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Solving The Rendering Equation I: Radiosity
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What is the radiance hitting my sensor? <=> 
Solution of the rendering equation
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Today

!3

• Discretizing the rendering equation 
– Radiosity (topic of your assignment!)
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The appearance of diffuse surfaces 
doesn’t change over view direction. 

Outgoing radiance from diffuse 
surface = radiosity 

HOWEVER every surface point still 
has its own radiosity value, and 

there are infinitely many of them.
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So-called radiosity methods express 
the infinitely complex solution as a 

sum of simple basis functions. 

This is the basis for light mapping, as 
seen in many games. 

We discretize the infinitely complex 
rendering equation to get a finite 

equation we can solve.
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Continuous
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Discretized



CS-E5520 Spring 2019 – Lehtinen !9
Mathias Paulin

“Basis function”? 

Simplest version is to divide the 
surfaces up to small patches and 
approximate the radiosity of each 
patch as constant. 

Now there are only finitely many 
unknowns: the radiosities of the 
patches.

Discretized



Some Function on a Continuous 
Domain



• Here each basis function is a box, translated 
so that they don’t overlap

Unweighted Basis Functions



Bn(x)

Unweighted Basis Functions

B1(x) B2(x)

• Here each basis function is a box, translated 
so that they don’t overlap



↵2B2(x)

↵nBn(x)

Approximation by Basis Functions

↵1B1(x)

• We can try to choose weights for the basis 
functions such that together the boxes 
approximate the input function well

• This is called projection



“Projection onto Finite Basis”

=
�

weighted basis functionsapproximation



Projection onto Finite Basis, Piecewise 
Linear

=
�

approximation weighted basis functions



TODO Fourier



Piecewise Linear Basis Functions

• Each vertex has one 
basis function
–1 at the vertex, falls linearly 

to 0 inside the connected 
triangles

–Easy to evaluate using 
barycentrics: remember, 
this is pretty much their 
definition

–But remember each vertex 
affects all connected tris!



Piecewise Linear Basis Functions

• Each vertex has one 
basis function
–1 at the vertex, falls 

linearly to 0 inside the 
connected triangles

–Barycentrics!

• Sampling values at 
vertices and 
interpolating linearly 
= piecewise linear 
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Flashback: Bilinear Texture Filtering

!19

• Tell OpenGL to use a tent filter instead of a box filter 
• Magnification looks better, but blurry 

–(texture is under-sampled for this resolution) 
–Oh well...



Texture Maps

• A texel in a texture map is also a basis 
function
–Think about it: it’s a finite set of numbers that 

togethet define a function on the continuous 2D 
domain



Texture Maps

• A texel in a texture map is also a basis 
function
–Think about it: it’s a finite set of numbers that together 

define a function on the continuous 2D domain

• The exact shape of the basis function 
determined by the interpolation method used
–Most common: bilinear basis, here defined on [-1,1]2 



Bilinear Basis Function
B(x, y) =

8
>>><

>>>:

(1� x)(1� y), 0  x, y  1

(1� x)(1 + y), 0  x  1,�1  y < 0

(1 + x)(1� y), �1  x < 0  y  1

(1 + x)(1 + y), �1  x, y < 0



“Projection Operators”

• What’s going on: we take a function defined 
on a continuous domain, do something, and 
get an approximate version out



“Projection Operators”

• Projection can be written as linear operator 
• Take an arbitrary function L, return finite 

approximation         described by vector of 
weights                       for basis functions

P

PL
(↵1,↵2, . . . ,↵n)
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Different Projections
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• Sample at one point 
– For vertex basis, look at value at the vertex and use as weight: 

• This process takes samples at vertices and “smears” 
them across the triangles to yield a continuously-
defined function

f(x) ⇡
X

i

Bi(x) f(xi)

Basis function 
associated 
with i:th vertex

Function value 
at i:th vertex
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Different Projections

L2

!26

• Sample at one point 
– For vertex basis, look at value at the vertex and use as weight: 

• “Least squares projection”, aka        projection 
– Find coefficients that minimize the squared norm of the error 

integrated over the entire domain

f(x) ⇡
X

i

Bi(x) f(xi)
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Least Squares Projection

(↵1,↵2, . . . ,↵n)
Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dx

!27

• Task: find                             such that the residual 
 
 
 
is minimized. 

