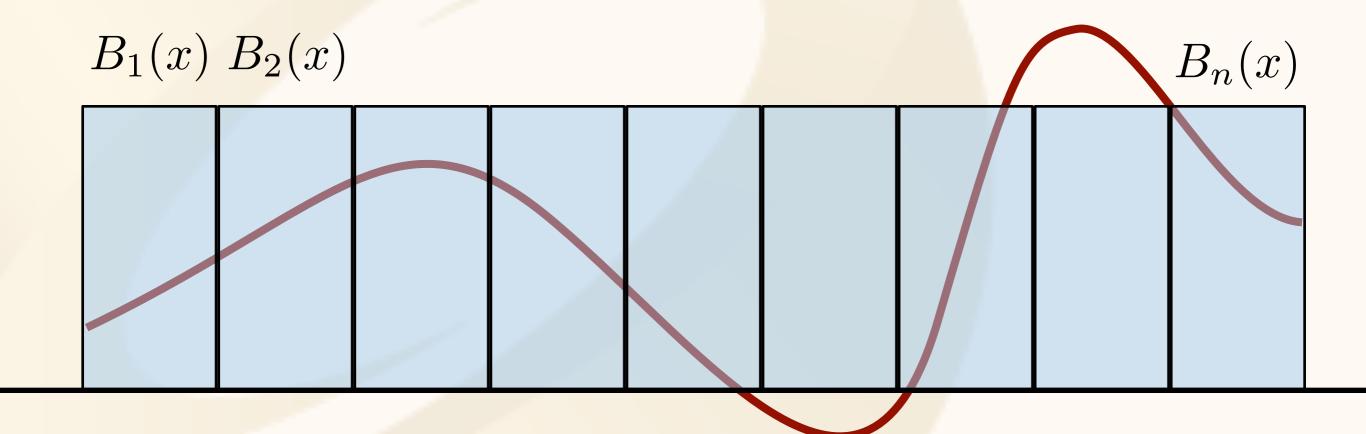
Unweighted Basis Functions

 Here each basis function is a box, translated so that they don't overlap



Unweighted Basis Functions

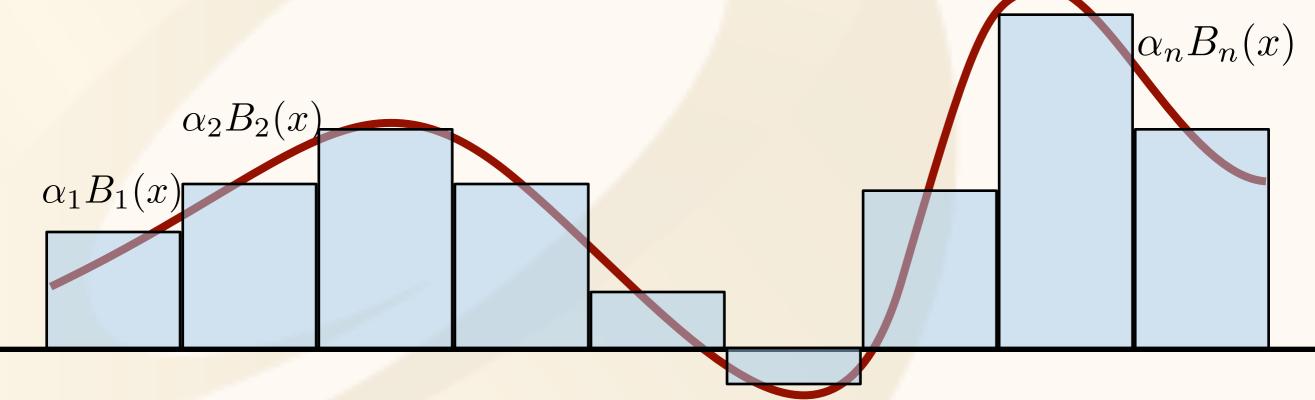
 Here each basis function is a box, translated so that they don't overlap



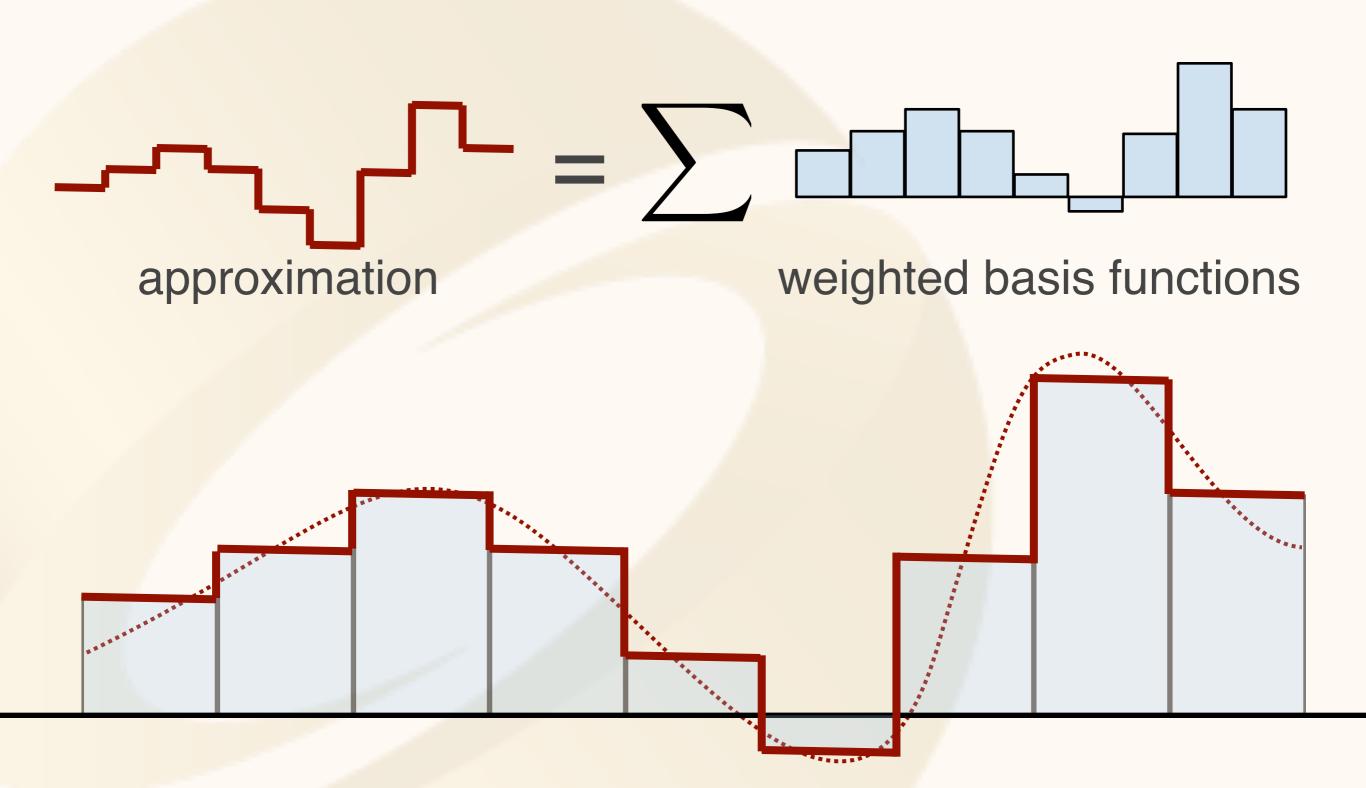
Approximation by Basis Functions

 We can try to choose weights for the basis functions such that together the boxes approximate the input function well

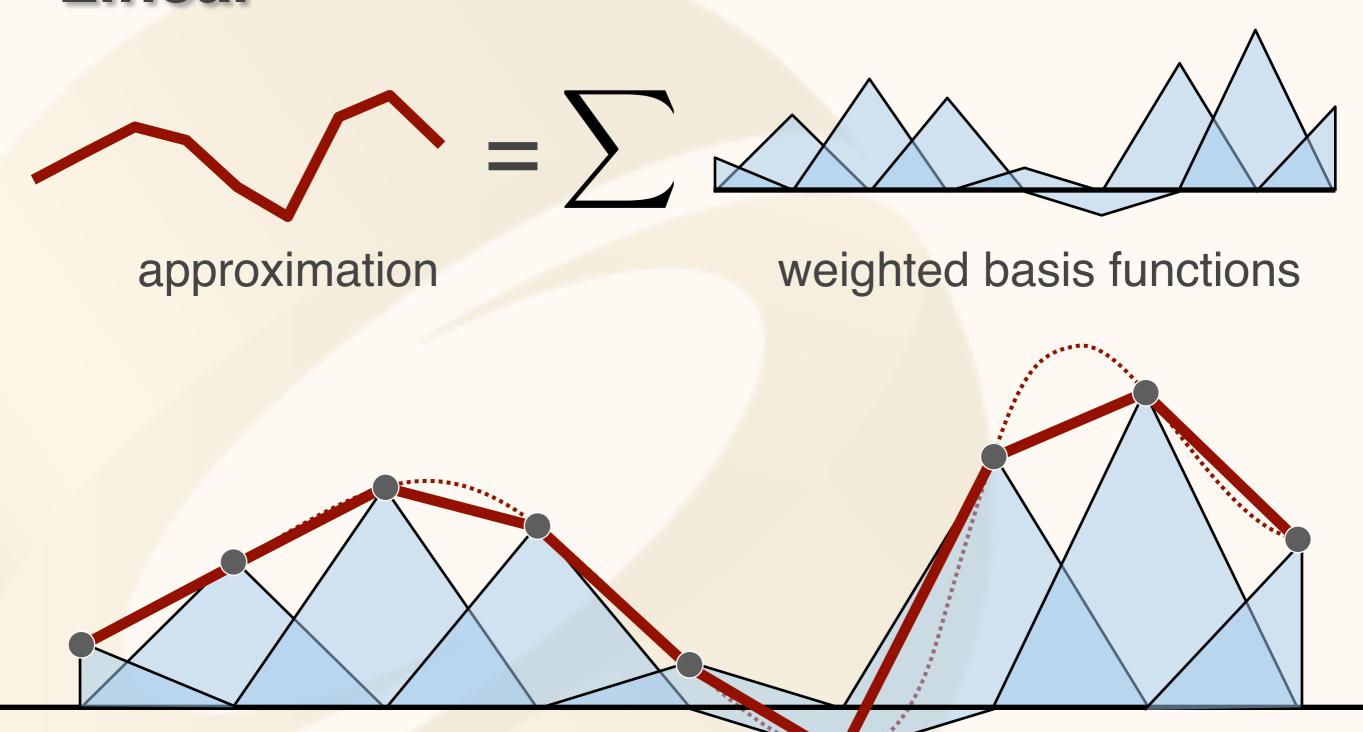
This is called projection



"Projection onto Finite Basis"



Projection onto Finite Basis, Piecewise Linear



TODO Fourier

Piecewise Linear Basis Functions

- Each vertex has one basis function
 - -1 at the vertex, falls linearly to 0 inside the connected triangles
 - Easy to evaluate using barycentrics: remember, this is pretty much their definition
 - But remember each vertex affects all connected tris!

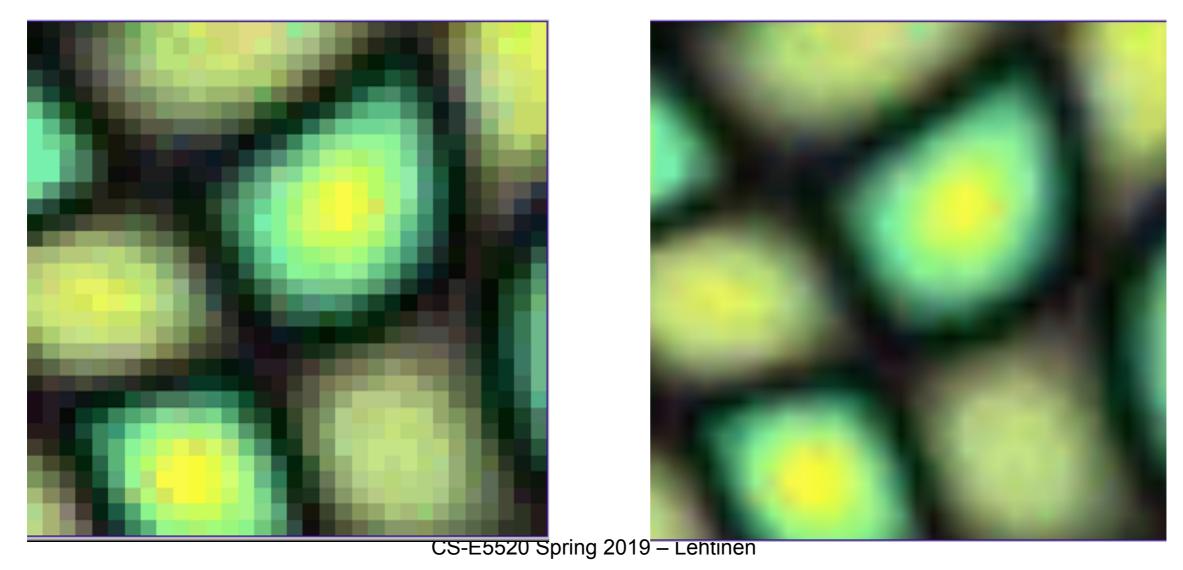
Piecewise Linear Basis Functions

Each vertex has one basis function

- -1 at the vertex, falls linearly to 0 inside the connected triangles
- -Barycentrics!
- Sampling values at vertices and interpolating linearly = piecewise linear

Flashback: Bilinear Texture Filtering

- Tell OpenGL to use a tent filter instead of a box filter
- Magnification looks better, but blurry
 - -(texture is under-sampled for this resolution)
 - -Oh well...