• Residual is input function f minus the approximation 
• Minimize the squared integral of R over the domain 

– If approximation is exact, this is zero (never happens) 
– Need to solve for the weights

R :=
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Turns Out To Be Simple

!28

Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵
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Turns Out To Be Simple
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Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

, expand the square
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Turns Out To Be Simple

!30

Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

,

✕ ✕ ✕
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Turns Out To Be Simple

!31

Z

S

 
f(x)�

NX

i=1

↵iBi(x)

!2

dxargmin↵

Z

S

0

@f(x)2 � 2
X

i

f(x)↵i Bi(x) + 2
X

i

X

j

↵i ↵jBi(x)Bj(x)

1

A dx

,

,

✕ ✕ ✕

�
X

i

↵i

Z

S
f(x)Bi(x)dx+

X

i

X

j

↵i ↵j

Z

S
Bi(x)Bj(x)dx

(rearrange integration and summation)
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Turns Out To Be Simple
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• So the final task is to find alphas that minimize  
 
 
 
or, in matrix-vector form

X

i

↵i

Z

S
f(x)Bi(x)dx+

X

i

X

j

↵i ↵j

Z

S
Bi(x)Bj(x)dx

:= hBi, Bji:= hf,Bii
| {z }| {z }

�
X

i

↵i hf,Bii+
X

i

X

j

↵i ↵j hBi, Bji

fi = hf,Bii
Bi,j = hBi, Bji

�fT ↵+↵TB↵
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• It’s a quadratic function in the vector alpha 
– f, B are constants, given f (x) and the basis functions Bi (x) 

• What happens when you differentiate a quadratic 
function and set to zero?

�fT ↵+↵TB↵
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A Linear System

!34

• Least squares projection solution given by  
 
 
 
where                       and

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji
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Easy Special Case: Box Functions

!35

• Least squares projection solution given by  
 
 
 
where                       and 

• What if we use the piecewise constant box basis? 
– Then Bi,j = 0 when i != j. (Why?)

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji
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Easy Special Case: Box Functions

!36

• Least squares projection solution given by  
 
 
 
where                       and 

• What if we use the piecewise constant box basis? 
– Then Bi,j = 0 when i != j. (Why?) 
– In fact, the Bi,j are just the areas under the boxes 
– Convince yourself that then the basis coefficients are just area 

averages of f over the boxes!

B↵ = f

fi = hf,Bii Bi,j = hBi, Bji
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OK, Why all the Trouble?

!37

• Video
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Radiosity Derivation

!38

• Rendering equation 

• Now let’s search for an approximate solution in terms 
of basis functions, i.e. try to find coefficients s.t.

L = T L+ E

L(x) ⇡
X

i

↵i Bi(x)
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Radiosity Derivation

!39

• Rendering equation 

• This amounts to applying the projection operator:

L = T L+ E

PL = PT (PL) + PE

PL = approximate 
solution in terms 
of basis functions

PE = projected 
emission function

PT = Transport 
followed by 
projection
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Lo and Behold
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• The discretized rendering equation  
 
 
 
is actually a finite linear system. Let’s see why... 

• Clearly both sides are finite basis expansions because 
we always apply P to every term 

• Hence, for the LHS and RHS to match, the basis 
coefficients on both side must be equal

PL = PT (PL) + PE
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• Let’s write things out a bit  

PL =
X

i

↵i Bi

= PT
X

j

↵j Bj + PE

=
X

j

↵j (PT Bj) + PE

TBj is the once-bounce illumination received 
by all surfaces when the basis function Bj 
acts as an emitter. P merely projects it!

Alphas are the unknowns we seek!



One sender basis function Bj

Visualizing PTBj

Red = The one-
bounce 

illumination 
received by 

other surfaces 
when Bj is the 
only emitter
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Let’s Finish It
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•                 is the basis expansion of the one-bounce 
illumination that results when the emission is Bj 

• Because it is a basis expansion, it has its own basis 
coefficients. We’ll call them         : 

PT Bj

Bi,j

(PT Bj)(x) =
X

i

Bi,j Bi(x)



One sender basis 
function Bj

Many receiving basis 
functions whose 

coefficients are Bi,j

Visualizing PTBj
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Final Radiosity Equation

!45

• The abstract projected equation  
 
 
 
is actually the linear system  
 
 
 
where the components of alpha are the unknown 
coefficients, the matrix B consists of the basis 
coefficients of PTBj for all j as shown before, and e is 
the basis coefficient vector projected emission PE.  
 