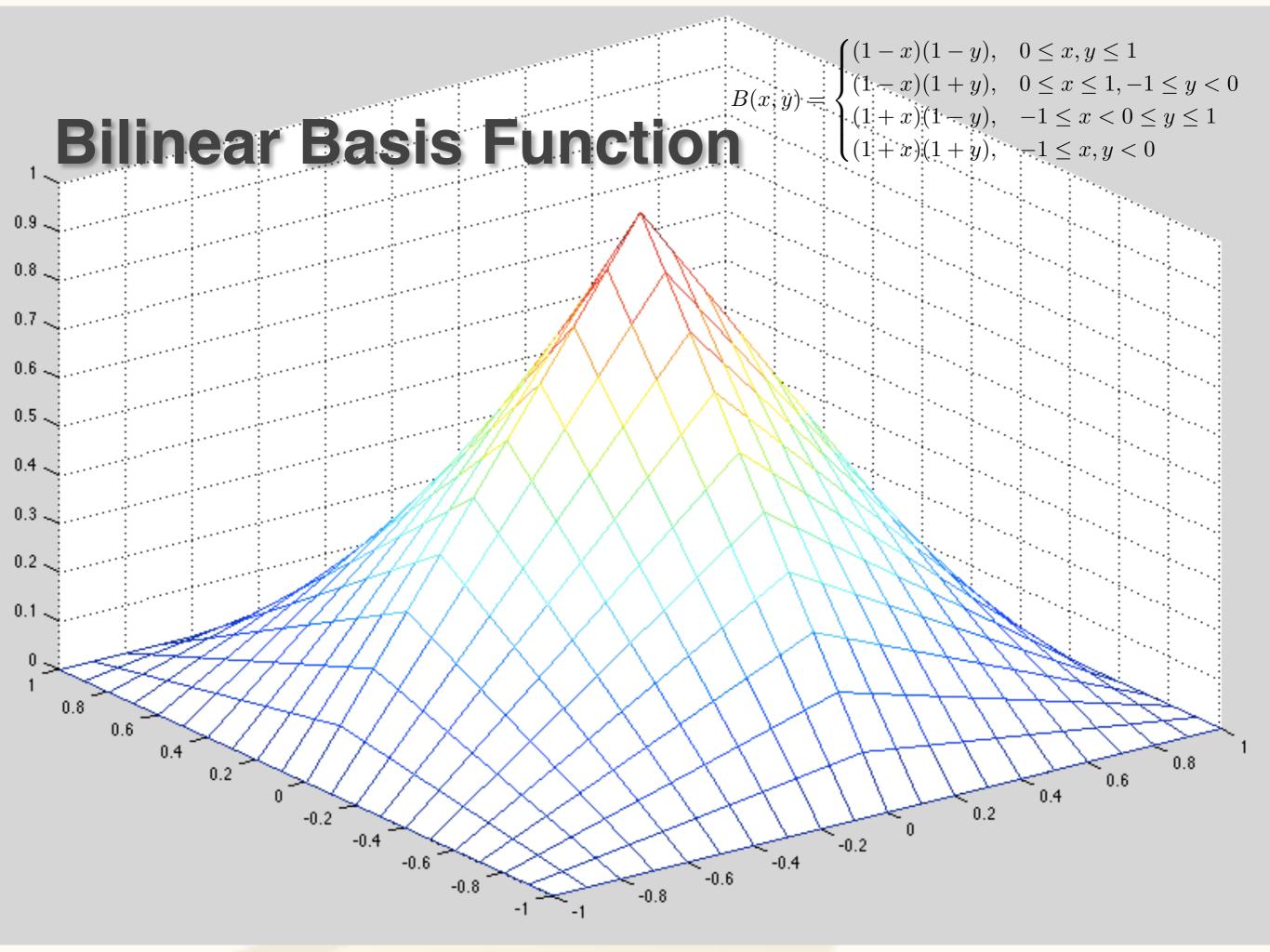


Texture Maps

- A texel in a texture map is also a basis function
 - -Think about it: it's a finite set of numbers that togethet define a function on the continuous 2D domain

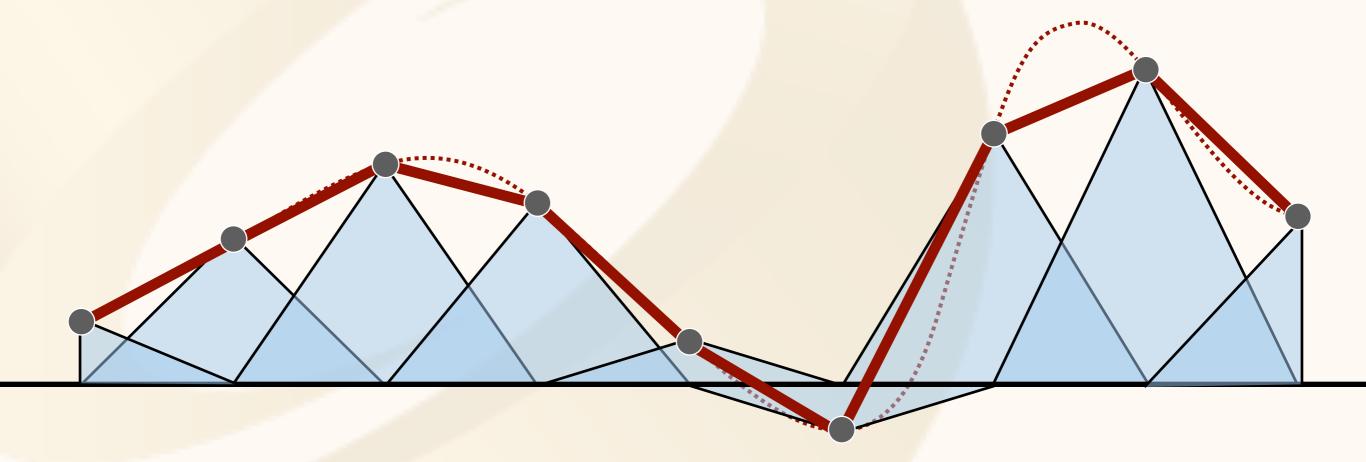
Texture Maps

- A texel in a texture map is also a basis function
 - -Think about it: it's a finite set of numbers that together define a function on the continuous 2D domain
- The exact shape of the basis function determined by the interpolation method used
 - -Most common: bilinear basis, here defined on [-1,1]²



"Projection Operators"

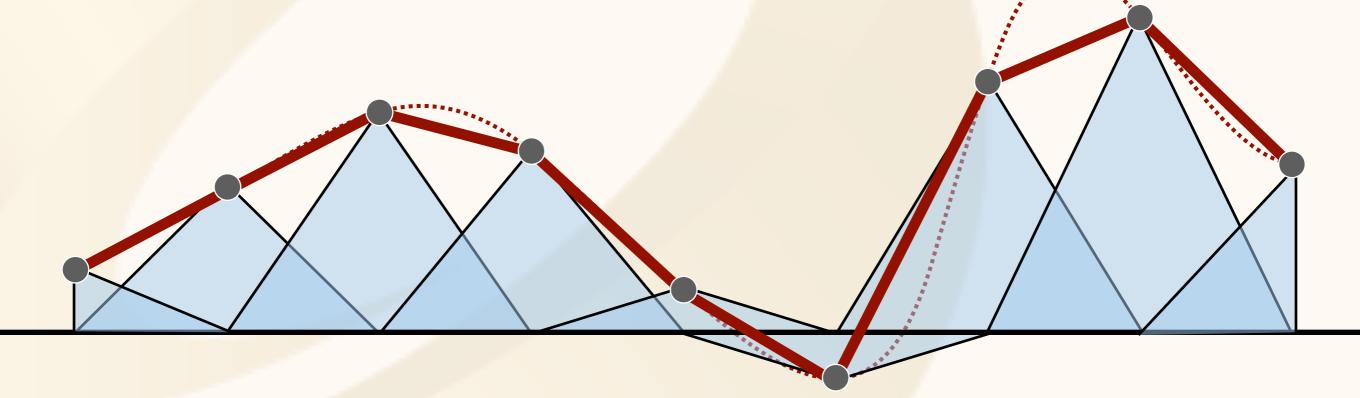
 What's going on: we take a function defined on a continuous domain, do something, and get an approximate version out



"Projection Operators"

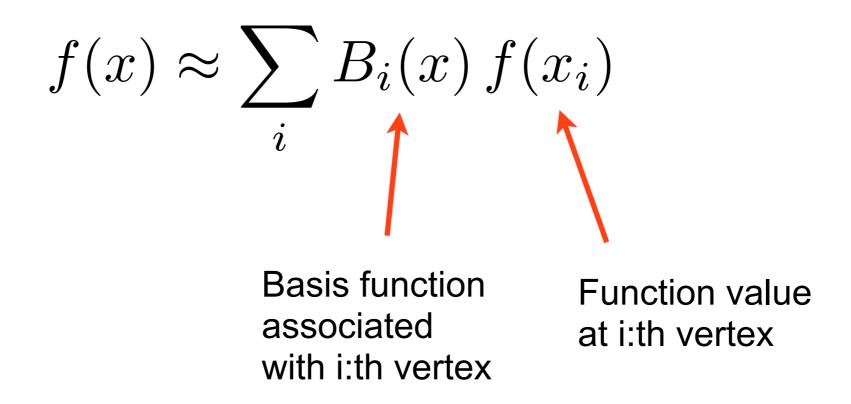
 \cdot Projection can be written as linear operator ${\cal P}$

• Take an arbitrary function L, return finite approximation $\mathcal{P}L$ described by vector of weights $(\alpha_1, \alpha_2, \dots, \alpha_n)$ for basis functions



Different Projections

- Sample at one point
 - -For vertex basis, look at value at the vertex and use as weight:



• This process takes samples at vertices and "smears" them across the triangles to yield a continuouslydefined function

Different Projections

- Sample at one point
 - -For vertex basis, look at value at the vertex and use as weight:

$$f(x) \approx \sum_{i} B_i(x) f(x_i)$$

- ullet "Least squares projection", aka L_2 projection
 - -Find coefficients that minimize the squared norm of the error integrated over the entire domain

Least Squares Projection

• Task: find $(\alpha_1, \alpha_2, \dots, \alpha_n)$ such that the *residual*

$$R := \int_{S} \left(f(x) - \sum_{i=1}^{N} \alpha_{i} B_{i}(x) \right)^{2} dx$$

is minimized.

- Residual is input function f minus the approximation
- Minimize the squared integral of R over the domain
 - -If approximation is exact, this is zero (never happens)
 - -Need to solve for the weights

$$\operatorname{argmin}_{\alpha} \int_{S} \left(f(x) - \sum_{i=1}^{N} \alpha_{i} B_{i}(x) \right)^{2} dx$$

$$\operatorname{argmin}_{\alpha} \int_{S} \left(f(x) - \sum_{i=1}^{N} \alpha_{i} B_{i}(x) \right)^{2} dx$$

 \Leftrightarrow expand the square

$$\int_{S} \left(f(x)^{2} - 2\sum_{i} f(x) \alpha_{i} B_{i}(x) + 2\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} B_{i}(x) B_{j}(x) \right) dx$$

$$\operatorname{argmin}_{\alpha} \int_{S} \left(f(x) - \sum_{i=1}^{N} \alpha_{i} B_{i}(x) \right)^{2} dx$$

$$\Leftrightarrow$$

$$\int_{S} \left(f(x)^{2} - \sum_{i=1}^{N} f(x) \alpha_{i} B_{i}(x) + \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} B_{i}(x) B_{j}(x) \right) dx$$

$$\operatorname{argmin}_{\alpha} \int_{S} \left(f(x) - \sum_{i=1}^{N} \alpha_{i} B_{i}(x) \right)^{2} dx$$

$$\Leftrightarrow$$

$$\int_{S} \left(f(x)^{2} - \mathbb{X} \sum_{i} f(x) \alpha_{i} B_{i}(x) + \mathbb{X} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} B_{i}(x) B_{j}(x) \right) dx$$

(rearrange integration and summation)

$$-\sum_{i} \alpha_{i} \int_{S} f(x) B_{i}(x) dx + \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \int_{S} B_{i}(x) B_{j}(x) dx$$

$$\sum_{i} \alpha_{i} \int_{S} f(x) B_{i}(x) dx + \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \int_{S} B_{i}(x) B_{j}(x) dx$$

$$:= \langle f, B_{i} \rangle \qquad := \langle B_{i}, B_{j} \rangle$$

• So the final task is to find alphas that minimize

$$-\sum_{i} \alpha_{i} \langle f, B_{i} \rangle + \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \langle B_{i}, B_{j} \rangle$$

or, in matrix-vector form

$$-oldsymbol{f}^Toldsymbol{lpha}+oldsymbol{lpha}^Toldsymbol{B}oldsymbol{lpha} \ B_{i,j}=\langle B_i,B_j
angle$$

$$-\boldsymbol{f}^T \boldsymbol{\alpha} + \boldsymbol{\alpha}^T \boldsymbol{B} \boldsymbol{\alpha}$$

- It's a quadratic function in the vector alpha
 - -f, **B** are constants, given f(x) and the basis functions $B_i(x)$

• What happens when you differentiate a quadratic function and set to zero?

A Linear System

• Least squares projection solution given by

$$Blpha=f$$

where
$$f_i = \langle f, B_i \rangle$$
 and $B_{i,j} = \langle B_i, B_j \rangle$

Easy Special Case: Box Functions

• Least squares projection solution given by

$$Blpha=f$$

where
$$f_i = \langle f, B_i \rangle$$
 and $B_{i,j} = \langle B_i, B_j \rangle$

- What if we use the piecewise constant box basis?
 - -Then $B_{i,j} = 0$ when $i \neq j$. (Why?)

Easy Special Case: Box Functions

Least squares projection solution given by

$$B\alpha = f$$

where
$$f_i = \langle f, B_i \rangle$$
 and $B_{i,j} = \langle B_i, B_j \rangle$

- What if we use the piecewise constant box basis?
 - -Then $B_{i,j} = 0$ when i != j. (Why?)
 - In fact, the $B_{i,j}$ are just the areas under the boxes
 - -Convince yourself that then the basis coefficients are just area averages of f over the boxes!

OK, Why all the Trouble?

Video

Radiosity Derivation

Rendering equation

$$L = \mathcal{T}L + E$$

• Now let's search for an approximate solution in terms of basis functions, i.e. try to find coefficients s.t.

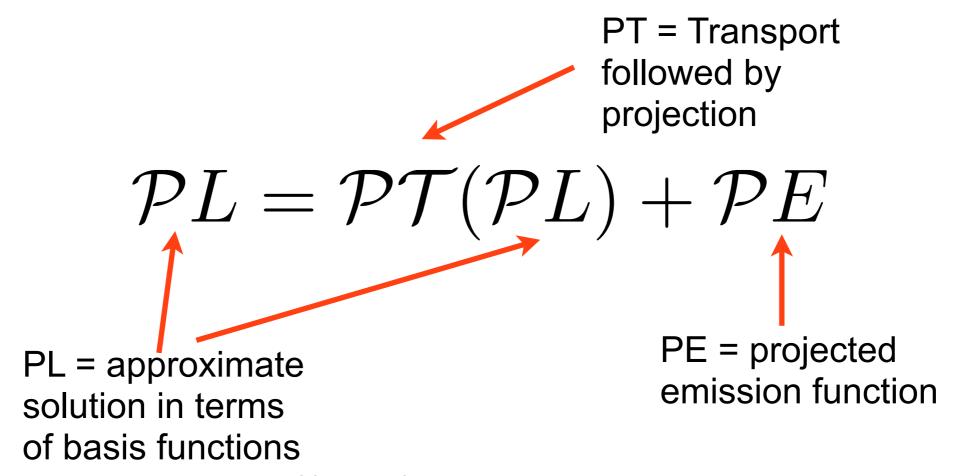
$$L(x) \approx \sum_{i} \alpha_{i} B_{i}(x)$$

Radiosity Derivation

Rendering equation

$$L = \mathcal{T}L + E$$

• This amounts to applying the projection operator:



Lo and Behold

• The discretized rendering equation

$$\mathcal{P}L = \mathcal{P}\mathcal{T}(\mathcal{P}L) + \mathcal{P}E$$

is actually a finite linear system. Let's see why...