PL = PT (PL) + PE

↵ = B↵+ e
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Important Point

!46

• This is all good, but we never ever form the matrix B 
explicitly. Why?

↵ = B↵+ e
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Important Point

!47

• This is all good, but we never ever form the matrix B 
explicitly. Why? 

• We can easily have 10M basis functions in the scene 
=> matrix is 10M2 = 1014 float3 entries = 1015 bytes 
– We really don’t have the time to compute them 
– Nor space to store them 

• Solution: use iterative methods

↵ = B↵+ e
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Iterative Linear Solver
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• Iterative method means we don’t first compute the 
matrix and then use a direct solver like Gaussian 
elimination; instead, we compute matrix-vector 
products Be directly and iterate 

• Yes, you don’t need the full matrix to compute matrix-
vector products 
– This is the basis for all iterative methods 
– See Jacobi iteration, Gauss-Seidel iteration, conjugate gradient 

method, Krylov subspace methods 
– Some very smart approximate product algorithms are known 

for some particular matrices/operators

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Gauss%25E2%2580%2593Seidel_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Krylov_subspace
http://en.wikipedia.org/wiki/Fast_multipole_method
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Let’s Get Concrete
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• Turns out we can apply the Neumann series here, too! 

• ... and this is precisely what Max Payne’s lighting 
solver does, as well as you in Assn 2! 
– Just one possible iteration for this equation, you’ll find lots of 

others in textbooks (Jacobi, Gauss-Seidel, Southwell) 
– Max Payne 2 does Southwell + smart partitioning, ask me

↵ = B↵+ e

↵ = e+Be+B2e+ . . .
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Iterative Radiosity Solution
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• e is the vertex color vector where only the emitting 
polygons’ vertices have a nonzero radiosity 

• Initialize alpha = e, temp = e 
• Then iterate: 

– temp = B times temp 
– alpha = alpha + temp 

• Done! 
– temp = {e, Be, BBe, ...}, alpha = {e, e+Be, e+Be+BBe, ...}

↵ = e+Be+B2e+ . . .
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Computing the Product
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• How to compute B times temp? 
– Using the basis expansion with coefficients temp as the 

emission, compute at the one-bounce illumination cast on the 
scene and determine its projection coefficients. 

– When using vertex basis, very simple: evaluate the 
hemispherical irradiance integral at each vertex and turn it into 
outgoing radiance using albedo 

– And don’t forget to divide by pi :)
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One Last Practical Detail
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• We don’t actually store outgoing radiosity, but incident 
irradiance instead 
– Why? So that we can modulate the lighting using textures 

• So, our basis expansion gives us irradiance, we turn it 
into radiosity by dividing by pi and multiplying by 
albedo in the shader
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Pseudocode Using Vertex Basis
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// these are vectors of length N, where N is the number of vertices
// they store radiosity before multiplied by albedo
vector temp, temp2, alpha, e;
e = project(E);                      // set the colors of emitter vertices
temp = alpha = e;                    // init

for bounce=1 to numBounces
    clear(temp2);                     // set to zero
    for i=1 to N                     // loop over vertices

B = formBasis(vertices[i]);  // you already know how
res = Vec3f(0);
// M is the number of rays to sample hemisphere with

        for j=1 to M
            Wi = drawCosineWeightedDirection();   // you know how
            y = rayCast( vertices[i], Wi );       // you know how
            // get the radiosity for the hit point y, rho/pi is BRDF!
            Li = rho(y)/pi * interpolateIrradiance( y, temp );
            res = res + Li;
        end
        temp2[i] = res/M; // fixed bug noted on lecture 22.2.17!

    end
 temp = temp2;

    alpha = alpha + temp;
end
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Interpolation
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• interpolateIrradiance(y, temp) takes the 
hit point y and interpolates the irradiance values from 
the corresponding corner vertices using barycentrics 

• You remember this from C3100...
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Barycentric Interpolation Recap
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• Values v1, v2, v3 defined at a, b, c 
– Colors, normal, texture coordinates, etc. 