- Clearly both sides are finite basis expansions because we always apply *P* to every term
- Hence, for the LHS and RHS to match, the basis coefficients on both side must be equal

• Let's write things out a bit

$$\begin{aligned} \mathcal{P}L &= \sum_{i} \alpha_{i} \, B_{i} \\ &= \mathcal{PT} \sum_{j} \alpha_{j} \, B_{j} + \mathcal{P}E \\ &= \sum_{j} \alpha_{j} \, (\mathcal{PT} \, B_{j}) + \mathcal{P}E \end{aligned}$$

TB_j is the once-bounce illumination received by all surfaces when the basis function B_j acts as an emitter. P merely projects it!

Visualizing PTB_j

One sender basis function B_j

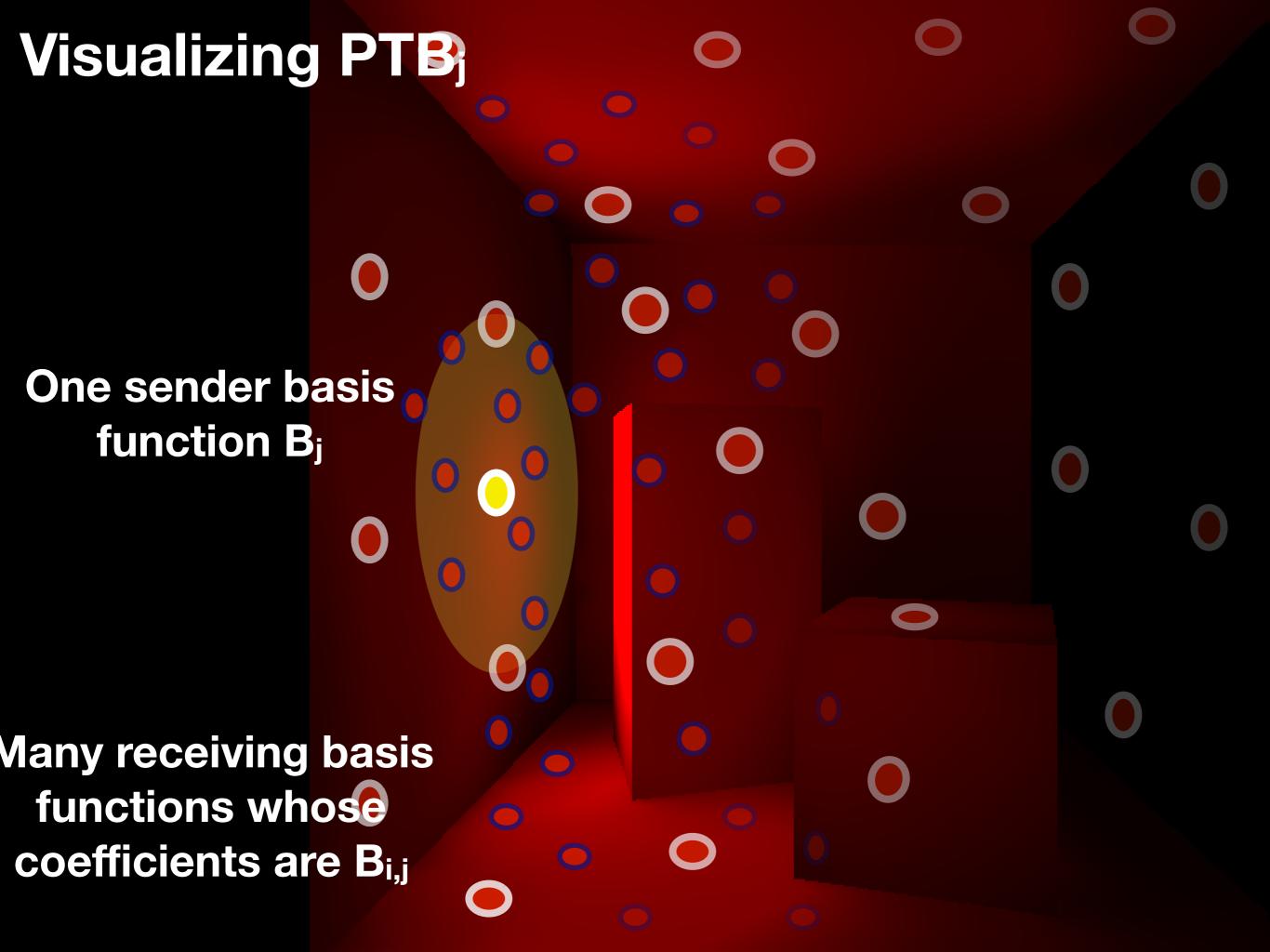
Red = The onebounce illumination received by other surfaces when B_j is the only emitter

Let's Finish It

• $\mathcal{P}TB_j$ is the basis expansion of the one-bounce illumination that results when the emission is Bj

• Because it is a basis expansion, it has its own basis coefficients. We'll call them $B_{i,j}$:

$$(\mathcal{PT}B_j)(x) = \sum_i B_{i,j} B_i(x)$$



Final Radiosity Equation

• The abstract projected equation

$$\mathcal{P}L = \mathcal{P}\mathcal{T}(\mathcal{P}L) + \mathcal{P}E$$

is actually the linear system

$$\alpha = B\alpha + e$$

where the components of alpha are the unknown coefficients, the matrix \mathbf{B} consists of the basis coefficients of PTB_j for all j as shown before, and \mathbf{e} is the basis coefficient vector projected emission PE.

Important Point

$$\alpha = B\alpha + e$$

• This is all good, but we *never ever* form the matrix B explicitly. Why?

Important Point

$$\alpha = B\alpha + e$$

• This is all good, but we *never ever* form the matrix B explicitly. Why?

- We can easily have 10M basis functions in the scene => matrix is $10M^2 = 10^{14}$ float3 entries $= 10^{15}$ bytes
 - We really don't have the time to compute them
 - −Nor space to store them
- Solution: use iterative methods

Iterative Linear Solver

- *Iterative method* means we don't first compute the matrix and then use a direct solver like Gaussian elimination; instead, we compute matrix-vector products *Be* directly and iterate
- Yes, you don't need the full matrix to compute matrix-vector products
 - -This is the basis for all iterative methods
 - -See <u>Jacobi iteration</u>, <u>Gauss-Seidel iteration</u>, <u>conjugate gradient</u> method, <u>Krylov subspace methods</u>
 - -Some <u>very smart approximate product algorithms</u> are known for some particular matrices/operators

 CS-E5520 Spring 2019 Lehtinen

Let's Get Concrete

$$\alpha = B\alpha + e$$

• Turns out we can apply the Neumann series here, too!

$$\alpha = e + Be + B^2e + \dots$$

- ... and this is precisely what Max Payne's lighting solver does, as well as you in Assn 2!
 - -Just one possible iteration for this equation, you'll find lots of others in textbooks (Jacobi, Gauss-Seidel, Southwell)
 - -Max Payne 2 does Southwell + smart partitioning, ask me

Iterative Radiosity Solution

$$\alpha = e + Be + B^2e + \dots$$

- e is the vertex color vector where only the emitting polygons' vertices have a nonzero radiosity
- Initialize alpha = e, temp = e
- Then iterate:
 - -temp = \mathbf{B} times temp
 - -alpha = alpha + temp
- Done!
 - $-temp = \{e, Be, BBe, ...\}, alpha = \{e, e+Be, e+Be+BBe, ...\}$

Computing the Product

- How to compute **B** times **temp?**
 - -Using the basis expansion with coefficients *temp* as the emission, compute at the one-bounce illumination cast on the scene and determine its projection coefficients.
 - -When using vertex basis, very simple: evaluate the hemispherical irradiance integral at each vertex and turn it into outgoing radiance using albedo
 - And don't forget to divide by pi :)

One Last Practical Detail

- We don't actually store outgoing radiosity, but incident irradiance instead
 - -Why? So that we can modulate the lighting using textures

• So, our basis expansion gives us irradiance, we turn it into radiosity by dividing by pi and multiplying by albedo in the shader

Pseudocode Using Vertex Basis

```
// these are vectors of length N, where N is the number of vertices
// they store radiosity before multiplied by albedo
vector temp, temp2, alpha, e;
e = project(E);
                                   // set the colors of emitter vertices
temp = alpha = e;
                                   // init
for bounce=1 to numBounces
   clear(temp2);
                                   // set to zero
   for i=1 to N
                                // loop over vertices
       B = formBasis(vertices[i]); // you already know how
       res = Vec3f(0);
       // M is the number of rays to sample hemisphere with
       for j=1 to M
           Wi = drawCosineWeightedDirection();  // you know how
           // get the radiosity for the hit point y, rho/pi is BRDF!
           Li = rho(y)/pi * interpolateIrradiance( y, temp );
           res = res + Li;
       end
         temp2[i] = res/M; // fixed bug noted on lecture 22.2.17!
   end
    temp = temp2;
   alpha = alpha + temp; CS-E5520 Spring 2019 - Lehtinen
end
```

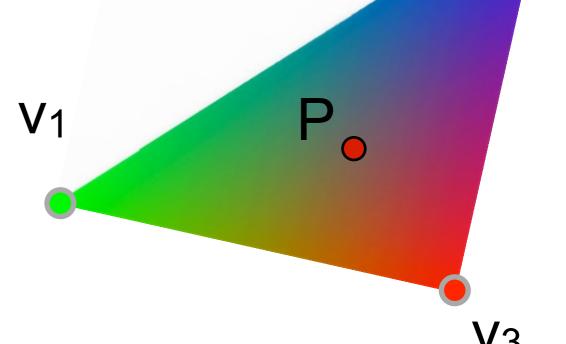
Interpolation

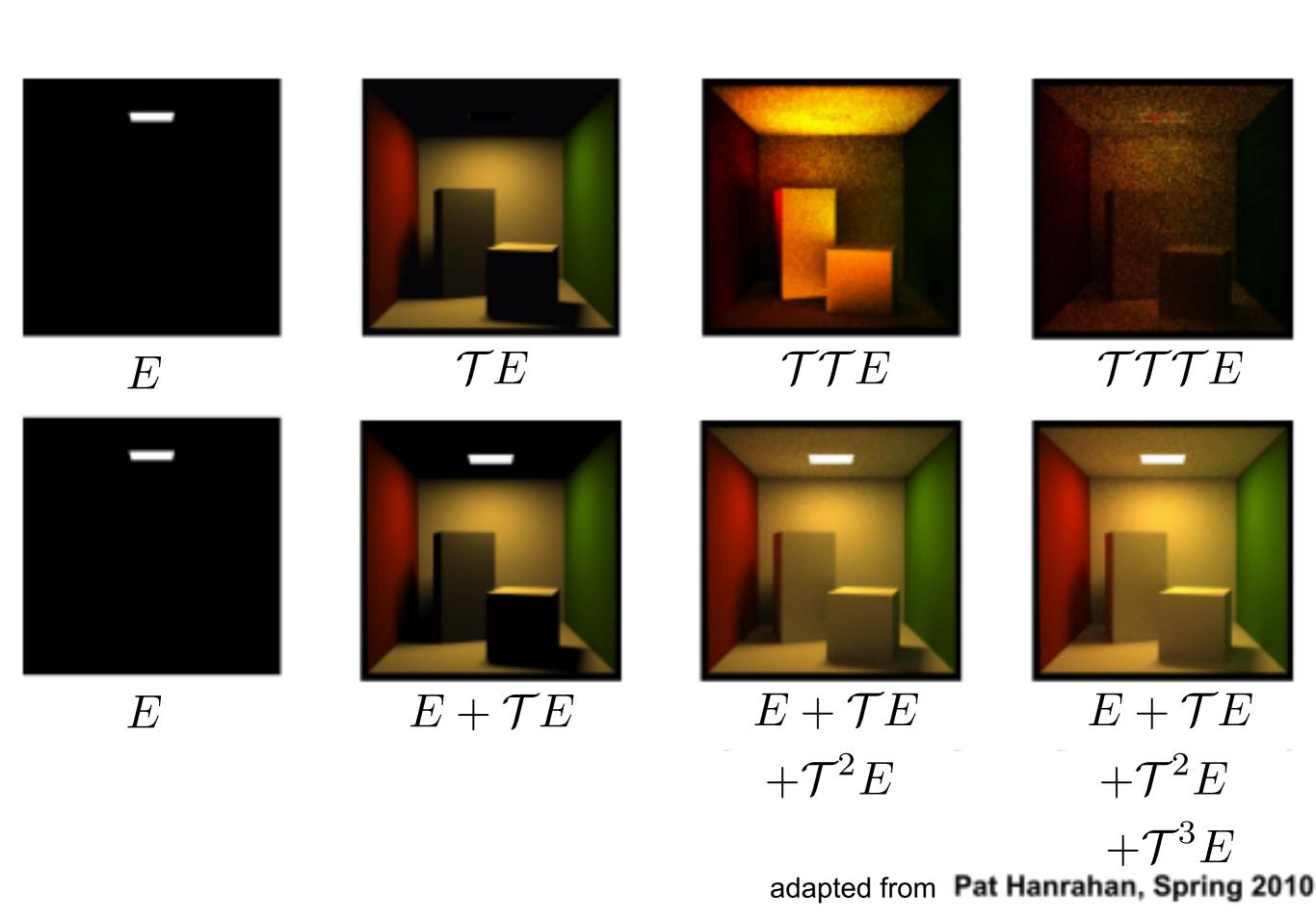
• interpolateIrradiance(y, temp) takes the hit point y and interpolates the irradiance values from the corresponding corner vertices using barycentrics

• You remember this from C3100...

Barycentric Interpolation Recap

- Values v₁, v₂, v₃ defined at **a**, **b**, **c**
 - -Colors, normal, texture coordinates, etc.
- $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ is the point...
- $v(\alpha, \beta, \gamma) = \alpha v_1 + \beta v_2 + \gamma v_3$ is the barycentric interpolation of v_1 - v_3 at point **P**
 - -Sanity check: $v(1,0,0) = v_1$, etc.
- I.e, once you know α, β, γ, you can interpolate values using the same weights.
 - -Convenient!