• P(α, β, γ) = αa + βb + γc is the point... 
• v(α, β, γ) = αv1 + βv2 + γv3 is the 

barycentric interpolation of  
v1-v3 at point P 
– Sanity check: v(1,0,0) = v1, etc. 

• I.e, once you know α, β, γ,  
you can interpolate values  
using the same weights. 
– Convenient!

v1

v2

v3

P
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mail
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E T E T T E T T T E

adapted from

E E + T E

+T 2E

E + T E

+T 2E

E + T E

+T 3E
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Discussion

!57

• This was for vertex-based interpolation 
• Often one uses texture maps, so-called lightmaps, for 

storing the irradiance 
– This is what we did (video) 
– Why? To get detailed illumination, you need many vertices  
– Downside: building UV parameterizations over the scene hard  
– Also, we computed the hemispherical integrals using the GPU 

using a so-called hemicube technique 

• However, the main ingredients of the lighting solver 
are precisely the same

http://dl.acm.org/citation.cfm?id=325171
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Discussion 2

!58

• The loop over vertices is embarrassingly parallel 
– We had a simple distributed cluster running this in Max Payne 
– But need to synchronize across bounces 

• But you can be even smarter 
– In Max Payne 2, we solved each room in the scene separately 

in its own cluster node 
• Less data to transfer over network, faster gathering integrals 

– Then, light was propagated between the rooms through 4D 
light fields or Lumigraphs 

– Corresponds to a two-level block-structured iteration on the 
large linear system

http://dl.acm.org/citation.cfm?id=237200
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Discussion 3
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• You can also store directional information, not just 
irradiance 
– This allows you to combine radiosity and normal maps 
– Even if the irradiance is coarsely-sampled, you still get nice 

surface detail 
– “Spherical Harmonics” and “vector irradiance” are keywords 
– Extra credit in your assignment! 

• Also, as you notice, the lighting is static 
– But you can allow the lighting to vary in some predetermined 

linear space => Precompute Radiance Transfer (VIDEO) 
– See my master’s thesis and ToG paper for an in-depth 

introduction to PRT

http://www.tml.tkk.fi/~jaakko/dt/JaakkoLehtinen_MSc_thesis.pdf
http://dl.acm.org/citation.cfm?doid=1289603.1289604


Radiosity + Normals in Half-Life 2
Slide by Gary McTaggart (Valve)



Slide by Gary McTaggart (Valve)



Slide by Gary McTaggart (Valve)



Slide by Gary McTaggart (Valve)



Slide by Gary McTaggart (Valve)
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Discussion 4

!66

• It often makes sense to compute direct lighting 
separately and only use basis functions for indirect 

• Also, does it make sense to compute the lighting at a 
high resolution where it doesn’t vary very fast..?
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Discussion 4

!67

• It often makes sense to compute direct lighting 
separately and only use basis functions for indirect 

• Also, does it make sense to compute the lighting at a 
high resolution where it doesn’t vary very fast..? 
– You’re right, it doesn’t 

• Adaptive refinement means you compute coarsely, then 
subdivide where you think you need to
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Adaptive Refinement Example

!68

Krivanek 2004

http://dcgi.felk.cvut.cz/publications/2004/krivanek-sccg-amsp
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Final Conclusions
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• Meshing is hard 
• Lightmaps are hard (but they are still used) 

• You can get around limitations of both by using 
meshless basis functions (Lehtinen et al. 2008) 
– Also supports adaptive refinement 
– Rendering cost is pretty high, though.

http://people.csail.mit.edu/jaakko/meshless/
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Modern Take (link)
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https://users.aalto.fi/~silvena4/Publications/SIGGRAPH_2015_Remedy_Notes.pdf


CS-E5520 Spring 2019 – Lehtinen !71

Direct-to-indirect precomputed light transport 
using meshless hierarchical basis functions
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That’s it for Today
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• Further reading 
– Pat Hanrahan’s slides on MC 

integration I, MC integration II 
– My master’s thesis introduces math 

behind discretized global 
illumination 

– Cohen & Wallace: Radiosity and 
Realistic Image Synthesis

https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloILecture
https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloILecture
https://graphics.stanford.edu/wikis/cs348b-11/MonteCarloIILecture
http://www.tml.tkk.fi/~jaakko/dt/JaakkoLehtinen_MSc_thesis.pdf