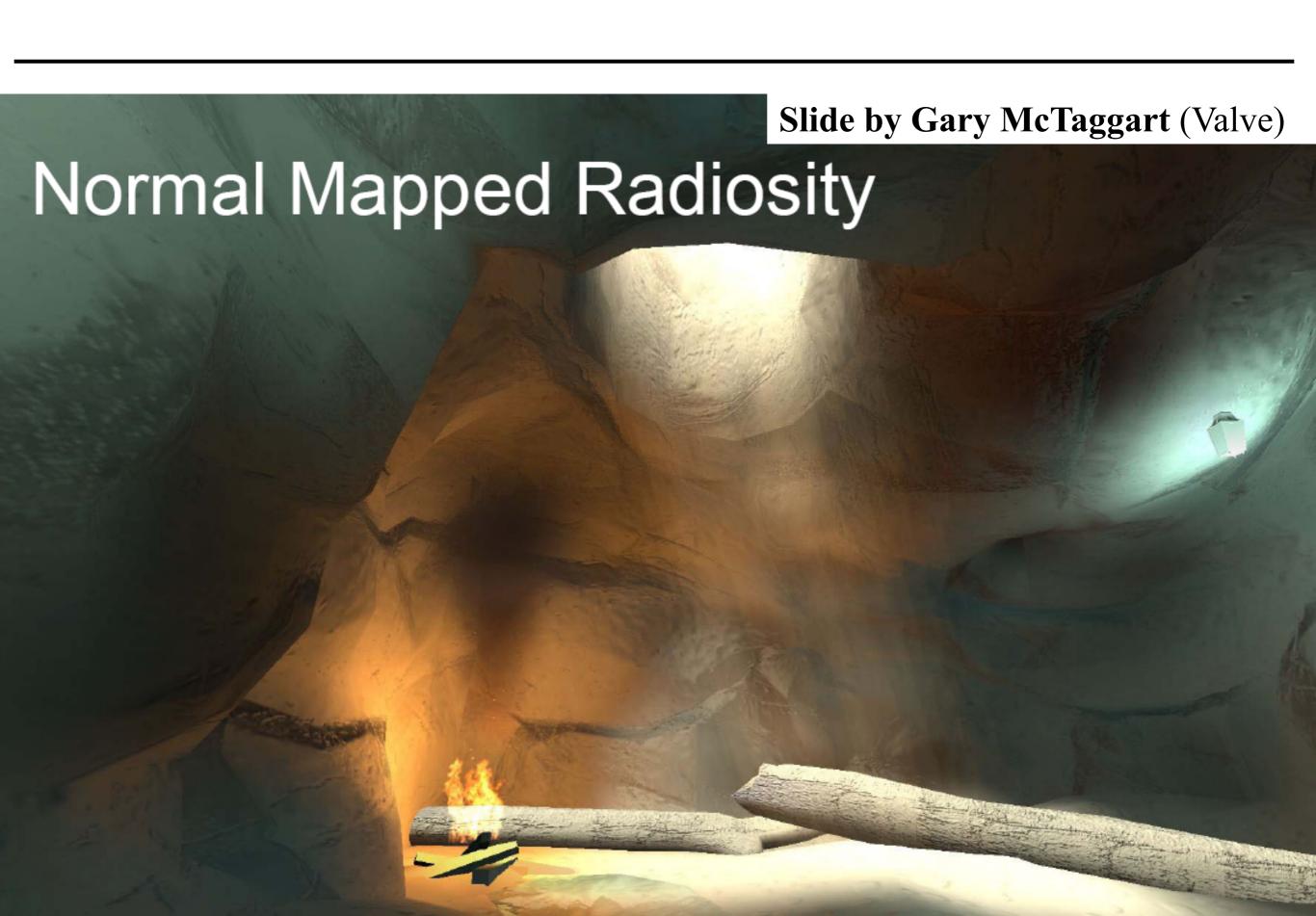


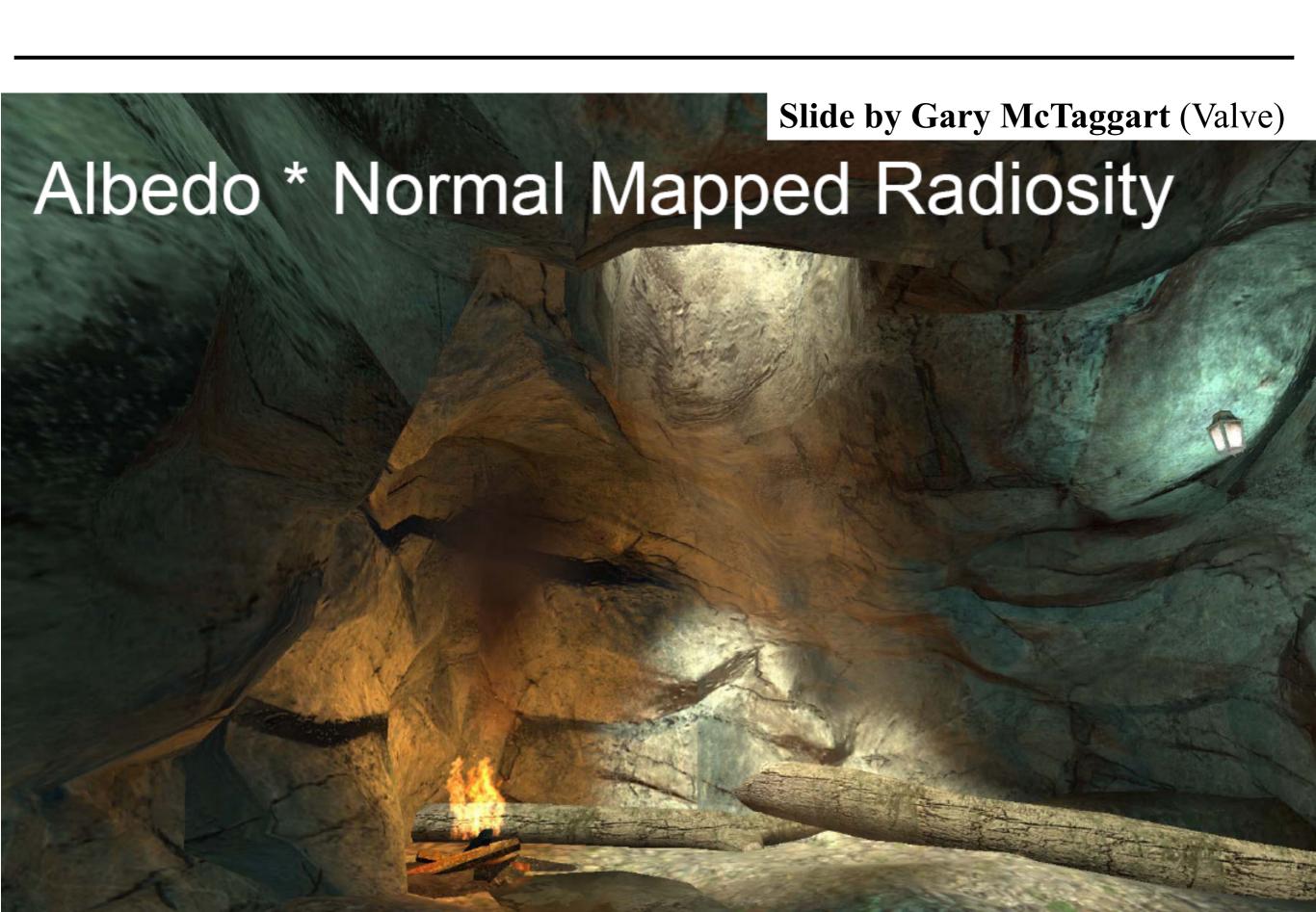
- This was for vertex-based interpolation
- Often one uses texture maps, so-called *lightmaps*, for storing the irradiance
 - -This is what we did (video)
 - -Why? To get detailed illumination, you need many vertices
 - -Downside: building UV parameterizations over the scene hard
 - -Also, we computed the hemispherical integrals using the GPU using a so-called <u>hemicube</u> technique
- However, the main ingredients of the lighting solver are *precisely the same*

- The loop over vertices is embarrassingly parallel
 - -We had a simple distributed cluster running this in Max Payne
 - -But need to synchronize across bounces
- But you can be even smarter
 - -In Max Payne 2, we solved each room in the scene separately in its own cluster node
 - Less data to transfer over network, faster gathering integrals
 - Then, light was propagated between the rooms through 4D light fields or *Lumigraphs*
 - -Corresponds to a two-level block-structured iteration on the large linear system

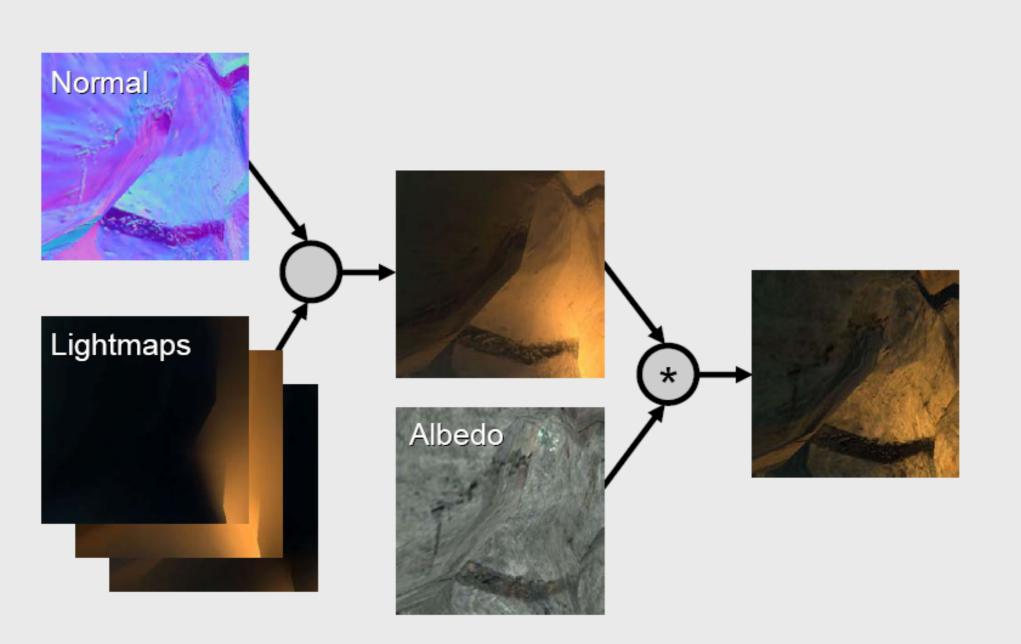
- You can also store directional information, not just irradiance
 - -This allows you to combine radiosity and normal maps
 - -Even if the irradiance is coarsely-sampled, you still get nice surface detail
 - -"Spherical Harmonics" and "vector irradiance" are keywords
 - -Extra credit in your assignment!
- Also, as you notice, the lighting is static
 - -But you can allow the lighting to vary in some predetermined linear space => Precompute Radiance Transfer (VIDEO)
 - -See my master's thesis and ToG paper for an in-depth introduction to PRT

Radiosity + Normals in Half-Life 2





Radiosity Normal Mapping Shade Tree



• It often makes sense to compute direct lighting separately and only use basis functions for indirect

• Also, does it make sense to compute the lighting at a high resolution where it doesn't vary very fast..?

• It often makes sense to compute direct lighting separately and only use basis functions for indirect

- Also, does it make sense to compute the lighting at a high resolution where it doesn't vary very fast..?
 - -You're right, it doesn't
- Adaptive refinement means you compute coarsely, then subdivide where you think you need to

Adaptive Refinement Example

Krivanek 2004

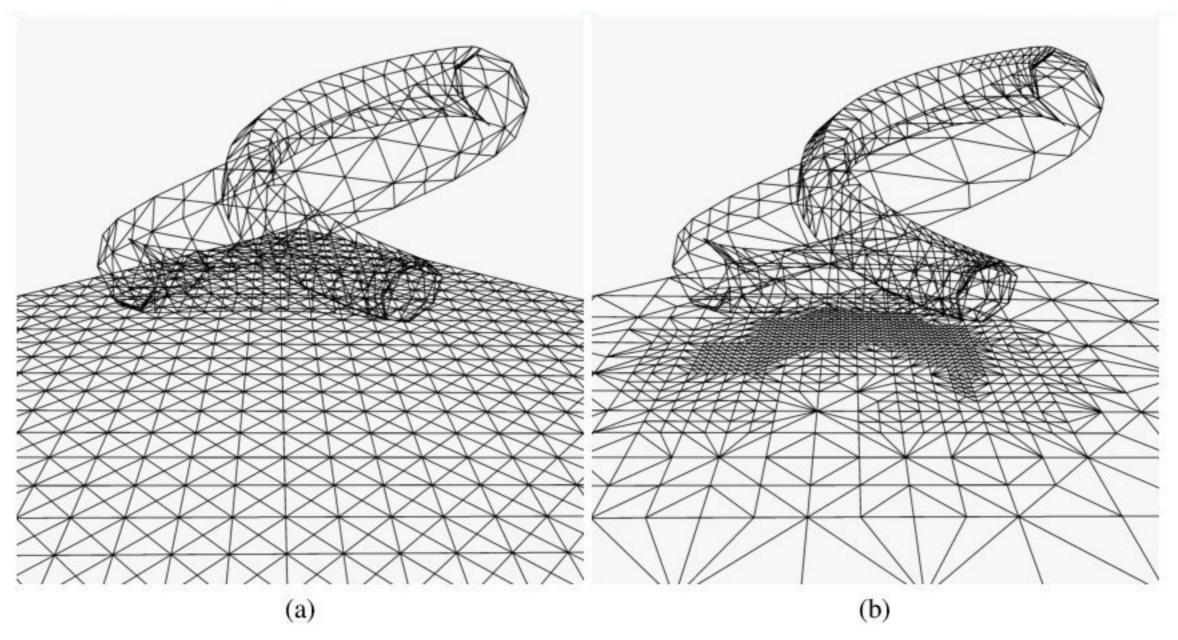


Figure 5: (a) Uniform subdivision (1953 vertices and 3504 triangles). (b) Adaptive subdivision (1540 vertices, 3720 triangles).

Final Conclusions

- Meshing is hard
- Lightmaps are hard (but they are still used)

- You can get around limitations of both by using meshless basis functions (Lehtinen et al. 2008)
 - -Also supports adaptive refinement
 - -Rendering cost is pretty high, though.

Modern Take (link)

